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“Cognitive dysmetria” theory of schizophrenia (SZ) has highlighted that the

cerebellum plays a critical role in understanding the pathogenesis and

cognitive impairment in SZ. Despite some studies have reported the structural

disruption of the cerebellum in SZ using whole brain approach, specific

focus on the voxel-wise changes of cerebellar WM microstructure and

its associations with cognition impairments in SZ were less investigated.

To further explore the voxel-wise structural disruption of the cerebellum

in SZ, the present study comprehensively examined volume and diffusion

features of cerebellar white matter in SZ at the voxel level (42 SZ vs.

52 controls) and correlated the observed alterations with the cognitive

impairments measured by MATRICS Consensus Cognitive Battery. Combing

voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) methods,

we found, compared to healthy controls (HCs), SZ patients did not show

significant alteration in voxel-level cerebellar white matter (WM) volume

and tract-wise and skeletonized DTI features. In voxel-wise DTI features

of cerebellar peduncles, compared to HCs, SZ patients showed decreased

fractional anisotropy and increased radial diffusivity mainly located in left

middle cerebellar peduncles (MCP) and inferior cerebellar peduncles (ICP).

Interestingly, these alterations were correlated with overall composite and

different cognitive domain (including processing speed, working memory,

and attention vigilance) in HCs but not in SZ patients. The present findings

suggested that the voxel-wise WM integrity analysis might be a more

sensitive way to investigate the cerebellar structural abnormalities in SZ

patients. Correlation results suggested that inferior and MCP may be a crucial
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neurobiological substrate of cognition impairments in SZ, thus adding the

evidence for taking the cerebellum as a novel therapeutic target for cognitive

impairments in SZ patients.
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Introduction

Schizophrenia (SZ) is a devastating disease with suspected
neurodevelopmental origins and a life trajectory (1). Since
SZ has been recognized as a brain disease, neuroscience has
been attempted to unravel the neuropathological mechanism
of SZ (2). In recent years, advances in magnetic resonance
imaging (MRI), especially diffusion-weighted imaging (DWI)
and high-resolution structural imaging (T1), have led to a new
wave of research revealing white matter (WM) connectivity
interruptions in patients with SZ. Most of the existing work
has used well-established and widely used diffusion metrics,
such as fractional anisotropy (FA), mean diffusivity (MD), axial
diffusivity (AD), and radial diffusivity (RD) to characterize
the microstructure of global WM in SZ (3) with a particular
interest in cerebral WM tracts (4), and mainly found changes
in the frontotemporal, interhemispheric, and frontal thalamic
WM tracts (5, 6). Reductions in FA are considered to be a
sign of myelin abnormalities and/or axonal impairment (7).
However, there is a lack of specific focus on the cerebellar WM
microstructure in SZ in the literature.

Traditionally, the cerebellum is thought to be mainly
dedicated to motor coordination (8). However, in recent years,
numerous studies suggested that the cerebellum not only
contributes to control of action but also involves in high-level
cognitive and emotional functions (9–13). Last two decades, the
critical role of the cerebellum in the pathogenesis and cognitive
impairments of SZ has been emphasized by the “cognitive
dysmetria” theory (also referred to as the “dysmetria of thought”
theory). And previous animal and human neuroimaging studies
have provided converging evidence for the involvement of
cerebellar function in various behaviors that are dependent
on circuits connecting the cerebellum with multiple cerebral
cortical regions (14).

