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Necrotizing enterocolitis (NEC) is one of the most prevalent neonatal

gastrointestinal disorders. Despite ongoing breakthroughs in its treatment and

prevention, the incidence and mortality associated with NEC remain high.

New therapeutic approaches, such as breast milk composition administration,

stem cell therapy, immunotherapy, and fecal microbiota transplantation (FMT)

have recently evolved the prevention and the treatment of NEC. This study

investigated the most recent advances in NEC therapeutic approaches and

discussed their applicability to bring new insight to NEC treatment.
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Introduction

Necrotizing enterocolitis (NEC) is an inflammatory bowel disease that is
particularly dangerous in premature or low-birth-weight babies (1). Despite tremendous
advancements in NEC treatment and neonatal care over the past few decades, the current
state of treatment remains unsatisfactory, and mortality and morbidity remain high (2).
Short bowel syndrome and intestinal failure are possible outcomes of surgical resection
of the necrotic part of the intestine. Patients who survive NEC have a higher risk of
developing long-term complications, such as neurodevelopmental delay (3, 4).

Prevalence and development of NEC are extraordinarily complex. Low birth weight,
prolonged parenteral feedings, and short gestation periods are all risk factors of preterm
birth. Additionally, mother’s lifestyle (such as smoking and obesity), the prevalence of
associated disorders (such as diabetes mellitus, preeclampsia, and chorioamnionitis),
and prenatal medications (such as antibiotics and corticosteroids) are risk factors
for NEC (Figure 1) (5–10). There are multiple factors involved in developing NEC,
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including genetic susceptibility, immature intestinal host
defense, abnormal microbiota colonization, hypoxia, ischemia,
hyperresponsiveness of the intestinal mucosa (11, 12). Despite
the study of NEC from various angles, the mechanisms that
cause the disease are still largely unknown, which impedes
its development into a specific treatment. Prevailing treatment
strategies for NEC include antibiotics, surgery, and advanced life
support, but their effect is limited. Therefore, a more effective
approach to treating NEC is necessary.

In this review, breast milk composition, stem cells,
immunotherapy, and fecal microbiota transplantation (FMT)
were considered the most recent developments in NEC
treatment (Figure 2). In addition, their applications to the
NEC treatment were evaluated to illuminate the limitations and
challenge of the NEC treatment.

Necrotizing enterocolitis
treatment strategy

Therapy with breast milk composition

Multiple studies have demonstrated that Breast milk
composition, including lactoferrin, oligosaccharides, breast
milk-derived exosome and so on, is one of the most effective
methods for preventing and treating NEC (13, 14). In this
section, We focused mainly on lactoferrin, oligosaccharides
and breast milk-derived exosome based on their potential
applications in NEC prevention and treatment (Table 1).

Lactoferrin

Lactoferrin is the most abundant protein in colostrum (5–
6.7 g/L) and is the most important protein found in breast
milk (15). Lactoferrin has been demonstrated to inhibit the
release of pro-inflammatory cytokines, such as IL-6 and TNF-
α, thus reducing intestinal inflammation (14). In addition
to maintaining the barrier function of the gut, lactoferrin
influences intestinal epithelial cell proliferation and apoptosis
(16). Lactoferrin’s effectiveness in preventing and treating
NEC has been demonstrated in several preclinical studies
and clinical trials (17, 18). Up to now, a phase III clinical
trial (ClinicalTrials.gov Identifier: NCT03431558) is currently
underway to determine the health effects of lactoferrin with
gradient concentration in neonates with low birth weight at the
Aga Khan University Hospital, Pakistan. However, based on a
systematic review and meta-analysis of nine RCTs with 3515
samples, enteral lactoferrin supplementation did not reduce
late-onset sepsis incidences in NEC, all-cause mortality, sepsis-
related mortality, NEC stage II or III, and other adverse
outcomes (19).

