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Abstract: Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of illnesses, such as
adult T-cell leukemia/lymphoma, myelopathy/tropical spastic paraparesis (a neurodegenerative
disorder), and other diseases. Therefore, HTLV-1 infection is a serious public health concern.
Currently, diseases caused by HTLV-1 cannot be prevented or cured. Hence, there is a pressing
need to comprehensively understand the mechanisms of HTLV-1 infection and intervention in host
cell physiology. HTLV-1-encoded non-structural proteins that reside and function in the cellular
membranes are of particular interest, because they alter cellular components, signaling pathways,
and transcriptional mechanisms. Summarized herein is the current knowledge about the functions
of the membrane-associated p8I, p12I, and p13II regulatory non-structural proteins. p12I resides
in endomembranes and interacts with host proteins on the pathways of signal transduction,
thus preventing immune responses to the virus. p8I is a proteolytic product of p12I residing in
the plasma membrane, where it contributes to T-cell deactivation and participates in cellular conduits,
enhancing virus transmission. p13II associates with the inner mitochondrial membrane, where it is
proposed to function as a potassium channel. Potassium influx through p13II in the matrix causes
membrane depolarization and triggers processes that lead to either T-cell activation or cell death
through apoptosis.

Keywords: T-cell leukemia virus type 1; p8I protein; p12I protein; p13II protein; virus-host
interactions; viral non-structural proteins; cellular membranes

1. Introduction

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell
leukemia/lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis
(HAM/TSP) [1–4]. HTLV-1 almost exclusively infects CD4+ T cells, which are key in the modulation of
immune responses to pathogens and tumor cells [5,6]. ATLL affects the blood, central nervous system,
bone, and other visceral sites [7,8] and is an aggressive and invariably fatal disease with a survival time
of less than 1 year [2,9,10]. HAM/TSP is an irreversibly progressive neurological disease characterized
by demyelinating lesions in the brain and spinal cord. These lesions result in motor disorders and a
low quality of life [11–13]. HTLV-1 is also associated with infective dermatitis and Sjögren’s syndrome
(immune and endocrine-metabolic disorders), as well as thyroiditis and other diseases [10,14].

HTLV-1 was the first human retrovirus discovered as a result of extensive studies to identify
the causative agent(s) of ATLL [1,15,16]. It was first isolated from a patient with cutaneous T-cell
lymphoma [16]. HTLV-1 can be transmitted through biological fluids [17–19]. Other retroviridae family
members, which are HTLV-2 [20], HTLV-3 [21], HTLV-4 [22], and HIV [23], were subsequently identified.
Of these, only HTLV-2 can cause neurological disorders, some of which resemble HAM/TSP—although
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with a very low probability [24,25]—and immortalize normal human peripheral blood cells via
co-cultivation with pre-infected donor cells in a manner similar to that of HTLV-1 [15,26,27]. Strikingly,
among all HTLVs, only HTLV-1 causes malignant transformations in T cells in vivo, which is indicative
of its unique mechanisms of infection leading to ATLL [28].

Worldwide, an estimated 10–20 million people are infected with HTLV-1 [29,30], although a
recent study reports a smaller number of 5–10 million [31]. Among HTLV-1 carriers, 5–10% develop
either ATLL or HAM/TSP [32–34]. Despite the devastating and often fatal impact of these viruses on
human health, no means of controlling the spread of HTLV-1 or curing its associated diseases have
been developed. The understanding of the mechanisms used by the virus to preclude its recognition
and destruction by natural killer (NK) cells and cytotoxic T cells responsible for the control of viral
infections in the body is largely insufficient [4,35–37]. HTLV-1 infection is usually asymptomatic,
and the early assumption was that it could remain latent for decades [4,38]. However, chronically
active cytotoxic T-cell responses to HTLV-1 antigens have been detected in all infected individuals,
which suggests that the virus is not completely latent [34,39].

It is currently thought that in this continuing asymptomatic state, only the HTLV-1 plus-strand is
latent, whereas the transcription of the minus-strand is active, resulting in the low-level expression of
the HTLV-1-encoded protein basic leucine zipper factor (HBZ) [34]. Low concentrations of HBZ
and its reduced affinity to the free major histocompatibility complex class I (MHC-1) preclude
the immune response to the virus [40]. HTLV-1 functioning in the cell requires the expression of
plus-strand-encoded proteins, which have essential roles. The factors regulating the transcription
of HTLV-1 plus-strand and the interplay between the plus- and minus-strand transcriptions are not
well understood. One possibility is that certain conditions, such as those in bone marrow, lymph,
and lymph nodes, are optimal for virus activation and viral protein expression [34,41]. Owing to
these uncertainties and deficiencies in both understanding of HTLV-1 physiology in the host and
knowledge of factors triggering ATLL, HAM/TSP, and other HTLV-1-associated diseases, the cellular
and molecular mechanisms of these diseases are poorly understood.

