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A B S T R A C T   

The strong association between lipoprotein (a) [Lp(a)] and atherosclerotic cardiovascular disease has led to 
considerations of Lp(a) being a potential target for mitigating residual cardiovascular risk. While approximately 
20 % of the population has an Lp(a) level greater than 50 mg/dL, there are no currently available pharmaco-
logical lipid-lowering therapies that have demonstrated substantial reduction in Lp(a). Novel therapies to lower 
Lp(a) include antisense oligonucleotides and small-interfering ribonucleic acid molecules and have shown 
promising results in phase 2 trials. Phase 3 trials are currently underway and will test the causal relationship 
between Lp(a) and ASCVD and whether lowering Lp(a) reduces cardiovascular outcomes. In this review, we 
summarize emerging insights related to Lp(a)’s role as a risk-enhancing factor for ASCVD, association with 
calcific aortic stenosis, effects of existing therapies on Lp(a) levels, and variations amongst patient populations. 
The evolving therapeutic landscape of emerging therapeutics is further discussed.   

1. Introduction 

Lipoprotein(a) [Lp(a)] has garnered significant interest within the 
cardiovascular community over the past several decades given its as-
sociation with atherosclerotic cardiovascular disease (ASCVD). The 
recent emergence of potential therapeutics targeting Lp(a) have brought 
this biomarker further into the limelight [1]. Approximately 14–20 % of 
the population has an Lp(a) level greater than 50 mg/dL [2,3]. While the 
lowering of low-density lipoprotein cholesterol (LDL-C) has traditionally 
been the predominant focus for ASCVD risk reduction, several studies 
have underscored the residual cardiovascular risk that remains despite 
adequate control of other risk factors [4,5]. Therefore, novel therapeutic 
targets are needed to address the pressing challenge of this residual risk 
[6]. 

In this review, we summarize emerging insights related to Lp(a) 
including its unique atherogenic structure, role as a risk-enhancing 
factor for ASCVD, association with calcific aortic stenosis, and varia-
tion amongst patient populations. The existing lipid-lowering therapies 
and effects on Lp(a) and the emerging therapeutics landscape of phar-
macological therapies for lowering Lp(a) that are in various phases of 
clinical trials are also reviewed. 

2. Unique structure of Lp(a) and association with ASCVD events 

Similar to LDL-C, Lp(a) contains a core of triglycerides and choles-
terol esters surrounded by an outer membrane of phospholipids and an 
apolipoprotein-B100 (apo-B100) component [7]. The unique properties 
of Lp(a) are related to its apolipoprotein(a) [apo(a)] portion which is 
covalently linked by a disulfide bond to apo-B100 [7]. Plasma Lp(a) 
concentration is largely genetically determined by the LPA gene which 
encodes apo(a) and is comprised of repeating kringle domains with a 
variable number of repeats in the kringle IV type 2 (KIV-2) domain. This 
copy number variation affects the size of the apo(a) protein, leading to 
substantial size heterogeneity, with an inverse correlation between the 
number of KIV-2 repeats and Lp(a) levels [8]. Lp(a) can be measured 
either in mass units (mg/dL) or in molar units (nmol/L) with differences 
in standardization across assays [9]. 

