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Abstract: Entangled networks of carbon nanofibers are characterized both mechanically 

and electrically. Results for both tensile and compressive loadings of the entangled 

networks are presented for various densities. Mechanically, the nanofiber ensembles follow 

the micromechanical model originally proposed by van Wyk nearly 70 years ago. 

Interpretations are given on the mechanisms occurring during loading and unloading of the 

carbon nanofiber components. 
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1. Introduction 

One-dimensional carbon materials are available in many high-end commercial products [1,2] and 

continue to be a source of ongoing research [3–5]. This is due to their remarkable material properties. 

The two main instances of this type of material are carbon nanotubes and carbon nanofibers. Carbon 

OPEN ACCESS 



Materials 2014, 7 4846 

 

micro- and nanofibers are a common component in high-strength, lightweight fiber-reinforced 

composites [6–9]. Less studied are the properties of an interwoven assemblage of the nanofibers, 

which behaves as a coherent, nonwoven component. 

Synthesis methods for creating carbon nanotubes [10] and nanofibers [10–12] commonly produce 

random networks of tangled fibers. These entangled fibers do not have fixed connections with 

adjoining fibers (i.e., they are not cross-linked). Thus, the entangled fibers comprise a random network 

similar in nature to a nonwoven mass of fibers found in common textile processes. Random networks 

of textile fibers are commonly modeled using a micromechanical model originally developed by van 

Wyk in 1946. In 2009 an effort was undertaken to mechanically test a “tangle” of carbon nanotubes [3]. 

This effort demonstrated that the van Wyk model [13] matched the stress vs. change in fiber volume 

fraction for the loading portion of the curve. It also showed that the van Wyk model did not match the 

unloading portion of the curve. Allaoui et al. [3] surmise that this is due to the dissipation of adhesive 

energy as contacts break. 

The van Wyk model was proposed in 1946 [13] and incorporates fiber bending at contact points in 

the random network and the creation of new fiber-to-fiber contacts, but ignores other effects such as 

friction and fiber sliding. Functionally, van Wyk’s model proportionally relates the stress applied to 

the random fiber network, σ, to the fiber volume fraction, µ, to the third power: 

      
    

   (1) 

where kp is a constant that contains information on fiber characteristics and µ0 is the initial fiber 

volume fraction before compression. This model describes the behavior of a large entangled network 

of randomly oriented fibers. This amazingly simplistic model has been found to be applicable to many 

different types of random fiber networks such as short hollow pulp fiber networks [14] and textile 

reinforcements for composites manufacturing [15]. 

The electrical response of a random fiber network to an applied stress is not commonly studied, 

because most types of fibers in the textile industry are not conductive. Thus, there is a lack of studies 

and modeling addressing this topic. In this paper, the electrical properties are measured in both tension 

and compression. Sudden changes in electrical resistance seen in tension tests can be used as a method 

of evaluating the mechanical situation and integrity of the material. For compression tests, the 

electrical resistance is shown to approach the conductance of amorphous carbon when the carbon 

nanofibers are under their highest compressive loads. Additionally, the mechanical response of the 

entangled networks of carbon nanofibers is studied in tension and compression. A discussion of the 

tensile response is qualitative while the compressive response is modeled using the van Wyk Model. 

The compression tests reported here are performed in an open die configuration under high stresses 

(~10 MPa). During loading, it was verified that the sample kept its integrity even at the highest loads. 

Furthermore, it is shown that the van Wyk Model Equation (1) for a random entanglement of fibers is 

capable of describing the response of the material with considerable accuracy. 
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2. Experimental Section 

2.1. Carbon Nanofiber Synthesis 

Bulk, nonwoven components comprised of carbon nanofibers were synthesized using a method 

previously developed by Atwater et al. [10]. Briefly, Pd nanoparticles are dispersed in a rectangular 

steel mold and then heated in a furnace in an inert environment. Once heated to 550 °C, a mixture of 

ethylene and oxygen is flown over the catalyst. By varying the Pd particle loading in the mold and the 

time of gas flow differing densities of carbon nanofiber entanglements were synthesized. Sample 

densities were determined geometrically by weighing samples of a known volume.  

An example of the as-grown samples is shown in Figure 1. Here it can be seen that a relatively large 

(many centimeters) component can be easily attained with this process. When examined using SEM, it 

can be seen that the larger structure is actually comprised of much smaller (ca. 100 nm diameter), 

carbon nanofibers, e.g., Figure 1d. Additional characterization of the fibers’ properties is contained in 

References [11,12]. The process, then, creates a multi-scale material with the ability to control both 

nanoscale and macroscale features. 