Specific interactions of the virus-encoded proteins with cellular components that modify cellular
function and communication through signaling are critical for the adaptation and survival of the virus.
Therefore, understanding of the functional mechanisms of proteins vital to the virus would allow
for interventions affecting HTLV-1 infectivity and pathogenesis, guiding the development of viral
protein inhibitors that could restrict the effects of viral proteins on cellular mechanisms and possibly
restore cellular homeostasis. To this end, special attention should be paid to the HTLV-1-encoded
non-structural proteins (NSPs), which are also known as “regulatory” or “accessory” proteins: p12I,
p8I, p30 II, p13II, Rex, Tax, HBZ, and HBZ-SP1(SP2) [28]. These proteins are absent in the mature virions,
but are expressed in the host cell, where they act by modifying signaling pathways and the permeability
of cellular membranes, redistributing ions in cellular compartments, promoting the transcription of
viral proteins, inhibiting DNA repair, and ultimately altering host cell homeostasis [28,42–47]. Thus,
NSPs are versatile tools that aid HTLV-1 in escaping and disabling host immune responses, optimizing
viral replication and proliferation, and in some cases immortalizing infected cells. These functions
make NSPs one of the primary targets for the development of therapeutics to control HTLV-1 infection
and HTLV-1-linked diseases.

This review focuses on the function of HTLV-1-encoded NSPs p12I, p8I, and p13II in the
membranes of infected cells. The p12I and p8I proteins reside in the endomembranes and plasma
membrane, respectively, and are critical for the adaptation, survivability, and proliferation of the
virus. p13II associates with and self-aggregates in the inner mitochondrial membrane (IMM) to
form a potassium (K+) channel. Through its channel activity, p13II supports HTLV-1 survivability
and proliferation in the host. The current knowledge and proposed mechanisms of these proteins’
functions in the membranes of infected cells are summarized.
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2. p12I and p8I Proteins and Their Roles in HTLV-1 Adaptation and Proliferation in the Host

Open reading frame I (ORF-I) of the HTLV-1 genome encodes the p12I protein. p8I is derived
from p12I after a proteolytic cleavage at position G29/L30 (Figure 1A,B). These two protein forms,
p12I and p8I, have molecular weights of ca. 12 kDa and 8 kDa and lengths of 99 amino acids (aa)
and 70 aa, respectively. Both proteins are highly hydrophobic, and both reside and function in
the cellular membranes although with different localization. p12I resides in the membranes of the
endoplasmic reticulum (ER) and cis-Golgi apparatus, whereas upon removal of the non-canonical ER
retention/retrieval signal sequence in the N-terminal region of p12I (Figure 1B) [48,49], p8I traffics to
the plasma membrane, where it is found in lipid rafts at the immunological synapse [48,50].
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Figure 1. p12I and p8I proteins’ organization: (A) p8I is a proteolytic product of 12I; the proteolytic
cleavage site G29/L30 is indicated with an arrow; (B) aa sequence and putative domain architecture
of full length p12I are shown: The endoplasmic reticulum (ER) retention N-terminal sequence is in
blue; The transmembrane helices TM1 and TM2 are designated with red bars above the sequence;
SH3 binding motifs are in black rectangles; L zipper-like motifs are underlined in magenta; R88 is in
red; the G29/L30 cleavage site is highlighted in yellow and indicated by a red arrow. (C) Alignment
of multiple aa sequences of p12I from randomly selected HTLV-1 strains, which were isolated from
human carriers: Protein identification numbers in black, orange and green are from patients with adult
T-cell leukemia/lymphoma (ATLL), patients with HTLV-1-associated myelopathy/tropical spastic
paraparesis (HAM/TSP) and asymptomatic carriers, respectively. Conserved aa are indicated with
asterisks under the sequences; residues D26 and G29 and their substitutions that are relevant to
the level of p12I and p8I co-expression, are indicated with arrows; the cleavage site G29/L30, C39,
the calcineurin binding motif, and residue S91, which is frequently mutated to other aa (mostly to P91),
are highlighted in yellow, green blue, and magenta respectively; TM1 and TM2 are in red rectangles.
The substitutions G29S, C39S, C39R, S91L, and S91P are highlighted in grey; R88 and K88 are in red
and orange, respectively. T-COFFEE Multiple Sequence Alignment software was used.