Oligosaccharides

The significance of Oligosaccharides in protecting against
NEC has been a developing area of research since human
breast milk is a recognized protective mechanism against
the development of NEC. Animals fed a formula containing
DSLNT displayed a decrease in NEC severity and lower
mortality in preclinical experiments using a newborn rat model
of NEC (20, 21). The same study also showed sialylated
oligosaccharides, similar to HMOs, but structurally different,
decreased NEC incidence and pathological damage scores in
rats (22). A rat model of NEC showed that supplementation
with sialylated oligosaccharides reduced NEC incidence and
intestinal pathology with inhibiting toll like receptor 4/NLRP3
inflammasome pathway (22).

According to a study, oligosaccharides protect intestinal
epithelial cells from damage by inhibiting TLR4 expression
and increasing crypt cell turnover (23). However, a model of
NEC in preterm piglets receiving complex microbial blends
did not show any difference in intestinal microbial diversity or
protection against NEC (24).

Breast milk-derived products

Exosomes are known to include bioactive constituents such
mRNA, miRNA, DNA, and proteins and to be produced by
a variety of cell types (25). Breast milk-derived exosomes
enhance the development of gut and exerts positive impacts
on experimental NEC (Figure 3) (26–29). Breast milk-derived
exosomes prevent intestinal stem cells from oxidative stress,
which were regulated by the Wnt/-catenin signaling pathway
(28). In addition, rat milk-derived exosomes increase intestinal
stem cell activity, promote IEC viability, and boost proliferation
(30). Porcine milk-derived exosomes were reported to protect
the intestinal epithelium against LPS-induced injury by
inhibiting excessive inflammation and preventing apoptosis
through the action of exosome miRNAs (31). Exosomes isolated
from bovine milk were administered to protect experimental
NEC-induced bowel injury by enhancing goblet cell production
and endoplasmic reticulum function (32). According to these
studies, breast milk-derived exosomes may exert potential
protective effects against NEC.

Challenge and limitation of breast milk
composition therapy

Lactoferrin, oligosaccharides and exosomes in breast milk
have protective effects on NEC. However, these are difficult
to implement in the clinic. For instance, lactoferrin and
oligosaccharides from breast milk have outstanding anti-
inflammatory properties, and relevant clinical research is now

Frontiers in Pediatrics 02 frontiersin.org

https://doi.org/10.3389/fped.2022.954735
https://clinicaltrials.gov
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


fped-10-954735 July 22, 2022 Time: 19:6 # 3

Wu et al. 10.3389/fped.2022.954735

FIGURE 1

The mechanisms of NEC. It is thought that NEC has complex and multiple mechanisms.

underway. Still, they are underutilized in clinical settings,
making their promotion difficult. To establish the efficacy
and long-term benefits of lactoferrin and oligosaccharides and
the optimal dose and administration method, higher-quality,
well-designed, larger, multicenter clinical trials are required.
Furthermore, breast milk-derived exosomes research for the
treatment of NEC is still in its early stages. For further
verification and in-depth exploration of the mechanism of
exosomes in the treatment of NEC, a large number of animal
experiments are required.

Stem cells therapy

Stem cell therapy is increasingly being proposed as a novel
therapeutic approach for a variety of diseases, such as spinal cord
injury (SCI), stroke (33, 34). Preclinical research on the potential
therapeutic role of stem cells in experimental NEC is growing.
This section will cover the therapeutic effectiveness of stem cell
and stem cell-derived products in the treatment of NEC and
provide an overview of ongoing preclinical research (Table 2).

Bone marrow-derived mesenchymal
stem cells (BM-MSCs)

In 2011, MSCs were administered intraperitoneally
for the first time to treat NEC in rat models. The results
illustrate that MSCs could represent a new treatment
option for repairing and regenerating injured intestinal
tissue in NEC due to their beneficial effects on reducing
inflammation and improving tissue regeneration (35). The
same study found that intraperitoneal administration of
MSCs reduces injury and improves survival in experimental
NEC (36). Researchers compared the therapeutic effects of
intraperitoneal- and intravenous -administered MSC when
treating experimental NEC. They found that intravenous
-administered MSC had dramatically improved intestinal
engraftment, intravenous administration may be a more
effective delivery method than intraperitoneal administration
(37). Even though both routes of administration may be used
clinically, intravenous administration is a quick and easy way to
inject MSC into the body.
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FIGURE 2

Research progress in necrotizing enterocolitis treatment. Effective treatments for NEC include breast milk composition administration, stem cell
therapy, fecal microbiota transplantation (FMT) and immunotherapy.