The output fibers of the cerebellum (excluding the vestibular
cerebellum to the vestibular nucleus) primarily originate
from the four deep cerebellar nuclei: the dentate nucleus,
the embolic nucleus, the globular nucleus, and the parietal
nucleus. The superior cerebellar peduncle (SCP) is the mainly
cerebellar efferent pathway that connects the cerebellum to
cerebral regions through the thalamus. In addition, the inferior
cerebellar peduncles (ICP) contain efferent connections from
the cerebellum to the vestibular nuclei (15, 16). All input

fibers of the cerebellum need to pass through the middle
cerebellar peduncles (MCP) (15). After the cerebellar structural
and functional lesion, patients with neurological disorders were
found to exhibit a range of cognitive deficits, including impaired
executive function, spatial cognition, language processing, and
emotional regulation (17). Cerebellar dysfunction has been
proposed to explain the cognitive-affective deficits and symptom
heterogeneity observed in SZ (13). Consistent with this idea,
existing studies have reported that patients with SZ have
reduced volume in the cerebellar vermis (18). In addition,
the SZ patients showed the disrupted network topography
architecture of cerebellum in SZ (9, 19, 20). Some studies
investigated the structural WM disruption of the cerebellum
in SZ often using parcellation-based approach (21–23). Using
whole brain voxel-wise approach, some studies have reported
cerebellar and cerebral WM abnormalities in first episode
SZ (24, 25). To the best of our knowledge, only one study
investigated the voxel-wise abnormalities of cerebellar WM
skeletonized features using Tract-Based Spatial Statistics (TBSS)
and evaluated its associations with cognition function in SZ
(26). This study found decreased FA in the MCP in SZ and
such alteration was associated with cognitive impairments in
SZ. Given that this study was mainly focused on the deep
WM of cerebellum, more studies are needed to explore and
validate the findings of this study and further investigate
the voxel-wise WM abnormalities of cerebellum not only
in deep WM but also in all regions of cerebellar WM
peduncles (27).

The purpose of this study is to comprehensively
examine volume and diffusion features of cerebellar WM
in SZ at voxel level (42 SZ vs. 52 controls) and correlate
the observed alterations with the cognitive impairments
measured by Measurement and Treatment Research
to Improve Cognition in SZ (MATRICS) Consensus
Cognitive Battery. Specifically, Cerebellar-specific voxel-
based morphometry (VBM) analysis was performed using
the Spatially Unbiased Infratentorial template to characterize
cerebellar WM volume. Diffusion metrics (FA, MD, AD,
and RD) of cerebellar WM were calculated from the
diffusion tensor imaging (DTI) data. We hypothesized
that SZ patients would show altered WM features,
and such alteration would correlate with the cognitive
deficits in SZ patients.
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Materials and methods

Participants

This study included 42 SZ patients and 52 healthy controls
(HCs). The imaging and phenotypic information of data
were downloaded from the Collaborative Informatics and
Neuroimaging Suite Data Exchange tool (COINS)1 (28) and
data collection was performed at the Mind Research Network,
funded by a Center of Biomedical Research Excellence (COBRE)
grant from the National Institutes of Health. The diagnostic
confirmation of SZ was confirmed by the Structured Clinical
Interview for DSM-IV Axis I Disorders. Psychopathological
symptoms of SZ were evaluated using the Positive and
Negative Syndrome Scale (PANSS) (29). All patients were
treated with antipsychotics, and the antipsychotic medication
was converted to chlorpromazine equivalents. The MATRICS
Consensus Cognitive Battery (MCCB) cognitive battery of
all participants was additionally included in this study. All
participants were excluded for a history of substance abuse or
dependence within the last 12 months, a history of neurological
illness, and traumatic brain injury. Written informed consent
was obtained from all participants according to institutional
guidelines required by the Institutional Review Board at the
University of New Mexico (UNM). Five patients and three
HCs were excluded because the whole cerebellum was not fully
covered during the scanning of the T1 and/or DTI. Finally, 37
SZ patients and 49 HCs were included in the final analysis. The
detailed demographic, clinical, and cognitive information of all
patients and HCs are shown in Table 1.