ORF-I knockout viruses are not infectious in non-human primates [51], which points to the
significant roles of ORF-I encoded proteins. Rabbits infected with a p12I-deficient molecular clone
of HTLV-1 showed reduced viral infectivity compared with those infected with a p12I-encoding
clone [52]. p12I is expressed early after viral entry into the host cell and is essential for maintaining
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infection [52,53]. Multiple critical roles of p12I and p8I in maintaining and spreading the virus in host
organisms have been reported.

p12I has two predicted transmembrane (TM) helices, TM1 and TM2 (Figure 1B,C) [49], with N-and
C-termini located on the cytoplasmic side [49]; four SRC homology 3 domain (SH3) binding motifs
(PXXP) [54], which are important for interactions with other proteins involved in intracellular
signaling [55,56]; and leucine (L) zipper-like regions, through which the protein forms dimers in
membranes [57]. Some studies have found that p12I dimerization is due to the formation of a disulfide
bond through the conserved cysteine residue at position 39 (C39) (Figure 1); when this residue is
palmitoylated, the protein remains monomeric [57,58]. C39 palmitoylation has been suggested to be
critical for ATLL transmission [58]. However, some HTLV-1 strains encode p12I/p8I proteins that
have a C39 substitution for serine (S39) or arginine (R39) (Figure 1B). Therefore, the precise role of
this residue in p12I/p8I assembly and function remains to be established. The presence of a lysine
residue at position 88 (K88) decreases protein stability, as it is susceptible to ubiquitination, but an
arginine at this position (R88) has a stabilizing effect [57]. R88 is present in p12I isolated from HTLV-1
strains found in asymptomatic carriers and patients with ATLL, whereas K88 is found in some of the
strains isolated from patients with HAM/TSP. Therefore, this residue might be relevant to the type of
pathology caused by HTLV-1 [57].

p12I (also p8I) is a highly conserved protein (Figure 1B). However, analysis of 834 patient-isolated
HTLV-1 DNA sequences identified multiple aa substitutions among p12I/p8I homologues of various
HTLV-1 strains [59]. Of these, the G29S, P34L, S63P, R88K, and S91P substitutions were the most
frequent mutations with possible implications for virus adaptation and proliferation in the cell.
The glycine-to-serine (G29S) mutation results in the expression of non-cleavable p12I [48,49,60],
whereas a rare mutation of aspartic acid (D) in position 26 to either asparagine (N) or glutamic
acid (E) results in the predominant expression of p8I [48]. These mutations have been exploited to
assess whether p8I and p12I expression is required for viral infectivity and persistence in macaques
inoculated with B-cell lines that were transfected with HTLV-1 molecular clones carrying G29 and
D26 aa’s, as well as mutants with either G29S or D26N substitutions [59]. No virus infectivity was
observed when only the p12I with G29S substitution was expressed. Furthermore, the abundance of
p8I alone (D26N mutant) limited viral persistence [59], and the absence of both p8I and p12I increased
the susceptibility of HTLV-1-infected CD4+ T cells to T-killer cells [59]. These finding suggest that the
synchronized expression of p12I and p8I is necessary for persistent HTLV-1 infection.

2.1. Roles and Functional Mechanisms of p12I in the ER

p12I enhances T-cell growth and proliferation in an interleukin-2 (IL-2)-independent
manner [61,62]. IL-2 promotes T-cell proliferation and controls T-cell immune responses through
the downregulation of signaling cascades [63]. These functions of IL-2 are directly dependent on its
association with the IL-2 receptor (IL-2R), which is composed of three subunits: Alpha (α), beta (β),
and gamma (γc). In the plasma membrane, the initial binding of IL-2 to the IL-2R α-subunit further
recruits the β and γc subunits to form a tertiary IL-2/IL-2R complex [64]. Co-immunoprecipitation
experiments have provided evidence that p12I binds specifically to the IL-2R β and γc subunits;
however, the binding occurs exclusively with the immature forms of the subunits in the pre-Golgi
compartments [62]. Thus, p12I has an immunosuppressive role in that it prevents the maturation and
trafficking of the β and γc subunits to the cell surface and thus inhibits the formation of a functional
IL-2/IL-2R complex (Figure 2A). In doing so, p12I also redirects the signaling pathway of T-cell
activation. On the plasma membrane of uninfected T cells, the β-γc heterodimer recruits and activates
the signal transducer and activator of transcription 5 (STAT5) protein, resulting in the expression
of IL-2 and the activation and proliferation of T cells [65]. However, this pathway is restricted in
HTLV-1-infected cells expressing p12I. Nonetheless, the co-localization of the β and γc subunits upon
binding to p12I also enhances STAT5 phosphorylation, leading to its activation and providing an
efficient tool for viral control of T-cell proliferation without the need for IL-2 [61] (Figure 2A). This could