Amniotic fluid-derived mesenchymal
stem cells (AF-MSCs)

Amniotic fluid-derived mesenchymal stem cells are cultured
using amniotic fluid collected via amniocentesis or cesarean
section (38, 39). AF-MSCs therapy has three obvious benefits:
AF-MSCs are abundant, are simple to collect and with ease to
culture in vitro with modest amounts of medium supplement,
and develop quicker than BM-MSCs (40). Due to these
advantages, AF-MSCs therapy appears to be the optimum
stem cell therapy for treating NEC and has piqued the
interest of researchers. Other studies also demonstrated that
intraperitoneal injection of AF-MSCs decreased the incidence
of NEC and enhanced the intestinal barrier function in rats (41,
42). Similarly, Li et al. (43) discovered that Wnt-β signaling
increased cell proliferation while decreased inflammatory
factor release, restoring intestinal epithelial regeneration after
intraperitoneal injection of AF-MSCs.

Stem cells of other sources

Other sources of stem cells, such as embryonic stem cells
(ESCs), umbilical cord-derived mesenchymal stem cells (UC-
MSCs), enteral neural stem cells (E-NSCs), amniotic fluid-
derived neural stem cells (AF-NSCs) and induced pluripotent

stem cells (iPSCs) also have been shown to reduce the incidence
of NEC (44, 45). Overall, these findings suggests that stem cell
therapy represent a promising treatment for NEC.

Stem cell-derived products

Exosome may reduce the incidence and severity of
experimental NEC as effectively as the stem cells from which
they derive (Figure 3) (36). According to the study, they showed
that the effect on intestinal injury repair was similar with
that of BM-MSCs, AF-MSCs, AF-NSCs, and E-NSCs therapy
in rat model of NEC (36). Exosomes produced by AF-MSCs
largely activated the Wnt/catenin signaling pathway to increase
enterocyte proliferation, reduce inflammatory response, and
promote normal intestinal epithelium regeneration (43).
Researchers reveal that intraperitoneal -administered BM-
MSCs-derived exosomes can independently maintain the
integrity of the intestinal barrier from experimental NEC (46).
Further, the results of the first comprehensive review and
meta-analysis of preclinical models examining the role of stem
cells- derived exosomes in experimental NEC demonstrated
that exosomes derived from stem cells improved survival and
reduced the incidence and severity of cases were diagnosed NEC
in rat model (47). The results of these studies suggest exosomes
are an effective approach in prevention of NEC development.
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TABLE 1 Applications of breast milk components in NEC.

Molecules in breast milk Species Outcomes Year References

Lactoferrin Preterm infants Reduces IL-6 and TNF-α expression, and upregulates Lgr5+

stem cell expression and epithelial proliferation.
2020 (14)

Lactoferrin Low birth weight
neonate

Decrease in IL-10 levels. 2020 (17)

Lactoferrin Pig Moderate doses (0.1–1 g/L) enhance cell proliferation and
downregulate apoptosis and inflammation. High doses (10 g/L)

trigger inflammation.

2016 (16)

Lactoferrin Very low birth
weight neonates

Reduces the incidence and death of > > stage 2 NEC. 2014 (18)

Lactoferrin Preterm Infant Reduces the incidence of NEC. 2020 (19)

Oligosaccharides Mouse HMOs, accelerate the turnover of crypt cells to protect
intestinal epithelial cells from injury.

2019 (23)

DSLNT Preterm infant lowers NEC risk. 2018 (21)

Sialylated oligosaccharides Rat SHMOs reduce intestinal inflammation by inhibiting
TLR4/NLRP3 pathway.