Proposed mechanisms for the role of Lp(a) in the mediation of 
ASCVD include a contribution to atherosclerosis through the lipoprotein 
moiety and a potential contribution to thrombosis through the apo(a) 
moiety which bears structural similarities to plasminogen [10]. Lp(a) 
may have other potential prothrombotic actions by upregulating pro-
teins that inhibit fibrinolysis and inactivate tissue factor pathway 
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inhibitor thereby promoting blood coagulation [11,12]. Finally, apo(a) 
contains binding sites for oxidized phospholipids that can potentially 
trigger inflammation and endothelial dysfunction which further poten-
tiate the atherogenicity of Lp(a) [13]. Evidence supporting the causal 
relationship between elevated Lp(a) and ASCVD originates from genetic 
studies. In a Mendelian randomization study of individuals from 
Copenhagen, a doubling of genetically elevated Lp(a) level was associ-
ated with a 22 % higher risk of myocardial infarction (MI) [14]. The 
proposed causal role of Lp(a) in coronary artery disease was later 
corroborated by several other genetic studies and large observational 
epidemiological studies demonstrating strong continuous association 
between Lp(a) and ASCVD [15–20]. The association between Lp(a) 
levels and several cardiovascular outcomes have been reported in recent 
years, with risk being greatest for MI and aortic valve stenosis (3 to 
4-fold increase in risk in Copenhagen General Population Study) as 
compared to 1.6-fold for ischemic stroke [14,21,22]. While Mendelian 
randomization studies have provided evidence for causality between 
elevated Lp(a) and ASCVD, randomized cardiovascular outcome trials 
are necessary to demonstrate that lowering Lp(a) reduces adverse car-
diovascular outcomes. 

3. Lp(a) as a risk enhancing factor for ASCVD 

While LDL-C has been the predominant focus for primary and sec-
ondary prevention of ASCVD to date, data support utilizing Lp(a) as a 
biomarker to enhance CVD risk prediction. In the JUPITER (Justification 
for the Use of Statins in Prevention: An Intervention Trial Evaluating 
Rosuvastatin) trial, Lp(a) was a significant determinant of residual risk 
in patients treated with potent statin therapy [5]. In a recent analysis of 
more than 400,000 participants from the United Kingdom (UK) Biobank, 
adding Lp(a) as a continuous variable to a prediction model of tradi-
tional CVD risk factors modestly improved discrimination and reclassi-
fication. A more sizeable improvement in reclassification was seen 
among the intermediate (5–7.49 %) 10-year ASCVD risk group [23]. 
This highlights that the incorporation of Lp(a) in this patient population 
may help guide treatment decisions. Furthermore, in this primary pre-
vention cohort, Lp(a) above 100 nmol/L accounted for 5.8 % of the 
composite CVD outcome, while Lp(a) above 175 nmol/L accounted for 3 
% [23]. These results are consistent with a prior analysis demonstrating 
improved CVD risk prediction with the addition of Lp(a) to the Reynolds 
Risk Score, particularly in intermediate-risk groups [24]. 

The utility of measuring Lp(a) was also seen in an analysis examining 
approximately 2000 participants from the Framingham Offspring study; 
in individuals with LDL-C ≥ 135 mg/dL, the added presence of Lp(a) ≥
100 nmol/L was associated with a 43 % increase in cardiovascular risk 
after adjusting for other key cardiovascular risk factors [25]. Moreover, 
the presence of high Lp(a) (≥100 nmol/L) with moderate LDL-C levels 
(135–159 mg/dL) yielded absolute risks equivalent to those with LDL-C 
≥ 160 mg/dL [25], a threshold cited by guidelines to consider earlier 
lipid-lowering therapy [26]. Similarly, in an analysis of participants 
from the Multi-Ethnic Study of Atherosclerosis (MESA), risk of coronary 
heart disease (CHD) events was increased with elevated Lp(a) (≥ 50 
mg/dL) regardless of baseline LDL-C [27]. While most of the afore-
mentioned studies were conducted in primary prevention cohorts, Lp(a) 
has also been shown to be a strong prognostic biomarker in secondary 
prevention with associations with future coronary events in those with 
known CHD [28]. 

