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ABSTRACT
Tremendous work has demonstrated the critical roles of genetics, epigenetics as well as their 
interplay in brain transcriptional regulations in the pathology of schizophrenia (SZ). There is great 
success currently in the dissection of the genetic components underlying risk-conferring tran-
scriptomic networks. However, the study of regulating effect of epigenetics in the etiopathogen-
esis of SZ still faces many challenges. In this work, we investigated DNA methylation and gene 
expression from the dorsolateral prefrontal cortex (DLPFC) region of schizophrenia patients and 
healthy controls using weighted correlation network approach. We identified and replicated two 
expression and two methylation modules significantly associated with SZ. Among them, one pair 
of expression and methylation modules were significantly overlapped in the module genes which 
were significantly enriched in astrocyte-associated functional pathways, and specifically expressed 
in astrocytes. Another two linked expression-methylation module pairs were involved ageing 
process with module genes mostly related to oligodendrocyte development and myelination, 
and specifically expressed in oligodendrocytes. Further examination of underlying quantitative 
trait loci (QTLs) showed significant enrichment in genetic risk of most psychiatric disorders for 
expression QTLs but not for methylation QTLs. These results support the coherence between 
methylation and gene expression at the network level, and suggest a combinatorial effect of 
genetics and epigenetics in regulating gene expression networks specific to glia cells in relation to 
SZ and ageing process.
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Introduction

Schizophrenia (SZ) is known to be a highly heri-
table and developmental neuropsychiatric disor-
der, which has around 1% prevalence worldwide 
[1,2]. In previous neuroimaging studies, SZ has 
been characterized by brain-wide grey matter 
reduction [3], functional disconnectivity [4,5] and 
myelination decrease [6,7] along with significant 
impairments in cognition [8], and presence of 
positive and negative symptoms. These brain 
abnormalities are thought to be mediated by com-
plex molecular processes involving neuronal cell 
development, differentiation and death, even dur-
ing the early stage of brain development [9]. 
Despite substantial efforts on exploring the 

underlying molecular mechanisms through 
advanced genomics, epigenetics and transcrip-
tomics techniques, there are still many challenges 
given the complex interplay among these factors 
for the aetiology of SZ.

Brain transcriptomics studies have demon-
strated substantial transcriptional alterations in 
the frontal cortex, cerebellum or hippocampus of 
SZ [10]. Keeping gene expression in balance is 
critical in maintaining neuronal function, as well 
as their synaptic interactions. Genetics is a major 
factor in regulating gene expression and functional 
pathways [11,12]. Recent landmark work based on 
dorsolateral prefrontal cortex (DLPFC) post- 
mortem tissue RNA sequencing has reported 
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20 ~ 50% of SZ risk loci [13] showing strong cis- 
effect to regulate the expressions of their nearby 
genes, further elaborating the liability of these risk 
variants in aetiology of SZ [14,15]. Co-expression 
network analyses of brain expression data have 
identified some modules highly associated with 
SZ harbouring- the SZ risk loci with strong cis- 
acting effects [14,15,16]. However, some co- 
expression modules show discrepancy in relation 
with SZ and the polygenic risk score for SZ. 
Several SZ-related modules fail to be significantly 
enriched in SZ genetic susceptibility [15]. In addi-
tion, differentially expressed genes could have 
diverse patterns among brain regions [17], neural 
cells [18,19] and neural developmental stages [20]. 
Collectively, these findings suggest the influence of 
complex interplay of genetics and other factors 
(e.g. environmental factors) in determining the 
process of gene expression.

Epigenetics can mediate gene by environment 
effects in modifying how genes are structured and 
expressed. DNA methylation is an epigenetic 
modification widely studied in psychiatric disor-
ders such as SZ [21,22]. It changes the genome’s 
response to transcriptional factors by attaching 
a methyl group in DNA sequence (mostly on 
cytosine site as CpG). The influence of DNA 
methylation in gene transcription can be stable 
and heritable across cell generations, and also 
reversible according to external condition 
changes [23]. The dynamics of DNA methylation 
plays a vital role in the pathogenesis of SZ, espe-
cially in neuronal diversity, plasticity and neuro-
genesis [24,25]. Besides environmental and 
developmental effects, DNA methylation can 
also be influenced by sequence variants (e.g. gen-
otype variation or specific allele on a locus), 
which represents a methylation quantitative trait 
loci (meQTL). Previous studies have demon-
strated prevalent meQTL effects across genome, 
especially during the early neural development, 
and their relation to multiple psychiatric disor-
ders including SZ [26–28]. The study for com-
mon and tissue-specific meQTL effects across 
brain and peripheral tissues shows that cross- 
tissue meQTLs are more likely to reside at regu-
latory elements (e.g. enhancer) of transcriptional 
genes and also highly enriched in expression 
quantitative trait loci (eQTL) [29], suggesting 

the role of DNA methylation in mediating genetic 
effects on gene expression.

Although DNA methylation plays a very impor-
tant role in the control of gene expression by mod-
ulating both genetics and environmental factors, 
there are currently limited number of studies 
directly investigating the relationship between 
DNA methylation and gene expression in the 
human brain. By leveraging public datasets of 
methylation and gene expression from brain 
DLPFC tissues, we performed a comprehensive net-
work analysis with an aim to characterize the rela-
tionship between them. Given the co-regulation 
among genes in expression and the clustering of 
methylation in functional pathways, we sought to 
identify the relationship between functional tran-
scriptional modules and epigenetic modules in the 
context of the human interactome. We applied net-
work analyses to construct expression and methyla-
tion networks and prioritize them into multiple 
sub-network modules, followed by a systematic 
characterization of both types of modules in terms 
of their associations with SZ and ageing, neuronal 
cell specification, CpG-expression co-localization 
and their underlying genetic effects. Using these 
analyses, we were able to link gene expression and 
methylation at the module level.