2021 (22)

Oligosaccharide Pig HMOs, reduce bowel inflammation. 2017 (24)

HM-EX Cell Protected IEC-6 from an oxidative stress injury 2018 (26)

HM-EX Rat Protected villous integrity, restored enterocyte proliferation,
and improved intestinal epithelial cells

2019 (27)

HM-EX / Protected ISCs from oxidative stress injury 2020 (28)

BOVM-EX Mouse Improved goblet cell activity, prevented the development of
NEC

2019 (32)

RAM-EX Cell Promoted IEC viability, enhanced proliferation, and stimulated
intestinal stem cell activity

2017 (30)

PM-Ex Mouse Decreased intestinal epithelial apoptosis by inhibiting
TLR4/NF-κB signaling

2019 (31)

Challenge and limitation of stem cell
therapy

Despite these positive outcomes in animal models, there is
currently no ongoing stem cell therapy clinical trial for human
NEC. Although an instance of supraventricular tachycardia led
to a case of NEC. UC-MSCs were administered intravenously
to show enhanced intestinal blood supply in subsequent
jejunostomies, without any signs of small bowel syndrome (48).
A single instance, though, is insufficient to show that stem
cell therapy is available in clinics, and there may be other
unidentified aspects that merit research as well. Besides, stem
cell therapy is limited in the clinical treatment of NEC due
to ethical concerns, immunological rejection and a significant
risk of tumorigenesis (49–51). Stem cell therapy is a hard task
to convert for preclinical and clinical application since it must
also address issues including an augmented immune response,
cancer, gene mutation, and ethical concerns. It is crucial to find
an efficient therapeutic method that does not directly use stem
cells in these conditions. Exosome may reduce the incidence and
severity of experimental NEC as effectively as the stem cells from
which they derive. The use of stem cell-derived exosomes, may
be the best way to overcome some of the limitations of stem cell
therapy (36).

Exosome therapy is easier to be administered than stem
cell therapy because there is no chance of teratoma formation
or ethical concerns. However, researchers continue to face
considerable challenges in expanding the use of exosome
treatment in clinics. Limitations and Challenge might be from
three aspects: (1) long-term exosome extraction, low purity,
and partial disintegration of obtained exosome (52–56); (2)
poor targeting capability and probable “dilution effect” that
could reduce treatment efficacy (57); and (3) absence of
research on the precise mechanism of action of exosomes
in NEC treatment. Numerous attempts have been made to
overcome these limitations, such as enhancing the extraction
process for exosomes and extending targeting capability by
modification. Chen et al. (58) proposed an anion exchange
method for efficiently extracting and detecting exosomes.
Furthermore, aptamer-mediated surface modification may
boost the specificity of exosomes’ ability to reach injured
tissues and organs, displaying enhanced targeting capability
(59–62). Exosomes’ unique properties and biological impacts
must be comprehended and studied, as well as the underlying
mechanism in NEC treatment and their scale-up utilizing
existing technology. With sustained research, it is envisaged
that exosome therapy will become one of the most promising
therapies for NEC.
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FIGURE 3

Stem cells and exosomes have been used in the therapy of experimental NECs. Umbilical cord, embryonic, bone marrow, amniotic fluid and so
on, have the ability to create stem cells, and all stem cells have the able to generate exosomes, which both can all be treated to treat NEC.

Therapy with fecal microbiota
transplantation

A dysbiosis of the gut microbiome is a risk factor of NEC
(63). FMT, a strategy in which healthy feces are transferred
to patients with dysbiosis to balance their intestinal flora,
has been used to treat clostridium difficile infected diseases
(64). Experimental models of NEC have shown positive
results when dysbiosis is corrected with FMT. A recent
study by Liu et al. concluded that FMT has a unique
effect on treating NEC by decreasing inflammation in the
intestines, decreasing intestinal permeability, and strengthening
the intestinal barrier (65). Brunse et al. examined gut
colonization patterns and host reactions to FMT according
to different administration routes (66). Rectal administration
is the most preferable method of administering FMT, since
oral FMT administration increases lethal sepsis incidence and

overall mortality by exposing the proximal gut to potentially
pathogenic organisms (66). However, according to another
study, intragastric administration of FMT appears safe in
postsurgical newborn piglets with SBS, with no sepsis and no
mortality (67). Hence, there is a need to further explore the
security of administration of FMT by different routes.