Data acquisition

All images were collected on a 3-T Siemens Trio scanner
with a 12-channel radio-frequency coil at the Mind Research
Network. High resolution T1-weighted structural images were
obtained using a five-echo MPRAGE sequence with following
imaging parameters: time of repetition (TR) = 2.53 s, echo
time (TE) = 1.64, 3.5, 5.36, 7.22, 9.08 ms, inversion time
(TI) = 1.2 s, flip angle = 7◦, filed of view (FOV) = 256 × 256 mm,
number of excitations = 1, slice thickness = 1 mm. The
scan parameters of DTI were as follows: TR = 9 s;
TE = 84 ms; field of view (FOV) = 256 × 256 mm;
slice thickness = 2 mm; number of slices = 72; slice
gap = 2 mm; voxel resolution 2 × 2 × 2 mm; flip
angle = 90◦; number of diffusion gradient directions = 35,
b = 800 s/mm2. All images of DTI were registered to the first
b = 0 image.

1 http://coins.mrn.org/dx

TABLE 1 Demographic characteristics of the schizophrenia patients
and healthy controls.

Variables SZ (n = 37) HC (n = 49) P-value

Mean SD Mean SD

Age (years) 38.73 13.79 38.90 12.07 0.952

Gender (male:
female)

28: 9 36: 13 0.816

Handedness
(right: left: both)

34: 2: 1 45: 2: 2 0.907

Processing speed 34.51 11.59 53.73 8.14 < 0.001

Attention
vigilance

33.86 13.73 50.36 9.91 <0.001

Verbal working
memory

37.46 13.70 48.22 11.08 <0.001

Verbal learning 37.86 8.36 45.02 6.59 <0.001

Visual learning 35.43 11.64 46.84 9.85 <0.001

Reasoning
problem solving

42.00 10.25 54.70 7.66 <0.001

Social cognition 40.35 11.97 52.78 9.78 <0.001

Overall
composite

29.25 12.83 49.74 8.98 <0.001

Chlorpromazine
equivalents
(mg/d)

396.78 354.14 – –

Duration of
illness (years)

18.19 13.77 – –

PANSS-positive 14.35 4.60 – –

PANSS-negative 15.03 5.45 – –

PANSS-general 29.35 8.07 – –

PANSS-total 58.73 13.71 – –

SZ, schizophrenia; HC, healthy controls; SD, standard deviation; PANSS, Positive and
negative Syndrome Scale.

Cognitive testing

To evaluate cognitive ability, the test of MATRICS
Consensus Cognitive Battery was conducted for each
participant (30). MATRICS measures cognitive performance
in seven domains: processing speed, attention/vigilance,
verbal working memory, verbal learning, visual learning,
reasoning, problem solving, and social cognition. MATRICS
has been regarded as the standard tool for comprehensively
assessing cognitive deficits in individuals diagnosed with
SZ and related disorders with excellent reliability and
validity (30).

Voxel-based morphometry analysis

To investigate the structural morphological characteristics
of cerebellar WM in patients with SZ, the cerebellar-specific
VBM analysis was performed using the Spatially Unbiased
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FIGURE 1

Significant group difference about fractional anisotropy (FA) and radial diffusivity (RD) between patients and healthy controls. The regions of
significant increased RD and decreased FA in the patients were shown with red and dark blue separately and circled with white circles. MCP,
middle cerebellar peduncles; ICP, inferior cerebellar peduncles; SCP, superior cerebellar peduncles.

Infratentorial template (SUIT)2 (31) toolbox implemented
in Statistical Parametric Mapping, Version 12 (SPM 12).3

Before the calculation of VBM, quality control of T1 images
was carried out, and subjects without a complete cerebellar
scan were excluded in the subsequent analysis. The steps of
VBM analysis were as following (32). First, individual T1-
weighted sequences were manually reoriented the image origin
at the anterior commissure. Next, the segment and isolate
the function of SUIT were used to isolate the infratentorial
structure (cerebellum and stem) from the surrounding tissue
and segment the infratentorial structure into WM, gray
matter, and cerebrospinal fluid. Then, the individual WM
was normalized to the SUIT space using the Diffeomorphic
Anatomical Registration Through Exponentiated Lie Algebra
(DARTEL) algorithm and modulated by the deformation fields
to preserve the original volume of the tissue. Finally, the resulted
WM volume maps were smoothed using a 6 mm full width at
half-maximum (FWHM).