Materials and methods

Gene expression data

The data were downloaded from dbGaP 
(Accession: phs000979.v1.p1). Briefly, brain post- 
mortem tissues of DLPFC grey matter region 
(Brodmann area 46) from 546 subjects including 
SZ and healthy controls (HCs) were used for RNA 
extraction and gene expression assays. Further 
information about tissue dissection, clinical char-
acterization, neuropathological screening, and tox-
icological analyses were described in [30]. SZ 
patients were assessed for schizophrenia or schi-
zoaffective disorder based on DSM-IV lifetime 
Axis I. HCs were included if they had no history 
of psychological or psychiatric problems and nega-
tive toxicology results.

Gene expression was assayed by an Illumina 
whole-genome HT-12-V4 expression chip cover-
ing 47,323 probes. The transcript level of each 
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probe was passed through quality control steps by 
the ‘limma’ R package [31], including correction 
for background level using negative control 
probes, quantile normalization using both negative 
and positive controls, and log2 transformation on 
the transcription intensities. Probes were removed 
if they were not significantly expressed (detection 
p-value > 0.01) in at least 90% subjects as applied 
in [32]. Subjects were excluded if they had age 
information missing or were less than 16 years 
old, or poor RNA quality (RNA integrity number: 
RIN<6.5) or less than 10% of probes significantly 
expressed (quality detection p-value < 0.01). After 
these quality control steps, we had 20,370 probes 
from 419 subjects (241 HCs and 178 SZ) left for 
analyses. Batch effects were corrected for each 
probe using a parametric Bayes framework imple-
mented in the ‘combat’ function [33] in an 
R package surrogate variable analysis (SVA) [34]. 
Confounding factors including pH, PMI (post- 
mortem interval) and RIN were further regressed 
out by a linear model prior to main analyses.

DNA methylation data

The data were from NCBI GEO database (GEO 
database: GSE74193). Briefly DNAs from DLPFC 
region (BA9/46) of 244 subjects (108 SZ and 136 
HCs) with age greater than 16 years old were 
assayed using Illumina Infinium Methylation450k 
assay, covering 485,512 CpG sites. More details 
about the criteria for patients and controls recruit-
ment and diagnosis can be seen in [28].

DNA methylation data went through a series of 
quality control steps performed by R package 
‘minfi’ [35] as applied in [28,36]. After applying 
quantile-based normalization to both methylated 
and unmethylated signals on each site, we calcu-
lated the beta values for subsequent analysis. CpGs 
were removed if they 1) coincided with SNPs or at 
single-base extension [37], 2) located in non- 
specific probes [38], 3) contained more than 1% 
missing values (methylation values with detection 
p > 0.05 were treated as missing values), or 4) were 
located on sex chromosomes. The remaining miss-
ing beta values were further imputed by k-nearest 
neighbours (KNN) method as used in [39]. 
377,698 CpGs were kept after preprocessing. 
Further CpG removal was applied if CpGs 

standard deviation (SD) was less than the mea-
surement error standard deviation (SD = 0.047) 
estimated by 78 test–retest samples, resulting in 
61,853 CpGs for analyses. Batch effects were then 
corrected for each CpG using the same steps as 
with expression data. Neuronal cell-type propor-
tions and the top four principal components of 
negative control methylation as estimated by [28] 
were regressed out for subsequent analysis.

Network analysis

After preprocessing of both expression and methy-
lation data, we constructed co-expression and co- 
methylation networks separately by using the 
R package weighted correlation network analysis 
(WGCNA) [40]. WGCNA has been widely applied 
to omics data to construct correlation networks 
based on the correlations among the features (e.g. 
genes), cluster features for module detection, and 
summarize measurements of features from mod-
ules for traits association studies. We employed 
WGCNA to explore clusters (modules) of highly 
related genes or CpGs in relation to the traits and 
psychiatric diseases, and to investigate the corre-
spondence among omics data at the module level. 
In brief, for each dataset the adjacency matrix was 
calculated by a power of 6 of the correlation 
matrix among nodes (i.e. expression probes and 
CpG) to have scale-free topology larger than 0.85, 
from which topology overlap matrix (TOM) was 
derived to measure connection similarity among 
nodes – the overlap between any two nodes in 
terms of the extent they were connected to the 
same other nodes in the network. Through the 
TOM matrix, an unsigned co-methylation/expres-
sion network was constructed and densely inter-
connected CpGs or expression probes were 
clustered into modules. Module eigengene (ME), 
the first principal component of methylation or 
expression matrix in a module, was computed 
and tested for the association with SZ diagnosis, 
controlling for age, race and sex. ME represents 
the expression profile of genes or CpGs in the 
module. Within a module, the correlation of each 
expression probe or CpG with ME was computed 
as the measure of their module membership (MM) 
[41], indicating how close a CpG or probe relates 
to the module. Each CpG or probe’s association 

878 D. LIN ET AL.



with SZ diagnosis was also computed as group 
significance (GS), from which the correlation 
between MM and GS on each CpG or probe in 
the module was tested. The top CpGs or probes 
with both high MM and GS values were utilized to 
represent the module for demonstration.

Overlap test between expression and 
methylation modules

After prioritizing probes or CpGs into different 
expression or methylation modules, respectively, 
we assigned them with ensemble IDs based on 
genome assembly GRCh38 using R package 
‘BioMart’ [42]. We only annotated a methylation 
site to a gene and ensemble ID if it was located 
within the gene or nearby the transcriptional start 
site (TSS) of the gene (distance < 5 k bps). For 
each pair of expression and methylation modules, 
we tested the significance of ensemble ID overlap 
by both two-sided Fisher’s 2 × 2 table exact test 
and permutation test. In Fisher’s exact test, given 
an expression module, we compared the odd of 
shared ensemble IDs with a methylation module to 
the odd of shared ensemble IDs with the other 
methylation modules and estimated the signifi-
cance of ensemble ID overlap. To account for the 
cases that some methylation sites were not anno-
tated to any genes and the number of methylation 
sites varied by modules, we applied a permutation 
method to reduce these influences in the test. For 
a tested expression module, the proportion of 
overlapped ensemble ID from a methylation mod-
ule was taken as an observation. Then, we ran-
domly sampled 105 sets of methylation sites with 
the same methylation module size from the whole 
methylation set. For each randomly selected 
methylation set, the proportion of shared ensem-
ble ID included in the expression module was 
calculated to generate the null distribution. The 
percentage of sampled methylation sets having 
higher proportion than the observed proportion 
was taken as empirical p-value. The significance 
levels from both Fisher’s 2 × 2 table exact test and 
permutation test were used to determine the sig-
nificance of overlap between expression and 
methylation modules.