Challenge and limitation of fecal
microbiota transplantation

Even though FMT has shown promising properties in
preventing NEC, FMT is associated with safety concerns because
no screening method will be able to exclude transfer of an
infectious agent from the donor. Yan et al. suggest that the
guts of recipients had higher levels of pathogenic signatures
from Escherichia coli and Salmonella enterica, which may
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TABLE 2 Applications of stem cells and stem cells-derived products in NEC.

Stem cells and stem
cells-derived products

Administration Species Outcome Year References

BM-MSC Intraperitoneal
injection

Rat Showed weight gains, improve clinical sickness scores, reduced
histopathological damage

2011 (35)

BM-MSC Intraperitoneal
injection

Mouse HB-EGF promoted BM-MSC proliferation, and migration and
decreased BM-MSC apoptosis.

HB-EGF and BM-MSC act synergistically to reduce injury and
improve survival in NEC

2012 (37)

BM-MSC Intraperitoneal
injection

Intravenous injection

Rat Reduced the incidence and severity of NEC, and preserved intestinal
barrier function in NEC.

2019 (42)

AF-MSC Intraperitoneal
injection

Intravenous injection

Rat Reduced the incidence, and severity, and preserved intestinal barrier
function in NEC.

2019 (42)

AF-MSC Intraperitoneal
injection

Rat Improved gut barrier function in NEC. AF-MSC, BM-MSC, AF-NSC,
and E-NSC all reduce the incidence of NEC, which is not largely

different.

2017 (41)

AF-MSC Intraperitoneal
injection

Mice Rescued intestinal injury and restored epithelial regeneration.,
increased ISC and epithelial proliferation by Wnt signaling.

2020 (43)

UC-MSC Intraperitoneal
injection

Rat Improved clinical sickness scores. 2019 (45)

UC-MSC Intravenous injection Infant Enhanced intestinal blood supply in subsequent jejunostomies 2019 (48)

AF-NSC Intraperitoneal
injection

Intravenous injection

Rat Reduced the incidence, and severity, and preserved intestinal barrier
function in NEC.

2019 (42)

AF-NSC intraperitoneal
injection

Rat Reduced the incidence and severity of NEC. 2017 (41)

E-NSC Intraperitoneal
injection

Rat Reduce the incidence and severity of NEC. 2017 (41)

BM-MSC-Ex Intraperitoneal
injection

Rat Decreases the incidence and severity of NEC. 2018; 2016 (36, 46)

AF-MSC-EX Intraperitoneal
injection

Mice Rescued intestinal injury, restored epithelial regeneration, increased
ISC and epithelial proliferation by Wnt signaling and decreases the

incidence and severity of NEC

2018; 2020 (36, 43)

AF-NSC-EX Intraperitoneal
injection

Rat Decreases the incidence and severity of NEC. 2018 (36)

E-NSC-EX Intraperitoneal
injection

Rat Decreases the incidence and severity of NEC. 2018 (36)

TABLE 3 Targeting TLR4 by drugs in NEC.

Name Species Outcome Year References

Pregnane X receptor Mouse Anti-inflammation via TLR4. 2018 (72)

The secondary bile acid lithocholic acid (LCA) Mouse LCA activated PXR, anti-inflammation via TLR4. 2018 (72)

High mobility group box-1 inhibitor glycyrrhizin (GL) Rat Anti-inflammation via TLR4/NF-kB/NLRP3. 2010 (78)