Int. J. Mol. Sci. 2018, 19, 3508 5 of 17

be a mechanism of oncogenesis given that studies have established that STAT5 is activated in 70% of
ATLL primary cells [66]. Moreover, activated STAT proteins are hallmarks of other cancers [67,68].
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Figure 2. Mechanisms of p12I in the endoplasmic reticulum (ER) of infected cells: (A) p12I binds to
the immature forms of interleukin-2 receptor (IL-2R) β and γc subunits preventing their traffic to the
plasma membrane and the assembly of IL-2/IL-2R complex, and hence, inhibits signal transducer and
activator of transcription 5 (STAT5) activation. However, upon binding to p12I, the β and γc subunits
co-localize and provide new way for STAT5 phosphorylation and activation. Thus, p12I re-routes the
STAT5 signaling pathway. (B) Through binding to the free human MHC-I heavy chain (MHC-I-Hc),
p12I obliterates the assembly of functional MHC-I-Hc–β2m complex in the plasma membrane resulting
in suppression of immune response. (C) p12I has a mechanism to increase the concertation of Ca2+ in
the cytoplasm while depleting Ca2+ from the ER, which affects the Ca2+ signaling in the cell. To do so,
p12I interacts with host proteins (calreticulin and calnexin), which modulate Ca2+ storage. As a result,
dephosphorylated nuclear factor of T cells (NFAT) migrates to the nucleus and induces IL-2 expression
and T-cell activation. Other possible role is that p12I interacts with calcineurin, thus inhibiting NFAT.

p12I binds to the free human MHC-I heavy chain (MHC-I-Hc), as established in another
co-immunoprecipitation assay [69]. The MHC-I complex plays a critical role in immunity: In infected
cells, it binds peptide fragments derived from pathogens (e.g., viruses and bacteria) and displays
them on the cell surface for recognition by T cells [70,71]. As a result, the T cells are activated and
eradicate the infected cells. The MHC-I complex is composed of a transmembrane glycoprotein Hc,
the β2-microglobulin (β2m) [71]. p12I has been found to associate with MHC-I-Hc but not with the
entire MHC-I-Hc–β2m complex [69] (Figure 2B). Furthermore, it has been suggested that in the ER,
p12I binds to a form of MHC-I-Hc that is not fully matured (most likely a less glycosylated form per
the results of an electrophoresis assay) and obliterates the formation of the functional MHC-I-Hc–β2m
complex [69]. Preventing the T-cell recognition of invaded somatic cells in infected individuals may be
a mechanism through which HTLV-1 suppresses immune response.

Another role of p12I is to downregulate intercellular adhesion molecules I and II (ICAM-1 and
ICAM-2) [46], which are ligands that activate the cytotoxic response of NK cells. As a result, NK cells
cannot destroy HTLV-1-infected CD4+ T cells even though they show reduced surface expression of
the MHC-I complex and therefore constitute a target of NK cells [46]. Thus, in addition to using the
mechanism of suppressing MHC-I-mediated immune response, HTLV-1 may have evolved a means of
making infected cells unsusceptible to NK-cell-controlled cytolysis. Another possibility is that through
ICAM-1 downregulation p12I obstructs T-cell activation, since ICAM-1 is a signaling molecule in this
process [72]. However, the exact physiological effect of ICAM-1 downregulation by p12I is unknown,
because ICAM-1 expression is enhanced in Tax-producing cells [73], as well as in HTLV-1-positive cell
lines and ATLL cells from patients [74] that might minimize the effect of p12I.
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Other studies have suggested that the p12I protein increases the concentration of calcium ions
(Ca2+) in the cytoplasm and concurrently reduces the amount of Ca2+ available for release from
the ER, thereby enhancing T-cell activation by modulating Ca2+ signaling [75]. Increased cytosolic
Ca2+ activates the phosphatase calcineurin, which dephosphorylates the nuclear factor of T cells
(NFAT) [76]. Dephosphorylated NFAT migrates to the nucleus and induces the expression of IL-2 [77],
which leads to T-cell activation. A possible mechanism of p12I-induced cytosolic Ca2+ increase
is through binding to the host proteins [78], which modulate Ca2+ storage, such as calreticulin
and calnexin [79] (Figure 2C). This hypothesis is supported by the observation that p12I-induced
NFAT activation is decreased in cells co-transfected with p12I and increased doses of calreticulin [75].
Furthermore, the activation of Ca2+ influx channels in the plasma membrane contributes to the
increase in cytosolic Ca2+ [75]. On the contrary, another possible role of p12I may be to inhibit
the function of NFAT through tight binding to calcineurin (Figure 2C), thereby leading to T-cell
inactivation—p12I has a calcineurin-binding motif in its C-terminal soluble domain (Figure 1B,C),
which is homologous to the calcineurin-binding motif in NFAT [80]. Thus, similar to other proteins,
such as the myocyte-enriched calcineurin-interacting proteins and A238L from African swine fever
virus [81,82], p12I might act as a negative regulator of NFAT and possibly other calcineurin-mediated
physiological processes by binding to calcineurin. However, because p12I and p8I share the same
C-terminal sequence located in the cytosol (Figure 1) [49], it is currently unclear whether only one of
them or both interact with calcineurin. Furthermore, because calcineurin regulates protein activity
through protein–protein interactions and phosphatase activity (62, 63), p12I (and p8I) may be a
substrate of calcineurin if it undergoes phosphorylation/dephosphorylation in vivo, which has yet
to be determined (64). It should also be mentioned that at present, there is no clear understanding
of how and under what conditions p12I acts as a T-cell activator or inactivator by modulating Ca2+