Diffusion tensor imaging analysis

To investigate the structural diffusion features of cerebellar
WM in patients with SZ, the DTI data were analyzed using
the FMRIB Software Library (FSL).4 First, non-brain tissues
were removed from the DTI data using the brain extraction
tool algorithm in FSL. Next, head motion and eddy current
corrections were carried out by the affine transformation
between the gradient images and the baseline b = 0 image.
Then, diffusion tensors were calculated using drift tool in
FSL, and subsequently, FA, MD, AD, and RD maps were
obtained. Besides, all subjects’ FA maps were aligned with the

2 http://www.diedrichsenlab.org/imaging/suit.htm

3 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

4 www.fmrib.ox.ac.uk/fsl

Montreal Neuroimaging Institute (MNI 152) template space
using the non-linear registration tool FNIRT. Furthermore, the
deformation fields from FA maps were used to project the
registered MD, AD, and RD maps onto the FA skeleton. Finally,
the resulted maps were smoothed using a 6 mm FWHM.

Statistical analysis

The independent t-tests and chi-square tests were
used to compare the continuous and categorical variables
of demographic characteristics separately between
patients and HCs.

The significant group difference in VBM between patients
and HCs was determined by permutation-based non-parametric
test with 5,000 permutations and using the threshold-free cluster
enhancement (TFCE) method in FSL Randomize (33), and
age, gender, and cerebellar WM volume were regressed out as
covariates. The significance was set at p< 0.05, family wise error
(FWE) corrected for multiple comparisons.

Voxel-wise comparison of DTI features within the three
cerebellar peduncles (27) between patients and HCs was
performed using the same statistical method of volume analysis.
Results with a cluster extent threshold of 100 contiguous
voxels were reported. The statistical maps of the analyses
were binarized at the threshold of p < 0.05, FWE corrected
for multiple comparisons. Then, the binarized maps were
multiplied to create cerebellar WM masks to determine WM
changes within the cerebellum. Besides, between-group voxel-
wise comparisons of cerebellar skeleton were conducted using
TBSS.5 The cerebellar skeleton obtained by multiplying the
mean FA skeleton mask by the regional mask of cerebellar
peduncles (27). The voxel-wise comparisons of DTI features

5 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
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TABLE 2 Significant differences of voxel-wise DTI metrics between SZ and HC.

DTI metrics Brain regions MNI coordinates Cluster size Peak p-value

x y z

FA (SZ < HC) ICP −10 −39 −45 1,729 0.002

MCP 18 −44 −41 248 0.016

MCP 29 −52 −36 199 0.041

RD (SZ > HC) MCP −18 −49 −40 480 0.005

SZ, schizophrenia; HC, healthy controls; DTI, diffusion tensor imaging; MNI, Montreal Neurological Institute; FA, fractional anisotropy; RD, radial diffusivity; MCP, middle cerebellar
peduncles; ICP, inferior cerebellar peduncles.

within cerebellar skeleton were performed using permutation-
based non-parametric testing with 5,000 permutations, with
age, gender, and cerebellar WM volume included as nuisance
covariates. The statistical significance was set at p < 0.05 after
adjusting for multiple comparisons using the TFCE method in
FSL Randomize (33).

In terms of statistical analysis of tract-wise DTI features, we
used the probabilistic atlas of cerebellar WM in the MNI152
space and created masks of three pairs of cerebellar peduncles
(27). The FA map was then multiplied to create inclusive masks
with the masks of cerebellar peduncles. The average FA values
from each tract were extracted by averaging all voxels belonging
to the tract. The between-group comparisons of tract-wise FA
values of each tract were analyzed using the Mann-Whitney
test with age, gender, and cerebellar WM volume included as
nuisance covariates. In addition, similar processing and statistics
were also carried out in MD, AD, and RD maps. The statistical
significance was set at p < 0.05 (false discovery rate corrected).