Replication analyses

We used independent expression and methylation 
data sets to validate the findings from the discov-
ery data in three aspects: module’s association with 
phenotypes, module’s preservation (explained 
later), and probe-level associations between 
expression and methylation from linked modules.

Expression replication dataset 1 (ExpRep1; 
GSE36192): post-mortem samples from frontal 
cortex of 455 neurologically normal Caucasian 
subjects were assayed by HumanHT-12_v3 
Expression BeadChips (48,803 probes). More 
details about expression profiling were described 
in [43,44]. After applying the same quality control 
and preprocessing (e.g., batch correction) as in the 
discovery data, there were 343 subjects (age > 16) 
with 18,196 probes left for replication.

Expression replication dataset 2 (ExpRep2; 
GSE21138): post-mortem tissues from DLPFC 
(brodmann area (BA) 46) of 30 SZ patients and 
29 age- and sex-matched HCs [45] assayed by 
Affymetrix Human Genome U133 Plus 2.0 Array 
(54,675 probes), followed by normalization using 
dChip statistical model (DNA-Chip Analyser) and 
log2 transformation as applied in [45] and batch 
correction by R package SVA [34]. Probes with 
present calls in at least one sample were left, 
resulting in 30,061 probes from 58 (30 SZ and 28 
HCs) subjects for analysis. Probes were assigned 
by gene symbols and matched with those from 
discovery expression data at gene level for 
replication.

Methylation replication dataset1 (MethyRep1; 
GSE61380): 33 post-mortem brain DLPFC (BA9) 
samples (18 SZ and 15 HCs) were obtained from 
Douglas Bell-Canada brain bank with more infor-
mation about participant recruitment and diagno-
sis criteria introduced in [46]. DNA methylation 
was profiled using the Illumina Infinium 
HumanMethylation450K BeadChip and went 
through the same normalization, quality control, 
and imputation process as applied in discovery 
data to have 368,998 methylation sites remained 
for validation. Batch correction and neural cell 
type proportion estimations were also applied 
using the same algorithms as in discovery data 
analysis.
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Methylation replication dataset 2 (MethyRep2; 
GSE36194): corresponding to expression replica-
tion dataset ExpRep1, methylation data from the 
same tissue of same subjects were profiled using 
with the Illumina Infinium 
HumanMethylation27K beadchip. The methyla-
tion data were preprocessed and quality controlled 
through the same steps as in discovery data analy-
sis, resulting in 26,424 CpGs from 330 subjects for 
validation analysis.

Replication for disease association and age 
relatedness

For those modules with ME vectors significantly 
associated with diagnosis, we validated the associa-
tions in the independent datasets. For expression 
modules, we used ExpRep2 to select the probes 
from the same genes as the probes in the module 
and calculated the first eigengene of expression 
data to test their associations with disease and 
age. A similar validation was applied for each 
significant methylation modules in MethyRep1. 
Replication significance level was set as p < 0.05.

Replication for module preservation

Three different measures were applied to validate 
if the properties of selected modules were pre-
served across different datasets. First, a local clus-
tering coefficient was to measure a normalized 
average number of all triangle connections asso-
ciated with each node. In this study, we applied the 
generalized clustering coefficient (GCC) for 
weighted network to account for weight informa-
tion in each edge [47]. GCC reflected the presence 
of the module structure and mean prevalence of 
connectivity around the nodes. A permutation test 
was applied to test the significance of GCC in 
replication datasets. In each of 105 runs, we ran-
domly selected features (expression probes or 
methylation sites) from the entire set and calcu-
lated GCC to build the null distribution. P-value 
can be derived by the proportion of runs with 
GCC larger than the observed GCC. Second, 
a composite preservation statistic was previously 
proposed to combine the measures of module 
density preservation (i.e. to test if the connections 
in the module remain in an independent dataset) 

and module connectivity preservation (i.e. to test if 
the connectivity pattern is similar to that in the 
independent dataset) and tested in [16]. 
A permutation was performed to estimate the 
mean and variance of each measure (i.e. module 
density and module connectivity) under the null 
hypothesis that there was no preservation of mod-
ule in the measures, followed by the standardiza-
tion of each observed measure to the mean and 
variance under null distribution, denoted by 
Z_density and Z_connectivity, respectively. The 
composite preservation statistic, denoted by 
Z_summary, was defined as the average of 
Z_density and Z_connectivity. Z_summary < 2 
indicates no preservation, 2 < Z_summary<10 
indicates weak to moderate evidence of preserva-
tion, while Z_summary>10 indicates strong evi-
dence [16]. The p-value of the composite statistic 
was the combination of p values of module density 
and module connectivity.

Probe-level expression-methylation relation

To test the direct regulation relation between 
expression and methylation at probe level for the 
linked modules, we leveraged the data from 
ExpRep1 and MethyRep2 that were collected from 
same samples, and tested pair-wise associations of 
expression probes and methylation sites if they 
were located within 500 k bps, using linear regres-
sion controlling for age, sex and PMI.

Neural cell type and functional enrichment

To understand the cell specificity of each expres-
sion and methylation modules, we tested their 
enrichment in the genes expressed specifically in 
five cell types (neuron, astrocytes, microglia, 
endothelia cells, and oligodendrocytes using the 
R Package for specific expression analysis (pSI 
package) [49] with Fisher’s exact test threshold as 
0.05 and FDR as 0.05. The purified cell expression 
data from GSE73721 were used for the test [50]. 
The overlap of our modules with those cell-specific 
modules identified in a recent transcriptional 
study for psychiatric disorders [18] was also eval-
uated by Fisher’s exact test. In addition, methyla-
tion data of both neuron and glia cells from post- 
mortem prefrontal tissues of 29 control subjects 
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(GSE41826 [51]) were used to extract two sets of 
CpGs showing significant (p < 1 × 10−10) hyper- 
methylation in neuron (denoted by neuron-up’) 
and glia cells (denoted by glia-up”), respectively. 
These two sets of CpGs were then used to test the 
CpG overlap with identified methylation modules.