levels and calcineurin activity, thus regulating the NFAT phosphorylation state. The dual role of p12I

in T-cell activation/inactivation is similar to that of Bcl-2 protein when it resides in the ER membrane,
the mechanism of which is also unresolved [83,84].

2.2. Roles and Functional Mechanisms of p8I in the Plasma Membrane

p8I may provide another avenue to T-cell inactivation. It has been found that p8I downregulates
the transduction of proximal T-cell receptor signaling [48,50]. When localized at the immunological
synapse in the plasma membrane, p8I inhibits the signaling cascade leading to T-cell activation
when in contact with antigen-presenting cells [85,86]. To do so, p8I interacts with the protein
called linker for activation of T cells (LAT) and decreases LAT phosphorylation, which results in
decreased phosphorylation of the downstream T-cell signaling proteins phospholipase C and Vav
and downregulation of NFAT activity (Figure 3) [60]. In this way, p8I favors viral persistence by
inhibiting the immune responsiveness of T cells. Conclusions about these p8I activities were made
based on a study in Jurkat T cells expressing p8I and an analysis of proteins and their post-translational
modifications in cell lysates [60]. However, at the time of the study, nothing was known about p8I

as a cleavage product of p12I, which migrates to the cell membrane. Also, the study was conducted
using cells transfected with the precursor p12I protein. Therefore, the authors believed that p12I was
responsible for the observed effects.
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Figure 3. p8I inhibits T cell receptor (TCR) signal transduction and NFAT activation: p8I is a
proteolytic product of p12I in the ER membranes, the protein traffics to plasma membrane and
localizes in the immunological synapse; p8I interacts with and inhibits the phosphorylation of the
transmembrane protein called linker for activation of T cells (LAT) and by doing so, p8I disables LAT
to transmit signals from TCR and to interact with other proteins, such as phospholipase C gamma 1,
Vav proteins, and lymphocyte-specific protein tyrosine kinase (shown in red, cyan and green) on the
TCR signaling pathway.

Further research found that in the plasma membrane, the activities of p8I protein increase
the number and length of cellular conduits, as well as the likelihood of virus transmission [43].
These findings were established in studies of p8I expressed in Jurkat T cells: p8I protein co-localizes
with and increases the clustering of lymphocyte function–associated antigen-1 (LFA-1) and also
enhances the contact between T cells through adhesion to clustered LFA-1. Furthermore, these studies
demonstrated that p8I increases T-cell contact among primary lymphocytes, as observed in peripheral
blood mononuclear cells (PBMCs) and MT-2 cells overexpressing p8I, in which conduits formed
preferentially between resting PBMCs and MT-2 cells [43]. Notably, p8I protein was visualized in these
conduits. The increased conduit formation by p8I was also confirmed in co-culturing experiments
with non-transfected and p8I-transfected Jurkat T cells, as well as non-transfected Jurkat T cells
and p8I-transfected MT-2 cells. A significant amount of p8I was transferred to the non-transfected
cells [43]. Thus, p8I provides an additional mechanism for virus transmission through increased
conduit formation (Figure 4) along with transfer through virological synapses [87] and “viral biofilm”
formation [88]. The capability of p8I to inactivate and segregate T cells, as well as to enhance the
formation of cellular conduits, protects the virus from immune recognition, thereby ensuring efficient
virus propagation.

The large body of predominantly in vivo studies of p12I and p8I proteins points to the
indispensable roles of these proteins in modulating the signaling pathways of host T cells.
This modulation suppresses immune responses and compromises the capability of the infected
organism to identify and eliminate HTLV-1. Therefore, these proteins help the virus to establish
long persistence and, in some cases, cause malignant cell transformations.
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Figure 4. p8I provides a mechanism for virus transmission through increased conduit formation:
p8I interacts with and enhances the clustering of lymphocyte function–associated antigen-1 (LFA-1)
in the plasma membrane, and by doing so facilitates the contact between T cells. This results in the
formation of conduits between infected and healthy cells, resulting in virus transmission. It is currently
unknown whether this transmission occurs through a virion assembly.