Finally, to investigate the correlation between altered WM
features of the cerebellum and the cognition assessments in the
patient group and the HCs group, respectively, we calculated
the Spearman correlations between the overall composite
assessment and altered WM features within each group since
the data of DTI metrics were not normally distributed (Shapiro-
Wilk W-test, p < 0.05). Meanwhile, to help clarify the specific
correlation between different cognitive domain and altered
WM features, we also conducted correlation analyses between
each cognitive domain and altered WM features as exploratory
analysis without controlling the multiple testing correction.

Results

Cognitive performance

As expected, SZ patients showed cognitive deficits across all
the seven domains: processing speed, attention/vigilance, verbal
working memory, verbal learning, visual learning, reasoning,
problem solving, and social cognition (Table 1). The group of
SZ patients matched well with the group of healthy controls at
basic demographic variables, i.e., age, gender, and handedness.

Voxel-based morphometry analysis

To investigate the structural morphological differences in
cerebellar WM between SZ patients and HCs, we contrasted the
cerebellar WM volume maps between the two groups. The SZ
patients did not differ from HCs regarding the cerebellar WM
volume at voxel level.

Diffusion tensor imaging analysis

In voxel-wise DTI features, compared to HCs, SZ patients
showed WM changes in a region across MCP and ICP. In detail,
SZ patients showed decreased FA in left ICP and right MCP
(Figure 1 and Table 2) and increased RD in left MCP (Figure 1
and Table 2). The significant group differences were mainly
located in the left cerebellum (Figure 1). The SZ patients did not
differ from HCs regarding MD and AD. Besides, no significant
group difference was found in terms of cerebellar skeletonized
DTI metrics.

In tract-wise DTI features, no significant difference was
found between SZ patients and HCs in any DTI features.

Correlations between altered white
matter features and cognitive
assessments

For the correlations between altered WM features and
overall composite assessment, a significant positive correlation
was found between the mean FA value in the altered region
across ICP and MCP and overall composite in HCs but not in
SZ patients. The mean FA value in the altered region in HCs
was positively correlated with overall composite (ρ = 0.320,
p = 0.037, Figure 2A), but no significant correlation was found
in SZ patients (Figure 2A).

Besides, for the correlations between altered WM features
and different cognitive domain, a significant positive correlation
was found between mean FA value in the altered region and
different cognitive domain in HCs but not in SZ patients.
Similarly, a significant negative correlation was observed
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FIGURE 2

The correlation between altered diffusion features and cognitive assessments. (A) The correlation between altered diffusion features and overall
composite. (B) The correlation between altered diffusion features and different cognitive domain. SZ, schizophrenia; HC, healthy controls; FA,
fractional anisotropy; RD, radial diffusivity.

between the mean RD value in the altered region and
different cognitive domain in HCs but not in SZ patients.
In detail, the mean FA value in the altered region in HCs
was positively correlated with processing speed (ρ = 0.417,
p = 0.003), working memory (ρ = 0.337, p = 0.018), and
attention vigilance (ρ = 0.335, p = 0.025), but no significant
correlation was found in SZ patients (Figure 2B). Besides, the
mean RD value in the altered region in HCs was negatively
correlated with attention vigilance (ρ = -0.296, p = 0.046),
but no significant correlation was found in SZ patients
(Figure 2B).

Furthermore, we also investigated the Spearman correlation
between cognitive assessments and mean FA values in
three cerebellar peduncles (27) separately as exploratory
analysis. Similar to the main findings, cognitive assessments
correlated with mean FA values in cerebellar peduncles in
HCs but not in SZ patients (Supplementary Figure 1).
Besides, to be reassuring that the findings observed in
ENIGMA consortium (34) can be replicated in the COBRE
dataset, we evaluated the group difference of mean FA in
anterior corona radiata (the most associated with cognition
in ENIGMA study) and further investigated the Spearman
correlation between cognitive assessment and mean FA in
anterior corona radiata. Compared with HCs, SZ patients
showed decreased FA in anterior corona radiata (t = -3.29,
p = 0.002). The mean FA values in anterior corona radiata
in HCs was positively correlated with attention vigilance
(ρ = 0.302, p = 0.044), but no significant correlation was
found in SZ patients.