Elevated Lp(a) may be a strong marker of risk when there is signif-
icant atherosclerosis as demonstrated by coronary artery calcium (CAC) 
score. In an analysis of the MESA and Dallas Heart Study, elevated Lp(a) 
and CAC score were independently associated with ASCVD risk. How-
ever, there was an additive joint association between Lp(a) and CAC 
with participants with elevated Lp(a) and CAC ≥100 having the highest 
risk (HR 4.71; 95 % CI 3.01–7.40) for ASCVD [29]. These findings un-
derscore the importance of aggressive risk factor and lifestyle modifi-
cations to reduce ASCVD risk in patients with concurrent Lp(a) and CAC 

elevation. Whether or not Lp(a) has an impact on CAC is still uncertain. 
One analysis from the Heinz Nixdorf Recall study suggested Lp(a) to be a 
causal risk factor for CAC by demonstrating a significant association 
between a single nucleotide polymorphism at the Lp(a) locus and CAC 
[30]. However, more recent data from MESA demonstrated that Lp(a) 
was not associated with baseline CAC volume or density and was only 
modestly associated with volume progression [31]. Apart from CAC, 
advanced plaque composition assessment by coronary computed to-
mography angiography (CCTA) has shown that among patients with 
advanced stable CAD, Lp(a) is associated with accelerated progression of 
low-attenuation plaque (a quantitative marker of necrotic core and high 
risk plaque) [32]. This progression of vulnerable plaque phenotypes may 
provide an explanation for the association between high Lp(a) and re-
sidual risk of atherosclerotic events, further substantiating the impor-
tance of Lp(a) as a treatment target [32]. 

3.1. Guideline recommendations related to Lp(a) 

Despite the available evidence indicating the utility of Lp(a) in risk 
stratification, the majority of guidelines and scientific statements do not 
yet support widespread screening for elevation of Lp(a) (Table 1). The 
2018 American College of Cardiology/American Heart Association 
Cholesterol guidelines list Lp(a) ≥ 50 mg/dL or 125 nmol/L as a risk 
enhancing factor [26]. The 2019 National Lipid Association scientific 
statement on Lp(a) has more specific indications where measurement of 
Lp(a) is or may be reasonable, as summarized in Table 1 [33]. The 2019 
European Atherosclerosis Society/European Society of Cardiology 
guidelines are the first to recommend measurement of Lp(a) measure-
ment at least once in each adult’s lifetime to identify those with very 
high inherited levels [34]. In contrast, the HEART UK Consensus state-
ment from 2019 advocated for measurement of Lp(a) in a targeted 
population and to manage Lp(a) associated risk in those with levels > 90 
nmol/L [35]. The stated rationale in the UK statement is that although 
the European guidelines aim to identify those with Lp(a) >430 nmol/L, 
the risk conferred by Lp(a) occurs at a much lower Lp(a) threshold. The 
2021 Canadian Guidelines, on the other hand, concur with the European 
guidelines in recommending a one-time screening of Lp(a) in all adults 
[36]. At this time, repeated measurements of Lp(a) is not currently 
recommended as the clinical value of serial measurements has not been 
established, and current evidence suggests Lp(a) levels are relatively 
stable given their predominant genetic basis [10]. 

4. Lp(a) and calcific aortic stenosis 

Calcific aortic valve stenosis (AS) is a common valvular disease with 
increasing prevalence with advanced age [37]. The pathophysiology 
leading to the development of AS is complex, resulting from the inter-
play of endothelial dysfunction, inflammation, and lipoprotein oxida-
tion leading to aortic valve calcification as well as additional risk factors 
such as smoking and hypertension [38–40]. Lp(a) is thought to play a 
significant role in the development of AS, as a major lipoprotein carrier 
of the pro-inflammatory and pro-calcific oxidized phospholipids which 
can induce osteogenic differentiation of valvular interstitial cells [41, 
42]. Enzymes such as autotaxin have also been associated with calcific 
AS and concomitant elevations in Lp(a) and oxidized phospholipids 
strongly predict risk of calcific AS suggesting interconnected mecha-
nisms that require further investigation [43]. 