Figure 1. Carbon Nanofiber Network at increasing magnification, boxes indicate section in 

next image (a) 1×; (b) 1000×; (c) 10,000×; (d) 20,000×. 

 

(a) (b) 

 

(c) (d) 
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2.2. Mechanical and Electrical Characterization Setups 

Mechanical and electrical characterization was conducted simultaneously for samples of differing 

densities. In order to accomplish this, a custom setup was required for both the tensile and compressive 

tests. Tensile samples were tested under relatively low loads, <45 N, while compression tests were to a 

load as high as 200 N. 

Tensile tests were conducted on an Instron 1101 with a 45 N load cell using a constant displacement 

of 1.27 mm/min. Sample densities tested were 0.125 and 0.131 g/cc. Carbon nanofiber samples with a 

cross sectional area of 5 mm × 25 mm were clamped between two electrically isolated grips at a 

distance of 20 mm apart. A constant current of 250 mA was applied to the samples and the voltage was 

recorded in order to determine the resistance of the sample as a function of load.  

Compression tests were performed on a larger capacity Instron with a 44.5 kN load cell with a 

constant crosshead displacement of 0.252 mm/min. The 0.40 g/cc cylindrical sample was tested in an 

open die configuration with a diameter of 4.7 mm and thickness of 5 mm. Electrical measurements 

were made in the same manner as for the tensile experiments. 

3. Mechanical Properties 

3.1. Tensile Tests 

Tensile loading curves for two different densities of nanofibrous nonwoven carbon are shown in 

Figure 2. The stress-strain curves are accompanied by their corresponding resistance measurements. 

Judging from SEM characterization (e.g., see Figure 1), no fiber is expected to span the gage length of 

the sample, and therefore no fibers are considered rigidly held by both grips. On that assumption, 

loading of the samples must be a result of friction between the fibers and mechanical interlocking.  

Figure 2. Tensile behavior of carbon nanofiber network under tension, accompanied by 

resistance measurements as a function of strain (mm/mm). (a) Low density network; (b) 

High density network. 

 

(a) (b) 

Tensile loading of the samples diplays several interesting behaviors. For both samples, a smooth 

monotonic increase is seen during loading initially. This smooth portion of the loading curves is then 
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followed by data that is generally increasing, but contains several discontinuities. These discontinuities 

are attributed to avalanches of fiber pullouts. After a critical number of fibers have pulled out, a 

maximum load is reached, and any increase in displacement results in nothing but decreases in load.  

In order to more succinctly compare the behavior of these two samples five material properties are 

examined: (1) tangent modulus; (2) maximum stress; (3) maximum strain; (4) failure stress and  

(5) failure strain. Failure is defined as a decrease in the load sustained by the sample. Table 1 compares 

the compressive moduli and tangent moduli attained from tensile tests. Though the two samples have 

nearly identical densities and remarkably similar material properties, as listed in Table 1, there is a 

marked difference in the failure of the two samples. The 0.125 g/cc sample has a massive avalanche of 

pulled out fibers as is evidenced by a sudden drop in load after reaching σu; this is also accompanied 

by a large jump in resistance of the sample. The 0.131 g/cc sample appears to have a fairly gradual 

pullout of fibers as it continues to fail after having reached its σu. 

Table 1. Mechanical Properties of entangled network of carbon nanofibers. 

ρ (g/cm
3
)                          Linear range Percentage (% of   ) 

0.125 600 13.4 34.2 39.2% 

0.131 627 16.9 41.3 40.8% 

The resistance of the entangled network of the carbon nanofibers increases almost linearly with 

increasing tensile load until there is a sudden drop in the load (stress). This is a clear indication that 

fibers are pulling out from one another. This reduces the number of fibers in contact as well as the 

number of contacts per fiber. Once a threshold limit is met, then many fibers separate from one another 

simultaneously—an avalanche of fiber pullouts. Again, this is most noticeable for the 0.125 g/cc 

sample near its σu.  

3.2. Compression Tests 

Five compressive loading cycles are shown for a sample with a of density 0.40 g/cc in Figure 3. 

Cycle 6 and subsequent cycles display the similar hysteresis between the loading and unloading 

portion of each cycle, but nearly fall on top of one another. The stress versus percent fiber volume 

fraction (µ%) are accompanied by their corresponding resistance measurements. The resistance vs. µ% 

curves follow similar trends, as seen by Atwater et al. [10]. Additionally, the loading portions of the 

curves in Figure 3 are fit with the van Wyk model, Equation (1). The agreement between the 

experimental data and model demonstrate the utility of the model and also show that the mechanisms 

modeled in the van Wyk interpretation are responsible for the defromation behavior of the 

entanglement of the carbon nanofibers. 

van Wyk’s model describes the bending and creation of new contacts in a random network of fibers. 