Discussion

To the best of our knowledge, this is the first study to
comprehensively investigate the WM features of the cerebellum
at the voxel-level in patients with SZ, and further assess
the correlation between altered WM features and cognitive
assessments in SZ. The key findings of this study were
that we observed voxel-wise WM abnormalities (FA and

RD) mainly across the left MCP and ICP. However, no
significant difference was found between SZ patients and HCs
in any tract-wise and skeletonized DTI features and voxel-level
cerebellar WM volume. Importantly, significant correlations
between the altered WM features and cognitive assessments
only revealed in HCs but not in SZ patients. The present
findings suggested that the voxel-wise WM integrity analysis
might be a more sensitive way to investigate the cerebellar
WM abnormalities in SZ patients. And these findings also
highlighted the important role left MCP and ICP in cognitive
disruption in SZ.

Previous studies have investigated the WM structural
connectivity (35–37) or VBM (38–40) in the whole brain
in SZ patients. Although a previous meta-analysis study
has investigated changes of gray matter in the cerebellum
(41), no study has comprehensively focused on cerebellar
WM abnormalities by a combined VBM and DTI method.
This study filled this gap and found that SZ patients did
not show significant abnormality in cerebellar WM volumes
and significant abnormality in tract-wise and skeletonized
WM structural connectivity while showing decreased FA and
increased RD mainly in a region across left MCP and ICP in
voxel-wise WM structural connectivity. These findings were
consistent with the previous study that evidenced the voxel-
based diffusion data analysis is more sensitive than tract-
wise analysis in identifying WM abnormalities (36). Besides,
despite the analysis of voxel-wise cerebellar WM structural
connectivity revealed significant effect in cerebellar peduncles
but not cerebellar skeleton in our work. This findings was
inconsistent with Kim et al.’s study (26), which demonstrated
significant effect in the cerebellar skeleton. Interestingly, we
found significant decreased FA in MCP, which was consistent
with the impaired regions observed in Kim et al.’s study (26).
These points highlighted future studies with large sample size
are needed to further validate these observed results. Previous
study indicated that reduction of FA might reflect damage or
disordered WM and fiber structure caused by axonal loss or
demyelization while elevation of RD can result from reduced
myelin integrity (7). Therefore, we suspected that decreased
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FA together with increased RD might reflect demyelination
of the cerebellum in patients with SZ. Interestingly, our
previous meta-analysis study documented that, compared to
HCs, SZ patients exhibited widespread reduced FA in the
left side of the brain (6), and the previous WM studies
of whole brain also found that such changes were mainly
located in the left side of the brain in SZ (42, 43). The
present observed that such changes in WM of cerebellum
were located in the left cerebellum, which provided further
evidence for the leftward changes in some key white-matter
tracts in SZ (44). It should be noted that the cerebellar MCP
and ICP peduncles, as the input fiber of the cerebellum, are
the main pathway to communicate with the cerebrum and
cerebellum. Decreased FA and increased RD in cerebellar
peduncles in SZ patients might be related to the cerebro-
cerebellar dysconnectivity (26, 45). In addition, in VBM,
we did not find significant abnormality in cerebellar WM
volume in SZ patients. In SZ, although FA changes are
usually associated with atrophy, they may not have volume
changes depending on the method, the region studied and the
underlying pathological changes (46). Collectively, the present
study provided precise location for the changes of cerebellar
WM in SZ and observed changes of WM integrity in MCP and
ICP provided a further structural basis for the well-documented
abnormal cerebellar-cerebral functional connectivity in SZ (9,
47, 48).