To understand the biological function of each 
module, we performed a gene ontology (GO) and 
KEGG enrichment analysis on the genes in the 
module using the web tool Webgestalt (http:// 
www.webgestalt.org/option.php).

Psychiatric disorders GWAS risk loci enrichment

Public meQTL database (GSE74193) and eQTL 
databases (GTeX: https://gtexportal.org/home/; 
BrainSeq: http://eqtl.brainseq.org/phase1/devel) 
from brain DLPFC tissue were applied to access 
the genetic effects underlying expression and methy-
lation networks. To test if the QTLs from target 
modules were significantly enriched in genetic risk 
loci of psychiatric disorders compared to the QTLs 
from the other modules, we adopted both Fisher’s 
exact test and permutation test as applied in [29]. 
Specifically, we first applied linkage disequilibrium 
(LD) pruning to the whole QTL set with R-square 
R2 > 0.7. The pruning was supervised by PGC gen-
ome-wide association study (GWAS) risk loci using 
LD structure from 1000 genome project EUR group 
as reference. After pruning, the proportion of QTLs 
from the target module showing GWAS risk was 
treated as the observation. Then we generated a null 
distribution by randomly sampling 105 sets of QTLs 
from the pruned QTL set with the same number of 
QTLs and similar minor allele frequency distribu-
tion as those from the target module. Empirical 
p-value was computed as the percentage of sampled 
QTL sets having higher proportion than the 
observed proportion and denoted by P_perm. 
Fisher’s exact test was used to test the odds ratio of 
risk loci in target module QTLs and the QTLs from 
the other modules, denoted by P_Fisher.

The demographic information of subjects from 
all the datasets used in this study is listed in Table 
S1 in Supplementary file 1.

Results

Co-expression modules and their associations 
with SZ

We clustered expression probes into 22 modules 
using WGCNA software with the dendrogram 
plot as shown in Figure 1a. The eigengenes of 
each module were tested for association with 
multiple traits as shown in Figure 1b. Two mod-
ules coloured by magenta (including 276 probes; 
Supplementary file 2) and yellow (including 
1098 probes; Supplementary file 2) were identi-
fied to have significant associations with SZ 
diagnosis (yellow: t-stat = 4.1, p = 2 × 10−3; 
magenta: t-stat = 3.55, p = 9.7 × 10−3) after 
controlling for covariates (i.e. age, race and 
sex) and correcting for multiple tests by false 
discovery rate (FDR). For each SZ related mod-
ule, we tested the correlation between module 
membership and SZ group significance for all 
probes within the module, as shown in Fig.S1 
A-B (Supplementary file 1). The correlation is 
significant in both modules with values of 0.53 
and 0.28, respectively, showing that the probes 
with higher disease association tend to be more 
important in representing the module.

Independent validations were applied to verify 
both SZ-related modules in two expression data-
sets (ExpRep1 and ExpRep2). In ExpRep1 dataset, 
90.8% of expression probes from the yellow mod-
ule and 88.8% probes from the magenta module 
were identified. By permutation tests, we found 
that both modules were well preserved with sig-
nificantly larger GCC than random selection of 
probes (p < 1 × 10−5, Fig.S3 A-B) and higher 
Z_summary statistics (yellow module: Z = 38; 
magenta module: Z = 18, Fig.S1 C). As recom-
mended in [16], the module is preserved if 
Z_summary >10. In ExpRep2 dataset, 72.6% 
genes from the yellow module and 73.3% genes 
from the magenta module were identified. The 
expressions of those probes from the matched 
genes were used to calculate the first eigengene 
for each module, and its association with SZ diag-
nosis was then examined. We replicated the asso-
ciations between SZ diagnosis and yellow and 
magenta modules with the same direction as 
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identified in the discovery dataset (yellow module: 
t-stat = 2.54, p = 0.014; magenta module: 
t-stat = 2.68, p = 9.6 × 10−3). In addition, both 
modules consistently showed significantly larger 
GCC in ExpRep2 data (p < 1 × 10−5, Fig. S3 C-D).

Several co-expression modules were signifi-
cantly enriched in different neural cell types. As 
shown in Figure 1c, the yellow expression module 
contains the genes mostly expressed in astrocytes, 
while the blue module is more specifically 
expressed in oligodendrocytes. Gene ontology 
enrichment analysis identified that yellow module 
genes were significantly enriched in the pathways 
mainly involved the cell growth, migration, differ-
entiation, movement, and organ development and 

morphogenesis, as shown in Figure 1d (p < 0.05 
after FDR correction). Moreover, these genes were 
highly enriched in neurodevelopment pathways, 
such as gliogenesis, glial and astrocyte cell differ-
entiation, and central nervous system develop-
ment. As shown in Figure 1e, genes from the 
magenta module were mostly involved in the 
inflammatory response to external stimulus (e.g., 
cytokine and lipopolysaccharide), and specifically 
expressed in endothelial and microglia cells. 
Besides these modules, several others also con-
tained genes significantly enriched in the cell- 
specific co-expression modules reported in 
a previous study [18], as shown in Fig.S4.

Figure 1. Co-expression analysis on brain DLPFC expression data. (a) shows the dendrogram clustering the correlated probes 
into several modules labelled with different colours; (b) lists the relationship between module eigengenes and traits. The numbers 
indicate -log10(FDR) and colours indicate the T-values. (c) shows the enrichment of module genes in seven reported modules which 
are specific to neural cells (i.e., neuron, endothelial, astrocyte,microglia and oligodendrocyte). (d) and (e) plot the network structure 
for the top 20 representative genes and their functional enrichment in gene ontology for magenta and yellow modules, respectively.
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Methylation modules and their associations with 
SZ

Using a similar network analysis, we identified 13 
methylation modules and tested their eigen genes 
associations with multiple traits, and the results 
are displayed in Figure 2a. Three modules 

coloured by yellow (641 CpGs, t-stat = −7.22, p -
= 6.6 × 10−11), green (475 CpGs, t-stat = 3.78, 
p = 7.5 × 10−4) and turquoise (15,983 
CpGs, t-stat = −2.87, p = 0.01) showed significant 
associations with schizophrenia diagnosis 
(Supplementary file 3). In each of the three mod-
ules, CpGs tended to have more significant SZ vs. 