Interleukin-1 (IL-1) receptor-associated kinase (IRAK) inhibitors Rat Anti-inflammation via TLR4. 2018 (73)

be a risk factor (68). Oral FMT administration increases
lethal sepsis incidence and overall mortality by exposing the
proximal gut to potentially pathogenic organisms (66). To
improve the safety of FMT, Fecal filtrate transplantation (FFT)
and FMT sterilization by ultraviolet radiation are techniques
that remove the bacterial component from donor feces by
sterile filtration (69, 70). Most studies found that fecal donors
are mainly 10-day-old healthy piglets (66, 68, 69). However,
there are no standard procedures for selecting donors in
NEC animal models. To sum up, there are few published
studies on FMT’s effects on NEC, and a greater number
are still experimental. Therefore, it is essential to conduct
a comprehensive screening procedure in order to determine

the characteristics of FMT donors, screen conditions, the
preferred route of administration and improve the quality of
FMT in the future.

Immunotherapy

TLR4-targeting agents

Toll-like receptors (TLRs) are pattern recognition receptors
(PRR) of the innate immune system, and each TLR may identify
particular pathogen-associated molecular patterns (PAMP). It is
generally established that TLRs have a role in NEC pathogenesis,
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particularly TLR4 which identifies lipopolysaccharides in Gram-
negative bacteria. TLR4 was reported to be highly activated
in both neonatal rats and human infants in the event
of NEC (71). Researchers have shown that TLR4-deficient
mice don’t display significant inflammatory responses (72,
73). Studies have demonstrated the importance of TLR4
signal activation in the development of NEC, as it can
provoke excessive intestinal inflammation and increase the
apoptosis and necrosis of enterocytes (74–77). TLR4-targeted
agents have the potential to be useful in the treatment of
NEC (Table 3).

Pregnane X receptor (PXR) can function as an external
biosensor and signal intermediate in producing various
host-bacterial metabolites. It has been proven with an
ability to inhibit TLR4 signal expression. According to
an animal study, mice with PXR knockout exhibited
more severe disease symptoms following experimental
NEC induction (72). Lithocholic acid (LCA), a liver-
distributed PXR agonist, could activate intestinal PXR,
reducing NEC-related intestinal inflammation (72). The high
mobility group box 1 (HMGB1) is essentially required
for the incidence and progression of NEC. In animal
investigations, it was revealed that when NEC developed,
HMGB1 expression increased, and inflammatory cell migration
was facilitated (78). Yu et al. (78) examined the effect of
glycyrrhizin (GL), and HMGB1 inhibitor, in NEC and
reported that it might inhibit TLR4 and the downstream
NF-κB/NLRP3 signaling pathway, resulting in decreased
intestinal inflammation. Hou et al. (73) revealed that an
interleukin-1 receptor-associated kinase (IRAK) inhibitor
lowered inflammatory factor production by downregulating
TLR4 receptor expression, thereby reducing the severity
of NEC-induced intestinal inflammation. The possibility
that TLR4-targeted drugs particular to the pathophysiology
of NEC suggest that they may represent an innovative
treatment strategy.

Challenge and limitation of
immunotherapy

There is evidence that targeting TRL4 and employing
biological agents to treat NEC has therapeutic effects, but related
research is still in the phase of animal testing. Furthermore,
the exact mechanism of action remains a mystery that must
be clarified. In this context, greater emphasis should be made
on the specific mode of action of TLR4-targeted drugs and
appropriate biological agents to repair small intestinal injuries.
As a result, it is anticipated that more effective, specialized novel
drugs will be developed at the molecular level and subsequently
used in NEC treatment.

Conclusion

This review outlines lactoferrin, oligosaccharides, exosomes
in breast milk, stem cells and stem cells derived-exosomes,
TLR4-targeted agents, and FMT, have demonstrated promising
therapeutic effects and clinical application potential for the NEC
therapy. Further elucidation of mechanisms, advancements
in preparation, bioengineering, and application, as well as
strict clinical trials, will support the use of Lactoferrin,
oligosaccharides, exosomes in breast milk, stem cells and stem
cells derived-exosomes, TLR4-targeted agents, and FMT, as new
therapeutics for pediatric diseases.
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