Interestingly, the cognitive assessments were positively
correlated with FA and negatively correlated with RD in left
cerebellar peduncles in HCs but not in SZ patients. Similarly,
the cognitive assessments were positively correlated with FA in
anterior corona radiata in HCs but not in SZ patients. These
findings were conceptually similar to the previous study that
demonstrated the positive correlation between FA in inferior
and middle frontal gyrus and cognitive assessments in HCs but
not in patients with SZ (43). This finding not only suggests
that the ACR alteration can be replicated in the present
study but also implies that prior large-scale studies such as
ENIGMA may have missed a significant finding in cerebellar
peduncle by excluding the cerebellum from comparisons of WM
differences between schizophrenia and controls. In addition, we
observed significant positive correlation the mean FA values
of anterior corona radiata and cognition function in HCs
but not in SZ groups. This finding was not consistent with
Kochunov et al.s’ study, which observed such correlation both
in SZ patients and HCs. Such inconsistence calls on future
studies to pay more attention on the heterogeneity of the
included sample. Besides, previous studies demonstrated that
executive dysfunction is one of the most common dysfunctions
in the course of SZ (49, 50), the observed impairments across
all the domains of MATRICS further supported this idea.
The integrity of the cerebellar peduncles WM connectivity
plays a crucial role in the reciprocal communication between
the cerebellum and the cerebral cortex (10), thus it can

reasonably explain that the FA of the cerebellar peduncles will
be related to the processing speed and attention vigilance in
HCs but not in SZ patients. Functional imaging studies have
suggested that the dysfunction of the prefrontal cortex is a
critical neural substrate for cognitive dysfunction in SZ via
hypoconnectivity with prefrontal-cerebellar regions (especially
during working memory tasks) (51–53). Our results showed
that cerebellar peduncles predicted attention and working
memory behavioral performance in healthy subjects, supporting
the fact that cerebellar MCP and ICP have a critical role in
working memory and attention performance in healthy controls
(54, 55). However, the cerebellar WM–cognition relationships
were disrupted in patients with SZ. This result suggests that
cerebellar peduncles, i.e., MCP and ICP, might be a meaningful
neurobiological basis for cognitive performance and a novel
therapeutic target for cognitive impairment in SZ patients.

Notwithstanding its implications, the limitations of this
study should be acknowledged. The relatively small samples of
patients and controls were enrolled in this study, which might
limit the generalization of the observed findings. Nonetheless,
the current study still provides some evidence supporting
that the WM of the cerebellum plays a critical role in the
cognitive impairments of SZ. The other limitation is the effect
of antipsychotic drugs, a common issue in many other studies
in the field. While we cannot eliminate the effects of medication
on WM structures and cognition impairments, we found that
the altered WM of the cerebellum still did not correlate with
cognitive assessments in SZ group after regressed out the
Chlorpromazine equivalents (p > 0.05), suggesting that these
associations are unlikely to be mainly driven by medication.
Besides, the psychiatric comorbidities are common issue of
patients with SZ, which might affect the observed results.
However, the dataset of COBRE did not provide the information
of comorbidities, which limit us to evaluate the potential effect
of the comorbidity on the observed results.

In summary, we found voxel-wise WM abnormalities (FA
and RD) in the left MCP and ICP of the cerebellum. We did not
find tract-wise and skeletonized WM structural connectivity and
volume abnormality of the cerebellum in patients with SZ. These
results might suggest that the voxel-wise WM diffusion data
analysis is more sensitive than tract-wise analysis in identifying
WM abnormalities of cerebellum in SZ patients. Our correlation
analyses showed that the FA of MCP and ICP was significantly
associated with processing speed in HCs but not in SZ patients,
suggesting that cerebellar peduncles might be a meaningful
neurobiological basis of cognitive impairments and a novel
therapeutic target for cognitive impairments in SZ patients.
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