Figure 2. Network analysis on brain DLPFC methylation data. (a) shows the associations between module eigengenes and traits. 
The numbers indicate -log10(FDR) and colours indicate the T-values. (b) lists the enrichment tests of each methylation module in cell- 
specific expressed genes and CpG patterns; and (c-d) plot the network of top 20 representative genes and their functional 
enrichment in gene ontology for yellow and green module, respectively.
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HC group differences if they demonstrated higher 
membership within the module (correlations were 
0.91, 0.61, and 0.43, respectively, Fig.S2 A-C). 
Figures 2 (C-D) show the network structure of 
the top 20 genes with high module membership 
in yellow and green methylation modules and the 
gene ontology (GO) enrichment of both module 
genes. The genes from the yellow module were 
significantly enriched in the functional pathways 
for developmental growth, axonogenesis, neuro-
genesis, and neuron generations, while the genes 
from the green module were related to cell projec-
tion. Although genes in the turquoise module were 
also enriched in some neural development path-
ways such as forebrain development and central 
nervous system neuron differentiation, this mod-
ule had a large module size with less focus on 
specific functions. Thus, the turquoise module 
was not further analysed in this study. By match-
ing the methylation nearby genes (<5kbp) with 
those expressed in specific cells, we observed that 
blue and red methylation modules were strongly 
enriched in the genes specifically expressed in the 
oligodentrocytes Figure 2b. Based on CpG patterns 
specific to neuron and glia cells, we identified that 
CpGs from the blue and red methylation modules 
were more likely hypo-methylated in glia cells 
compared to neurons in the human brain.

Using the dataset MethyRep1, we matched 
95.48% and 97.47% of CpGs identified in the afore-
mentioned yellow and the green modules, respec-
tively. The first eigengene of the yellow module 
(p = 0.28) did not show group differences, while 
the second eigengene showed significant group dif-
ferences (t = −2.42, p = 0.02). The association 
between the green module and SZ diagnosis was 
replicated (t = 2.98, p = 7.1 × 10−3). Moreover, both 
yellow and green modules were well preserved in 
the replication dataset MethyRep1 with significantly 
higher GCC (p < 1 × 10−5, Fig.S3 E-F) and 
Z_summary statistics (yellow: Z = 13; green: 
Z = 21), as shown in Fig.S2 (D).

Overlap between expression and methylation 
modules

After annotating methylation sites and expression 
probes to their target gene ensemble IDs, we 
tested the overlap among the expression and 

methylation modules based on both Fisher’s test 
(i.e. FDR_Fisher) and permutation test (i.e. 
FDR_perm). As shown in Fig.S5 (Supplementary 
file 1), we identified three sets of significantly over-
lapped modules which can be grouped to two cate-
gories: SZ-related and age-related overlapping sets.

The SZ-related overlapping set included the yellow 
expression module and yellow methylation module 
(odds ration (OR) = 1.75, FDR_Fisher = 0.04, 
FDR_perm = 0.009). Both modules were significantly 
associated with SZ disease as shown in Figures 1b and 
2a. There were 1109 expression probes (nearby 893 
genes; Supplementary file 2) and 641 CpGs (nearby 
591 genes; Supplementary file 3) from each module, 
respectively, with 5.2% probes located closely (<5kbp) 
to 9.5% CpGs, denoted by ‘overlap CpGs’ and ‘overlap 
probes’. As shown in Fig.S6 (Supplementary file 1), 
overlap probes and CpGs were mainly located nearby 
the genes enriched in GO terms of regulating nitrogen 
compound metabolic process, biosynthetic process 
and fatty acid oxidation (FDR p < 0.05; Fig.S6 A) 
and some interesting KEGG pathways such as Wnt 
signalling, Adipocytokine signalling, and 
Glutamatergic synapse(FDR p < 0.15; Fig.S6 B). By 
annotating each CpG to its nearest gene, we found 
that 17.9% (p = 1.3 × 10−3) of CpGs were located 
within 100kbp of transcription start site (TSS) of 
genes from the expression module, while 41.5% (p -
= 2.2 × 10−3) were within 500kbp, as shown in the 
density plot Figure 3a. Compared to those CpGs not 
included in the module, the overlap CpGs and the 
module CpGs (i.e., non-overlapped CpGs in the mod-
ule) were significantly enriched in CpG islands (CGI) 
north shore (odds ratio: OR = 1.38 and 1.72), south 
shore (OR = 1.5 and 1.36), TSS200 regions (OR = 1.17 
and 1.24), and 5�UTR (OR = 1.34 and 2.18) as shown 
in Figure 3b.

From previously reported eQTL and meQTL find-
ings, we found that 32.8% of CpGs in the module 
(including 32% of overlap CpGs) were modified by 
cis-meQTLs, while 74% of expression probes (includ-
ing 95.7% of overlap probes) were regulated by cis- 
eQTLs. 12.6% of the cis-meQTLs were also cis-eQTLs 
for the expression module. In particular, 36.3% of cis- 
meQTLs affecting overlap CpGs, were also cis-eQTLs. 
In addition, 13 out of total 205 protein-coding genes in 
the methylation module were located in 108 SZ risk 
regions [52] as listed in Table S2. The eQTLs 
also showed significant enrichment in risk loci of SZ 
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(OR = 1.31, p_perm <1 × 10−5; p_Fisher = 9.6 × 10−11) 
and three other psychiatric disorders (Autism spec-
trum disorder (ASD), Attention-deficit/hyperactivity 
disorder (ADHD) and bipolar disorder (BIP)) as 
shown in Figure 3c. No significant enrichment was 
found for meQTLs in any psychiatric disorders.