3. p13II Protein and Its Role in the Control of Mitochondrial Apoptosis

p13II is encoded by the ORF-II of HTLV-1, and it corresponds to the C-terminal region of another
NSP, p30II, which has two nucleus localization/retention sequences (NLS’s) in its N- and C-terminal
regions and resides and functions in the nucleus [89–91]. p13II might have only the C-terminal NLS
(Figure 5). Initially, p13II was thought to be a predominantly nuclear protein, as it was found in the
nucleus of p13II-transfected HeLa cells [49]. Further studies demonstrated partial nuclear localization
upon p13II co-expression with the HTLV-1-encoded transcriptional regulator Tax protein [89,92].
In nuclear speckles, p13II directly binds Tax [93], thus reducing Tax transcriptional activity and viral
expression [92]. However, the role of p13II as a nuclear protein is not discussed in detail herein, as it is
beyond the scope of this review, which focuses on p13II function in the IMM. It is currently known that
p13II has a mitochondrial targeting sequence (MTS), localizes in the IMM, and affects mitochondrial
morphology and function [89,94–97]. A critical role for p13II has been suggested by the finding that
persistent viral infection failed to establish in rabbits inoculated with cells expressing p13II-deficient
HTLV-1, but not in rabbits inoculated with cells expressing wild-type HTLV-1 [98].
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Figure 5. Amino acid sequence and domain architecture of p13II protein: p13II has hydrophobic
N-terminal followed by an amphipathic helix, which contains the mitochondrial targeting sequence
(MTS); transmembrane helix; highly flexible region; predicted β-sheet region; SH3-binding sequence
with PXXP motif; and possibly nuclear localization sequence. The arginines (R) in MTS are colored
in blue.

p13II is a positively charged 87-aa protein with multi-domain organization (Figure 5) [94,95]
composed of (i) a hydrophobic N-terminus; (ii) an arginine-rich amphipathic α helix comprising
residues 20–30 and including the MTS (LRVWRLCTRRLVPHL). (Note, however, that this MTS differs
from the canonical MTS’s, which are located at the N-terminal and cleaved after protein insertion
in the IMM.) [99]; (iii) a transmembrane region composed of residues 31–41; (iv) a highly flexible
region comprising residues 42–49, which might serve as a hinge in the structure of folded p13II;
(v) a predicted β-sheet hairpin region encompassing residues 60–75; and (vi) a C-terminal PXXP motif,
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which likely interacts with SH3 domains in signaling proteins, although such activities of p13II have
not been reported.

p13II may have an NLS as well, which might adopt a conformation favorable for trafficking
the protein to the nucleus under conditions that mask the MTS. Thus, p13II could fulfill several
cell-compartment-dependent functions; however, currently, this multi-functional role is only
hypothetical [89,100]. The protein is highly conserved among viruses from distant geographical
regions [94]. After its expression in the host cell, p13II is trafficked to and inserts into the IMM,
forming predominantly helical self-assemblies with molecular weights higher than that of a monomer
with cation channel activity [89,94,95,97,101,102]. The current view is that p13II is predominantly a
potassium (K+) channel [96,102].

It has been found that a synthetic construct of full-length p13II localizes in the IMM of isolated
energized rat liver mitochondria and triggers K+ influx that results in modified mitochondrial
morphology and swelling [96]. This effect was observed at p13II concentrations between 5 nM
and 400 nM and could be reversed by adding a protonophore that collapses IMM potential (∆Ψm).
Furthermore, this study showed that p13II causes IMM depolarization, which increases proton
transport through the pumps of the electron transport chain (ETC) and thus restores membrane
potential while increasing oxygen consumption. As a result of p13II-enhanced ETC activity, the level
of reactive oxygen species (ROS)—which are produced in part in the mitochondria [103] and control
cellular processes [104]—increased as well. Both IMM depolarization and elevated ROS concentration
lead to a lowering of the threshold for the opening of the permeability transition pore [104–106] and
ultimately triggering apoptosis. No such effects were observed for p13II mutants with alanines instead
of arginines in the MTS (Figure 5), which points to a key role for these positively charged residues.
The importance of arginines in the MTS for p13II function in the IMM has also been demonstrated
in other studies in which these residues were substituted for glutamines, prolines, and leucines;
by contrast, no effect on p13II association with the IMM was observed [94,95].

An analogous effect of mitochondrial membrane depolarization, which is dependent on p13II

expression level and the presence of native arginines in the MTS, has been observed in HeLa
cells [94]. Studies using p13II-transfected HeLa cells and Jurkat T cells transduced with a lentiviral
vector expressing p13II also showed enhanced ROS production [107]. However, unlike in isolated
mitochondria [96], an increased ROS level was not recorded unless p13II was expressed under
conditions of glucose starvation [107]. The authors suggested that p13II is sufficient to increase
ROS levels, but at physiological glucose levels, the effect is counteracted by ROS scavengers. Strikingly,
in both of the tumor cell lines, the expression of p13II under glucose-deprived conditions significantly
enhanced the probability of cell death (3- to 5-fold) compared with that associated with expression
under conditions with normal glucose concentrations [107]. This outcome can be directly correlated to
the increased level of ROS, as these species play critical roles in cell turnover [108].