The association between Lp(a) and increased risk of calcific AS has 
been captured by genome wide association studies, including evidence 
that genetic variations in the LPA locus, the predominant determinant of 
Lp(a) levels, are associated with aortic valve calcification [44]. In the 
EPIC–Norfolk Study which evaluated the association between genetic 
variants, Lp(a) levels and AS development, Lp(a) > 50 mg/dL was 
associated with an increased risk of developing AS (HR 1.98 
[1.25–3.09]), even after adjustment for traditional risk factors and LDL 
[45]. A Mendelian randomization study of Danish patients quantified 
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this risk demonstrating elevated Lp(a) and corresponding genotypes 
were associated with AS risk, with a threefold increase in risk among 
those with Lp(a) >90 mg/dl [22]. Further confirmation exists in 
case-control, and cross-sectional studies, including a large meta-analysis 
of eight studies with 52,931 participants demonstrating a nearly 2-fold 
increase in AS in those with Lp(a) >50 mg/dl [46]. 

Beyond increasing the likelihood of development of AS, Lp(a) may 
also predict disease progression and the risk of requiring aortic valve 
replacement (AVR). In a secondary analysis of the ASTRONOMER trial 
which evaluated the effects of intensive lipid lowering with rosuvastatin 
on AS progression, the top tertile of Lp(a) (>58.5 mg/dL) was associated 
with faster AS progression and a two-fold risk of AVR compared with the 
bottom two tertiles, independent of baseline AS severity [47]. Similarly, 
Zheng et al. demonstrated faster progression in aortic valve calcium 
score, as assessed via repeat CT calcium scoring scans, and faster he-
modynamic progression by echocardiography in patients with elevated 
Lp(a). After adjustment for baseline calcium score and traditional risk 
factors, the highest Lp(a) tertile was an independent predictor of 
annualized progression in AV calcium score (144 AU/year, 95 % CI 
52–239 AU/year) [27]. A secondary analysis of the FOURIER trial with 
PCSK9 inhibition found that elevated Lp(a) levels were associated with 
an increased risk of AS-related events (including AVR) [48]. On the 

other hand, in the Rotterdam study of 922 patients and mean follow up 
of 14.0 years, Lp(a) was strongly associated with development of AS, but 
not with AS progression [49]. Given these findings, there is significant 
interest in further understanding whether targeted Lp(a) reduction may 
impact the natural history of AS development and progression. Such 
interest is further amplified by data showing that treatment with evo-
locumab has been associated with a lower risk of AS-related events [48], 
whereas statin therapy has not demonstrated benefit in AS progression 
in clinical trials [50]. 

5. Lp(a) and the association of cerebrovascular and peripheral 
vascular outcomes 

While several large, population-based cohort studies have associated 
Lp(a) with ischemic stroke [51], the association has not been as 
consistent or robust as with MI [52]. In a prospective study of 5888 
adults older than age 65, men in the highest Lp(a) quintile had three 
times the unadjusted risk of stroke as compared with those in the lowest 
quintile though there was no significant association in women [53]. In 
contrast, in the Atherosclerosis Risk in Communities (ARIC) study, 
increased levels of Lp(a), particularly ≥ 300 µg/mL vs. < 100 µg/mL, 
were associated with ischemic stroke in Black (RR 1.84, 95 % CI 

Table 1 
Summary of major society guidelines and scientific statement recommendations on Lp(a) testing.   

When to measure Lp(a) Class/LOE Threshold of Lp(a) Class/ 
LOE 

2018 ACC/AHA Cholesterol 
Guidelines 

Family history of premature ASCVD or personal history 
of ASCVD 

N/A Lp(a) ≥ 50 mg/dL or 125 nmol/L as a risk 
enhancing factor that favor initiation of statin 
therapy in adults 40 to 75 years of age without 
diabetes mellitus and 10-year ASCVD risk of 7.5 %−

19.9 % 

N/A 

2019 NLA Scientific Statement 
on Use of Lipoprotein(a) in 
Clinical Practice 

Reasonable to refine risk assessment for ASCVD events 
in 1) individuals with a family history of first-degree 
relatives with premature ASCVD), 2) individuals with 
premature ASCVD in absence of traditional risk factors, 
3) primary severe hypercholesterolemia or suspected 
FH, 4) individuals at very-high-risk of ASCVD to better 
define those who are more likely to benefit from PCSK9 
inhibitor therapy. 