Two age-related overlapping sets were found. 
One was between the blue expression module 
and the blue methylation module (OR = 2.39, 
FDR_Fisher = 1 × 10−39, FDR_perm <1 × 10−5), 
namely ‘blueExp-blueMethy’ link. The other 
was between the blue expression module and 
the red methylation module (OR = 5.79, 
FDR_Fisher = 1 × 10−30, FDR_perm <1 × 10−5), 
namely ‘blueExp-redMethy’ link. The blue expression 
module has a negative association with age as shown 
in Figure 1b (partial R2 = 0.025, p = 9.6 × 10−3) and the 
association was replicated in ExpRep1 (89.6% probes 
included, p = 8.4 × 10−3) and ExpRep2 (61.2% genes 
included, p = 4 × 10−3). The blue and red methylation 
modules were also negatively significantly associated 
with age as shown in Figure 2a (blue: partial R2 = 0.19, 
p = 1.2x10−11; red: partial R2 = 0.49, p = 2.5 × 10−36) 

and the age-methylation associations were also repli-
cated (blue module: 96.6% CpGs included, p = 0.016; 
red module: 97% CpGs included, p = 2.3 × 10−6) in 
MethyRep1. GO term enrichment analysis showed 
that genes overlapped by blueExp-blueMethy modules 
were mainly enriched in functional pathways invol-
ving glial cell differentiation, gliogenesis, neurogen-
esis, axon ensheathment, and myelination (Fig.S7 A). 
Similar pathways were also significantly enriched by 
the overlapped genes from blueExp-redMethy linked 
modules, as shown in Fig.S7 (B).

In blueExp-blueMethy link, there are 2317 expres-
sion probes and 6308 CpGs with 20.9% CpGs located 
nearby 25.8% gene TSS <5kbps. Figure 3d plots the 
distance distribution between CpGs and their nearest 
expression probes in the linked modules, showing that 
36.4% CpGs were located within 100kbps of gene TSS 
and 65.5% CpGs were located within 500 kbps. The 
overlap CpGs and module CpGs were mostly enriched 
in body of the gene and enhancer regions (OR = 1.77, 
p = 8.1 × 10−100 and OR = 1.85, p = 1.4 × 10−107, 
respectively) compared to all other CpGs, as shown in 
Figure 3e. In addition, 42.2% of CpGs from the 

Figure 3. The characteristics of overlapping expression and methylation modules related to SZ and age. (a) and (d) show the 
histogram plots of the distance between each methylation site and the nearest transcription start site of the linked modules. (b) and 
(e) plot the distribution of three sets of CpGs (overlap CpGs, module CpGs and all CpGs) across the genome. (c) and (f) list the 
enrichment tests of cis-meQTL and cis-eQTL in risk loci of five psychiatric disorders (SZ: schizophrenia, MDD: major depressive 
disorders, BIP: bipolar disorder, ADHD: attention deficit hyperactivity disorder, ASD: autistic disorder) from PGC study.
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module including 40.2% of overlap CpGs were signif-
icantly modified by cis-meQTLs, while 73.3% of 
expression probes including 94.9% of overlap probes 
were affected by cis-eQTLs. In particular, 46.2% of the 
cis-meQTLs are also cis-eQTLs for the expression 
module. Figure 3F shows the significance of eQTLs 
enriched in risk loci of SZ, BIP, ADHD and ASD but 
no significant enrichment was found for meQTLs in 
any psychiatric disorders risk loci.

In the red methylation module (440 CpGs) 
which was also overlapped with blue expression 
module as shown in Fig.S8, 41.3% CpGs located 
closed to 5.4% of the expression genes (<5kbps). 
54.5% CpGs and 75.6% CpGs were located within 
100kbps and 500kbps of TSS of genes from the 
expression module, respectively. CpGs from the 
red methylation module were significantly enriched 
in gene body (OR = 1.7, p = 1.5 × 10−7) and enhan-
cer regions (OR = 2.8, p = 2.9 × 10−27) compared to 
all other CpGs. 54.5% of CpGs including 48.5% of 
overlap CpGs were modified by meQTLs, while 
94.6% of overlap probes were affected by eQTLs. 
35.7% of meQTLs were also cis-eQTLs in regulating 
the gene expression of the module.

Using the independent ExpRep1 and MethyRep2 
datasets assayed from the same subjects, we tested 
the associations between expression probes and their 
nearby (<500 kbps) CpGs from each of the above 
overlapping sets. There were only few expression- 
methylation pairs (1.2 ~ 8.9%) matched due to lower 
resolution in MethyRep2. After controlling for age, 
sex and PMI, 20%, 25% and 47.8% of matched pairs 
showed significant associations (FDR p < 0.05) in 
yellowExp-yellowMethy, blueExp-blueMethy and 
blueExp-redMethy links, respectively.

Discussion

We used large transcriptomics and epigenetics data 
from human brain frontal cortex to explore the 
relationship between co-expression and methyla-
tion modules by investigating their overlap in 
genes, associations with SZ and ageing, as well as 
their shared underlying genetic risk. Our findings 
were replicated by multiple independent datasets 
on module’s associations with SZ and age, and 
module’s preservation, and further verified by 
direct associations between individual CpGs and 
gene expression probes. We found two modules in 

each modality showing significant associations with 
SZ, and three pairs of overlapping methylation and 
expression modules related to SZ or ageing.