At physiological levels, ROS are signaling molecules, whereas high ROS levels trigger cell
death through apoptosis. More recent studies have found that the expression of wild-type p13II

activates primary T cells from their resting state, a change that depends on ROS concentration and K+

flux [107]. In general, ROS at upper physiological limits trigger the activation of T cells, leading to
their division [108]. These findings might suggest that p13II protein controls the turnover of infected T
cells by eliminating those that undergo cancerous transformations while activating and promoting
the division of those with regular morphology. Thus, the protein might increase the number of
“normal” infected cells supporting virus proliferation and long-term persistence in HTLV-1 carriers.
However, at present, the exact mechanisms through which p13II affects cell physiology and pathology
are poorly understood. The existing view is that the protein acts by modulating levels of mitochondrial
ROS [89,107]. Lacking molecular details, the current functional model of IMM-associated p13II in
HTLV-1-infected cells assumes that the protein inserts into the IMM to form oligomeric channels.
The channel activity of p13II induces a ∆Ψm-dependent K+ current and membrane depolarization.
This effect is probably compensated by the enhanced activity of the ETC, leading to ROS formation.
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As a result, T cells undergo either activation at physiological ROS concentrations or apoptosis at toxic
ROS levels (Figure 6) [96,102,107].Int. J. Mol. Sci. 2018, 19, x 10 of 17 

 

 

Figure 6. Model of p13II function in T cells: p13II forms oligomeric K+ channel in inner mitochondrial 

membrane (IMM); K+ influx affects ΔΨm and triggers processes that lead to ROS formation; at 

physiological ROS concertation, this leads to activation of the “normal” T cells; at very high toxic 

levels of ROS in transformed cells, this leads to apoptosis and cell death. 

Alternative mechanisms for p13II-controlled T-lymphocyte death and survival also have been 

proposed. It has been suggested that p13II is not an apoptotic factor per se but instead modulates other 

proteins on the pathway of apoptosis signaling [89,109]. One study showed that p13II-expressing Jurkat 

T cells are sensitive to caspase-dependent ceramide- and FasL-induced apoptosis [109]. Ceramide is 

one of the key signaling molecules in apoptosis, and its formation can be induced by several stress 

factors, including oxidative stress and ROS [110]. FasL, a cytokine found predominantly in the cells 

of the immune system, is the ligand for the Fas receptor. FasL–Fas binding triggers apoptosis; FasL 

expression is also induced under conditions of cell stress [111]. Moreover, a reduction in FasL-

induced apoptosis has been observed in p13II-expressing cells after treatment with a chemical inhibitor 

of Ras protein, which suggests that p13II might specifically alter Ras-mediated apoptosis [109]. These 

findings could reveal a possible apoptotic mechanism of p13II that aligns well with p13II channel 

activity in the IMM leading to ROS formation. 

4. Roles of Tax, HBZ, and p30II NSPs in HTLV-1 Life Cycle 

Because this review focuses on the function of HTLV-1-encoded NSPs p8I, p12I, and p13II in the 

cellular membranes, only a brief outline of the roles of Tax, HBZ, Rex, and p30II, which are not 

membrane proteins, in HTLV-1 functioning in the infected cells is provided. Their properties and roles 

in the infected cells are described in excellent reviews published elsewhere [28,34,42,47,112–116]. 

Tax is a ca. 40 kDa protein with a multi-domain organization that facilitates interactions with a range 

of cellular components in the nucleus and cytoplasm that result in modified cellular functions [93,112]. It 

regulates the expression of viral and cellular proteins; supports the proliferation of infected cells and 

accumulation of genetic modifications by precluding cell cycle arrest and inhibition of DNA damage 

repair; and induces cellular transformations. Tax is currently considered the most important protein 

for HTLV-1 oncogenesis [93,112,117,118]. 

HBZ is the only HTLV-1-encoded protein, which is expressed through the minus-strand 

transcription; is composed of an N-terminal activation domain, a central domain, and a basic leucine-

zipper domain; and localizes in the nucleus [34,112,113]. HBZ antagonizes many of the activities of Tax, 

and its major functions include maintaining long-lasting asymptomatic infection, promotion of T-cell 

proliferation, inhibition of apoptosis and autophagy, and disrupting genomic integrity [112,113]. The 

protein is also implicated in all stages of ATLL progression. 

Figure 6. Model of p13II function in T cells: p13II forms oligomeric K+ channel in inner mitochondrial
membrane (IMM); K+ influx affects ∆Ψm and triggers processes that lead to ROS formation;
at physiological ROS concertation, this leads to activation of the “normal” T cells; at very high toxic
levels of ROS in transformed cells, this leads to apoptosis and cell death.