IIa/B-NR for all 
indications (except 
LOE C-LD for #1) 

When Lp(a) values are used for ASCVD risk 
assessment in Caucasian patients, it is reasonable to 
use measured values ≥ 50 mg/dL or 100 nmol/L as 
levels suggesting increased risk 

IIa/B- 
R 

May be reasonable for individuals with: 1) intermediate 
10-y ASCVD risk when decision to use a statin is 
uncertain, to improve risk stratification in primary 
prevention, 2) borderline 10-y ASCVD risk when the 
decision to use a statin is uncertain, to improve risk 
stratification in primary prevention, less-than- 
anticipated LDL-C lowering, despite good adherence to 
therapy, 4) a family history of elevated Lp(a), 5) calcific 
valvular aortic stenosis, 6) recurrent or progressive 
ASCVD despite optimal lipid-lowering therapy 

IIb for all 
B-NR for # 1 and 2 
C-LD for #3–6 

– – 

2019 ESC/EAS Guidelines for 
Management of 
Dyslipidemias 

Lp(a) measurement should be considered at least once in 
each adult person’s lifetime to identify those with very 
high inherited Lp(a) levels >180 mg/dL (>430 nmol/L) 
who may have a lifetime risk of ASCVD equivalent to the 
risk associated with heterozygous FH. 

IIa/C – – 

Lp(a) should be considered in selected patients with a 
family history of premature CVD, and for reclassification 
in people who are borderline between moderate and 
high risk 

IIa/C – – 

2019 HEART UK Consensus 
Statement on Lipoprotein(a) 

1) Personal or family history of premature 
atherosclerotic CV disease, first degree relatives 2) with 
raised serum Lp(a) levels (> 200 nmol/l), familial 
hypercholesterolemia or other genetic dyslipidemias, 3) 
calcified aortic valve stenosis, 4) a borderline increased 
(but <15 %) 10-year risk of CV event 

N/A CV risk conferred by Lp(a) is 32–90 nmol/L minor, 
90–200 nmol/L moderate, 200–400 nmol/l high, 
>400 nmol/l very high. 
The management of raised Lp(a) levels (>90 nmol/ 
L) should include reducing overall atherosclerotic 
risk, controlling hyperlipidemia, considering 
lipoprotein apheresis. 

N/A 

2021 Canadian Cardiovascular 
Society Guidelines for the 
Management of 
Dyslipidemia 

Once in patient’s lifetime, with initial screening. N/A Presence of risk modifier, including Lp(a) ≥ 50 mg/ 
dL (≥ 100 nmol/L), in intermediate-risk individuals 
favors the use of statins. 

N/A 

LOE=level of evidence, ACC=American College of Cardiology, AHA=American Heart Association, ASCVD=atherosclerotic cardiovascular disease, NLA=National 
Lipid Association, FH=familial hypercholesterolemia, ESC=European Society of Cardiology, EAS=European Atherosclerosis Society, CV=cardiovascular. 
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1.05–3.07) and White women (RR 2.42, 95 % CI 1.30–4.53) but not in 
men [54]. In a more contemporary analysis from the REGARDS (Reasons 
for Geographic and Racial Differences in Stroke) study, Lp(a) in the 
highest quartile was only weakly associated with ischemic stroke after 
adjustment (HR 1.45, 95 % CI 0.96–2.19) with notable racial differences 
[55]. 