SZ-related modules and their 
expression-methylation relationship

Two co-expression modules were significantly 
associated with SZ with one (yellow module) 
including the genes more specifically expressed in 
astrocytes. This module is highly preserved across 
studies and also in line with the identified modules 
in previous RNA-sequencing studies of DLPFC 
tissue [25, 27, 53, 69], consistently showing the up- 
regulation of module expression in SZ compared 
to HCs. In particular, the genes from the yellow 
module were also highly enriched in the module 
(CD4: astrocyte) reported in a recent study of 
transcription across five psychiatric disorders 
[18], which demonstrated significant changes of 
the module expression in SZ, autism, and bipolar 
disorder. Astrocytes are known to be involved in 
synaptic metabolism and regulation of neurotrans-
mitter release and reuptake (e.g., GABA and glu-
tamate) and thereby critical for psychosis 
development [54]. Our pathway analysis found 
significant enrichment of the module genes in 
some SZ-related KEGG metabolic pathways invol-
ving the metabolism on fatty acid [55], glycine 
[56], glutamate [57] and tryptophan [58], as 
shown in Fig.S9 (A) (Supplementary file 1). 
Compared to the yellow module, the magenta 
module expression was also up-regulated in SZ, 
but more specific to endothelial and microglia 
cells with genes mainly related to immune 
response. Endothelial cell is one of major compo-
nent in formation of the brain-blood-barrier 
which has complex interaction with immune sys-
tem in response to neuroinflammation [59,60]. 
Microglia also plays a critical role in neuroinflam-
matory pathways by involving in innate immune 
system in the central nervous system (CNS) [61]. 
Previous studies have reported high involvement 
of immune system pathways in SZ development 
via glia cells as well as their interactions with 
neurons in neurotransmitters perturbations 
[62,63]. Therefore, the transcriptional changes of 
these immune system-related genes suggest the 
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complex co-expression patterns in downstream 
modulation of neuroinflammation in SZ.

The yellow methylation module showed 
a significant association with SZ. Those methyla-
tion nearby genes included astrocyte highly- 
affinity glutamate transporters SLC1A2 and 
SLC1A3 [64], and astrocyte-specific-expressed 
marker gene ALDH1L1 [65]. As shown in Fig.S9 
(B) and Table S3 (Supplementary file 1), the 
nearby genes were also marginally enriched in 
GABAergic synapse (GABRA1, GABRD, GNAO1, 
GNG7, PLCL1, PRKCA, CACNA1A) and seroto-
nergic synapse (HTR1B, HTR2A, HTR3B, KCNJ3), 
which are crucial neurotransmitter pathways in 
pathogenesis of SZ [66–68]. Significant down- 
regulation of DNA methylation in most of CpGs 
near these genes (partial R2 = 1.8%~16.1%; 
Supplementary file 1, Table.S2) in SZ, along with 
significant enrichment of module genes in growth 
development and neurogenesis, suggests the 
potential role of epigenetics in regulating glia cell 
function via these neurotransmitter signalling 
pathways. This is in agreement with previous find-
ings of astrocyte epigenetic regulation in the 
pathophysiology of psychiatric disorders 
[54,69,70]. In addition, the genes nearby CpGs in 
the module were more likely to be mapped to PGC 
SZ risk regions (p = 0.057) than the genes from the 
other methylation modules. SZ high-risk genes 
(Supplementary file 1, Table S2) from the module 
included RERE, MAD1L1, FURIN, and GATAD2A 
which have been reported to show significant 
methylation level alterations in SZ from previous 
DNA methylation genome-wide association stu-
dies [71–72].

The significant overlap between the yellow 
expression and the yellow methylation modules 
was mainly from the genes involving some meta-
bolic processes, biosynthetic process and fatty acid 
oxidation, which demonstrated the potential rela-
tionship with nervous system development in pre-
vious studies [65,73]. In particular, CpGs nearby 
genes SLC1A2, SLC1A3 and PRKCA from gluta-
mate synapse showed hypo-methylation in SZ 
which may lead to up-regulated expressions of 
these genes in astrocyte of SZ, consistent with 
our results as shown in Table.S1 (Supplementary 
file 1). Significantly, a higher percentage of CpGs 
in the module were enriched in CGI shores which 

is known to be variable, compared to the CpGs 
from the other modules. In addition, cis-eQTLs 
were identified for a large proportion of genes 
and enriched for SZ and other three psychiatric 
disorders, while there was no significant enrich-
ment of meQTLs in genetic risk of any psychiatric 
disorders. MeQTLs are of increasing interest for 
psychiatric epigenetic studies due to their signifi-
cant enrichment for susceptible genetic risk loci of 
psychiatric disorders, especially functions at the 
early stage of neurodevelopment [15,26,74,75]. It 
has been reported that meQTLs are more likely to 
reside at regulatory elements and may associate 
with other factors (e.g. transcription factor binding 
and chromatin conformation) in regulating gene 
expression, RNA splicing, and further changes on 
cellular function and disease risk [29,76]. These 
psychiatric epigenetic studies suggest a potential 
path of genetic risk in regulating gene expression 
through DNA methylation. However, the non- 
significant enrichment of meQTLs for disease 
risk loci for the yellow module suggests a less like-
lihood of direct genetic risk influence on the 
methylation, but likely environmental modulation 
of methylation in astrocytes, and dysregulation of 
which is associated with SZ.

Ageing-related modules and their 
expression-methylation relationship

The module genes from blue expression module 
were highly enriched in the genes expressed in 
oligodendrocytes, which are the CNS cells 
involved in myelination [77,78]. GO enrichment 
test further validated that the functions of those 
module genes mainly involved oligodendrocytes 
differentiation, gliogenesis and development, 
ensheathment and myelination, which have been 
reported to be critical in maintenance of white 
matter integrity and structural connectivity in cen-
tral nervous system [79,80]. We found down- 
regulation of module expression, especially of the 
oligodendrocyte OLIG2 gene (t = −2.56, p = 0.01) 
along with increase of age. OLIG2 can promote the 
formation of oligodendrocyte precursors and oli-
godendrocyte differentiation. Lower expression of 
OLIG2 may cause deficits in oligodendrocyte pro-
duction and differentiation and thus affect the 
formation of myelin, which is potentially related 
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to the decreased ability of remyelination in the 
ageing brain [81]. Although marginal association 
with SZ was found in the first module eigengene, 
previous studies have shown the relationship 
between oligodendrocyte-associate gene expres-
sion in frontal cortex of SZ and myelination 
impairment and cognitive loss [6,82]. Given that 
several studies have shown the dramatic loss of 
structural connectivity and white matter integrity 
across the brain regions in SZ, it is promising to 
probe the role of oligodendrocytes-related expres-
sion module in the development of SZ. In addi-
tion, the module harboured 13% SZ risk genes and 
their cis-eQTLs were significantly enriched in 
most of psychiatric disorders risk loci, suggesting 
the potential pathology of genetic risk in SZ 
through the alteration of module gene expressions 
in oligodendrocytes.