This is appropriate for the compressive loading of the fibers as evidenced by the fit of van Wyk’s 

model to the data in Figure 4. Unloading of the fiber shows a considerable amount of hysteresis and is 

not modeled well by van Wyk’s model (and is not displayed). For unloading, it is likely that adhesion 

and friction are the main contributors to this hysteresis, as is the case with carbon nanotubes [3]. 

Even within the loading event, it appears that bending and the creation of contacts contribute 

different amounts to the loading history of the sample as the fiber volume fraction increases. For lower 



Materials 2014, 7 4850 

 

values of µ (and load) the samples are more porous, i.e., there are more air gaps between the carbon 

nanofibers. Thus, as the sample is compressed, the fibers bend into the empty spaces more  

readily—bending is more dominant at lower values of load and µ. Thus, the model does not work as 

well for lower values of load and µ. As the compression continues, new contacts are made at an 

increasing rate. In fact, it has been recently shown that the rate of increase of the number of contacts is 

linearly proportional to µ [16]. Thus for higher values of load and µ the van Wyk model is more 

applicable and therefore more accurate. A considerable amount of hysteresis exists between the loading 

and unloading cycles in Figure 3. Adhesion (friction) is attributed to this hysteresis. Adhesive forces are 

commonly known to cause sticking between individual micro and nanodevices, commonly referred to 

as ‘stiction failure’ in the literature [17–19]. Because of the small scale of the fibers (i.e., ca. 100 nm 

diameter), van der Waals forces, hydrogen bonding, etc. may have an appreciable adhesive effect. 

Allaoui et al. [3] also consider this to be the source of adhesion between fibers and the culprit for 

hysteresis in carbon nanotube tangles.  

Figure 3. Five compression cycles (continuous loading and unloading) of a 0.40 g/cc 

carbon nanofiber tangle sample. Data is displayed as pressure vs. percent fiber volume 

fraction (µ). 

 

Figure 4. Loading portions of the curves in Figure 3 with fits to the van Wyk model. 
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Adhesion between fibers leads to hysteresis while the bending of individual fibers is the main 

source of elastic energy storage. As the load increases more fibers are being influenced to move, but 

their motion is impeded due to restrictions from adjacent fibers. For the highest loads, energy is 

dissipated by irreversible friction and sliding [20]. However, when unloading occurs, only the 

elastically stored energy can be recovered. Thus a small reverse movement in the compression platen 

results in a large drop in load as seen in all unloading curves. For lower values of µ (strain) the elastic 

energy in the fibers becomes considerable and pushes back on the compression platen and a large 

movement of the platen results in a smaller change in load. 

The resistance of the entangled network decreases nonlinearly as the compressive load is applied in 

Figure 3. An asymptotic value is approached for the highest loads. Considering the sample size, the 

resistivity of the sample approaches 2.7 × 10
−3

 Ω·m, which is approximately three to five times that of 

amorphous carbon (5 × 10
−4

–8 × 10
−4

 Ω·m) [21,22]. Physically, the sample is being compressed and 

the sizes of the pores filled with air are beginning to decrease while, simultaneously, more physical 

connections are being made between fibers. Had all pores been eliminated, it would be expected that 

the value for the resistivity of the material should approach that of amorphous carbon. However, it can 

never truly reach this value because the pores never fully disappear and also the surfaces of the carbon 

nanofibers have adsorbed gases that never allow the entangled network of carbon nanofibers to turn 

into a continuous piece of amorphous carbon. These interfaces cause additional scattering of electrons 

over what would be expected in amorphous carbon. 

4. Conclusions 

The results of this work indicate that bulk collections of carbon nanofibers can behave as  

traditional nonwoven materials. This understanding was reached through simultaneous mechanical and 

electrical analyses. Under tensile load, these nanofibrous nonwovens tend to fail by fiber pullout. 

During elongation there is no significant enhancement of fiber-to-fiber contact (i.e., reduction of  

cross-sectional area) which would be indicated through a reduction in electrical resistance. Under 

compression, the material behaves elastically, but with significant hysteresis during unloading. 

Electrical resistance decreases substantially as the material is compressed. The mechanical properties 

and the reduction in electrical resistance are consistent with the van Wyk model of fiber interaction. 

The hysteresis during unloading is attributable to small-scale friction and adhesive affects found in 

fibrous materials. Based on these data, the material is expected to be suitable for applications where 

cyclic compressive forces are encountered or in applications where an electrical response to 

deformation may be valuable. 
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