Alternative mechanisms for p13II-controlled T-lymphocyte death and survival also have been
proposed. It has been suggested that p13II is not an apoptotic factor per se but instead modulates other
proteins on the pathway of apoptosis signaling [89,109]. One study showed that p13II-expressing Jurkat
T cells are sensitive to caspase-dependent ceramide- and FasL-induced apoptosis [109]. Ceramide is one
of the key signaling molecules in apoptosis, and its formation can be induced by several stress factors,
including oxidative stress and ROS [110]. FasL, a cytokine found predominantly in the cells of the
immune system, is the ligand for the Fas receptor. FasL–Fas binding triggers apoptosis; FasL expression
is also induced under conditions of cell stress [111]. Moreover, a reduction in FasL-induced apoptosis
has been observed in p13II-expressing cells after treatment with a chemical inhibitor of Ras protein,
which suggests that p13II might specifically alter Ras-mediated apoptosis [109]. These findings could
reveal a possible apoptotic mechanism of p13II that aligns well with p13II channel activity in the IMM
leading to ROS formation.

4. Roles of Tax, HBZ, and p30II NSPs in HTLV-1 Life Cycle

Because this review focuses on the function of HTLV-1-encoded NSPs p8I, p12I, and p13II in
the cellular membranes, only a brief outline of the roles of Tax, HBZ, Rex, and p30II, which are not
membrane proteins, in HTLV-1 functioning in the infected cells is provided. Their properties and roles
in the infected cells are described in excellent reviews published elsewhere [28,34,42,47,112–116].

Tax is a ca. 40 kDa protein with a multi-domain organization that facilitates interactions
with a range of cellular components in the nucleus and cytoplasm that result in modified cellular
functions [93,112]. It regulates the expression of viral and cellular proteins; supports the proliferation of
infected cells and accumulation of genetic modifications by precluding cell cycle arrest and inhibition
of DNA damage repair; and induces cellular transformations. Tax is currently considered the most
important protein for HTLV-1 oncogenesis [93,112,117,118].

HBZ is the only HTLV-1-encoded protein, which is expressed through the minus-strand
transcription; is composed of an N-terminal activation domain, a central domain, and a basic
leucine-zipper domain; and localizes in the nucleus [34,112,113]. HBZ antagonizes many of the



Int. J. Mol. Sci. 2018, 19, 3508 11 of 17

activities of Tax, and its major functions include maintaining long-lasting asymptomatic infection,
promotion of T-cell proliferation, inhibition of apoptosis and autophagy, and disrupting genomic
integrity [112,113]. The protein is also implicated in all stages of ATLL progression.

Rex is a ca. 27 kDa protein with several functional domains through which it binds to messenger
RNA (mRNA) and interacts with both viral and host proteins [114,115]. As an mRNA binding protein,
it plays the role of a post-translational regulator of HTLV-1 mRNA: Its most important functions are to
transport mRNA from the nucleus to the cytoplasm and enhance the translation of viral structural
proteins [114].

p30II protein is the precursor of p13II but has entirely nuclear localization. It prevents the export
of Tax/Rex mRNA from the nucleus to the cytoplasm, thus acting as a downregulator of Tax and Rex
and suppressor of viral replication [49,116]. p30II binds specifically to and forms complexes with both
Tax and Rex, and these interactions are stabilized by the presence of viral mRNAs.

5. Conclusions

This review focuses on the roles of the HTLV-1-encoded regulatory NSPs p8I, p12II, and p13II,
which function in the organelles and plasma membranes of infected cells. Current knowledge suggests
that these proteins aid the virus in escaping immune surveillance through mechanisms that modify
multiple signaling cascades and regulate the cell cycle by inducing cell proliferation or apoptosis. Thus,
these proteins are critical to viral adaptation, long survival, and proliferation. In-depth understanding
of their mechanisms remains to be accomplished, however. It is currently unknown how these proteins
interact with cellular components. Furthermore, multiple functions have been proposed for each
of the three proteins, but the factors determining which function is initiated at which viral stage,
or whether multiple functions are fulfilled in parallel, are poorly understood. Therefore, along with
in-cell studies, a detailed explanation of protein structure and mechanism at the molecular level would
be particularly helpful. Specifically, in vitro studies of recombinantly produced purified p8I, p12II,
and p13II, which currently are extremely limited or even nonexistent, would both provide information
about the structural bases of the interactions of these proteins with host membranes and proteins and
clarify how the structures and membrane environment facilitate protein functions. This knowledge
would greatly expand the general understanding of HTLV-1 mechanisms and inform the development
of approaches to gain control of cellular dynamics and immune responses.
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