Two methylation modules (blue and red) were 
significantly enriched in oligodendrocyte 
expressed genes and negatively associated with 
ageing, pointing out the role of epigenetics in 
ageing process by affecting oligodendrocyte devel-
opment and differentiation. Previous work has 
reported the critical role of epigenetics in regulat-
ing gene expression in oligodendrocyte and 
thereby leading to inefficient of remyelination dur-
ing ageing [83]. In our data DNA methylation 
nearby myelin regulatory genes including MYRF, 
MBP, MAG, MOG, CNP [84], critical in oligoden-
drocyte development and myelination of axons, 
demonstrated significant negative associations 
with age (partial R2 = 2%~18%; Supplementary 
file 1, Table S4) in the blue module. CpGs nearby 
genes MYRF, MBP and MAG also showed signifi-
cant decreases (partial R2 = 9%~39%; 
Supplementary file Table S4) along with the 
increase of age in the red methylation module. 
Additional pathway analyses showed that those 
myelin-related genes together with many other 
genes in the modules were enriched for several 
functional pathways including central nervous 
development, neurogenesis, and glia cell differen-
tiation, suggesting the potential of epigenetic reg-
ulations of these pathways in altering the 
oligodendrocyte differentiation and myelinations 
during ageing process [85].

Functional pathways related to oligodendrocyte 
development and differentiation were shared by 

both expression and methylation modules, leading 
to significant overlap between the modules. There 
was a significant proportion of CpGs 
(20.9 ~ 41.3%) located nearby TSS of expression 
module genes (<5kbp), mostly enriched in gene 
body and enhancer regions, suggesting the regula-
tion effect of those methylation module in expres-
sion modules [29]. In particular, by the association 
tests on the methylation and gene expression from 
the same subjects, we identified 25 ~ 47.8% of 
matched expression-methylation pairs mainly 
showing significant negative associations 
(Supplementary file 1, Table S5), including some 
oligodendrocyte highly associated genes MYRF, 
MAG and SOX10. Enrichment tests on neural- 
specific methylation patterns showed that both 
methylation modules were enriched for hypo- 
methylation in glia cells compared to neurons, 
and thereby potentially contributed to their asso-
ciated gene expression specificity in oligodendro-
cytes. These further evidence suggest epigenetic 
regulation on gene expression in oligodendrocytes 
to change myelination process. Genetics was also 
found to have large effects on both methylation 
and expression modules. A majority of module 
gene expressions were regulated by cis-eQTLs 
(74–95%) and a relative high proportion of CpGs 
(40.2 –54.5%) from both methylation modules 
were significantly regulated by cis-meQTLs. 
Especially, 35.7 ~ 46.2% meQTLs modifying over-
lap CpGs were also cis-eQTLs, indicating 
a pathology of genetic risks in regulating oligoden-
drocyte gene expression through epigenetics. This 
genetic, epigenetic and expression interplay is in 
line with our previous knowledge of both gene and 
environmental factors involved in the process of 
demyelination during ageing [86].

In addition, we found significant enrichment of 
cis-eQTLs in most of psychiatric disorders’ risk 
loci, which suggests shared genetics between risk 
for psychiatric disorders and regulating ageing 
process, which alters gene expression of oligoden-
drocytes, and partially reflect the similar decreases 
of myelination in both ageing and SZ patients. 
Previous studies have investigated different biolo-
gical ageing biomarkers (e.g., neuroimaging, epi-
genetics, and proteins) to estimate the biological 
age against chronological age and reported accel-
erated ageing process in psychiatric disorders, 
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although how the ageing process interacts with 
psychiatric diseases is still unclear [87–89]. 
A recent work on gene expression of post- 
mortem brain tissues estimated the ‘molecular 
age’ from the age-related genes and found older 
molecular brain ageing in severe mental illnesses 
including SZ and BIP [90]. Genetic variants related 
to the molecular age deviation were also associated 
with SZ and major depressive disorder diagnostics, 
suggesting the pleiotropic genetic effect for the 
ageing process and the diseases [91], which is in 
line with what we observed here.

To sum up, using a network analysis focused on 
DLPFC post-mortem tissues, we identified and 
replicated two expression and two methylation 
modules significantly associated with SZ. One 
pair of expression and methylation modules 
showed significant overlap in the genes which 
were specifically expressed in astrocyte and mainly 
involved in gliogenesis. Additional overlapped 
expression-methylation module pairs were also 
replicated in relation with ageing process with 
module genes mostly involved in oligodendrocyte 
development and myelination. Further examina-
tion of underlying QTLs showed the significant 
enrichment of eQTLs in most of psychiatric dis-
orders’ risk loci, but not for meQTLs, suggesting 
combinatorial effects of genetics and epigenetics in 
regulating gene expression in glia cells of psychia-
tric disorders. This work as proof-of-concept 
demonstrates the existence of coherence between 
gene expression and DNA methylation at the net-
work level, and provides support for the critical 
role of epigenetics in glial cell development and 
function during ageing process and psychosis 
development.

The findings of this study should be interpreted 
in consideration of several limitations. Firstly, the 
analysis was performed on the datasets from dif-
ferent studies of different cohorts. Tests on the 
associations between methylation and expression 
from the same cohorts are still waiting for more 
efforts in psychiatric genetics field. Although we 
tried to validate our findings in a study with both 
datasets, lower resolution of methylation array and 
missing of psychosis information limit our knowl-
edge of the broad relationship between two fea-
tures. Secondly, we have removed effects of some 
covariates (e.g. RNA quality, PMI, cell type and 

batch) prior network construction, but the mod-
ules may still be sensitive to the other factors (e.g. 
disease status and medication) and parameter set-
tings in the method (e.g. block size and power 
index). Although we validated the preservation of 
identified modules in several independent datasets, 
more experiments are needed to evaluate the mod-
ule robustness. Thirdly, genetic risk (eQTL and 
meQTL) were also discussed in the study, instead 
of computing eQTL from the data, we used the 
reports from public eQTL databases on RNAseq 
studies based on large sample size for eQTL detec-
tion. Although previous study has showed high 
overlap of RNAseq eQTLs with our microarray 
data [14], the results may still subject to the 
power and platform for eQTL detection.
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