The association of Lp(a) with peripheral arterial disease (PAD) is 
similarly not as robust. Smaller studies have demonstrated that Lp(a) is a 
potential risk factor for progression of PAD [56,57]. Furthermore, in the 
large prospective EPIC–Norfolk cohort, Lp(a) was associated with 
development of PAD (HR 1.37, 95 % CI 1.25–1.50) [58]. However, in a 
nested case-control study of 14,916 males, there was no difference in Lp 
(a) levels in those with vs. without incident PAD and no risk gradient 
when evaluating increasing quartiles of Lp(a) [59]. Studies in patients 
with established PAD have demonstrated that high Lp(a), particularly 
≥30 mg/dL, is associated with higher rates of lower limb peripheral 
revascularizations (HR 1.33; 95 % CI 1.06–1.66) though no differences 
were seen in risk of major adverse cardiovascular outcomes or mortality 
in this particular analysis [60]. Similarly, in a large retrospective study 
utilizing administrative data from a center in Paris, the 1-year incidence 
of major adverse limb events was 4.5 % in those with Lp(a) ≥134 mg/dL 
vs. 2.4 % in overall population [61]. Further large prospective ran-
domized controlled clinical trials will hopefully continue to explore the 
impact of Lp(a) on both the incidence and the progression of PAD. 

6. Lp(a) across patient populations 

6.1. Racial and ethnic differences 

Significant racial and ethnic differences exist in Lp(a) levels across 
the population. In an analysis from the Coronary Artery Risk Develop-
ment in Young Adults (CARDIA) study in 1994 of 4,125 young adults, 
Black participants had three-fold higher Lp(a) levels than White par-
ticipants [62]. More recent studies – including data from the National 
Health and Nutrition Examination Survey III, Dallas Heart Study, and 
the Atherosclerosis Risk in Communities Study – also report higher 
median Lp(a) among Black participants [3,63,64]. Findings from the 
Mediators of Atherosclerosis in South Asians Living in America (MA-
SALA) cohort found that median Lp(a) level in South Asian participants 
was lower than Black participants but higher than other ethnic groups 
including White, Hispanic, and Chinese participants [65]. Differences in 
Lp(a) concentrations are likely related to differences in Lp(a) isoform 
size that occur due to variations in kringle copy numbers. Importantly, 
however, a study from INTERHEART demonstrated that the risk of MI 
increased similarly with increasing Lp(a) concentrations across multiple 
ethnic groups, independent of Lp(a) isoform size [66]. There are also 
other genetic variants that likely contribute to differences across eth-
nicities with variations in the promoter region of the apo (a) gene and 
other single nucleotide polymorphisms [67,68]. 

A contemporary study compiling data from over 450,000 partici-
pants of the UK Biobank revealed that while there are substantial dif-
ferences in Lp(a) concentrates according to race and ethnic background, 
hazard ratio for ASCVD per 50 nmol/L increase in Lp(a) was similar 
across racial groups [69]. Likewise, in data from MESA, Lp(a) concen-
trations were continuously associated with CHD risk in both Black and 
White participants [70]. In another analysis from MESA, the conven-
tional 30 mg/dL Lp(a) cutoff was associated with aortic valve calcifi-
cations in White participants but was only borderline significant in Black 
participants [71]. Further data is needed to best elucidate the interplay 
between ethnic heritage, which may reflect genetic variance, and the 
effect of Lp(a) on ASCVD. 

6.2. Sex differences 

Studies have demonstrated notable sex differences in Lp(a) concen-
tration. Specifically, in an analysis of 126,634 participants from 36 

prospective studies, women had 12 % higher Lp(a) concentrations 
compared to men. In this analysis, there was a continuous association of 
Lp(a) with risk of CHD that did not vary by sex [19]. However, other 
studies highlight the complexity of the relationship between Lp(a) and 
CVD in women. In an analysis of three cohorts of women (Women’s 
Health Study, Women’s Health Initiative Observational Study, and the 
JUPITER trial), increased CVD risk among those with elevated Lp(a) was 
only present among women with total cholesterol > 220 mg/dL while 
such an interaction with total cholesterol did not exist in men [72]. 
Further study of the differential association of Lp(a) on ASCVD outcomes 
by sex is necessary to better elucidate this important relationship. 

Differences based on the use of hormone replacement therapy and 
menopausal status for Lp(a) are described – although the data are con-
flicting. In a study from 2010, in women without hormone replacement 
therapy, those in the highest quintile of Lp(a) were 1.77 times more 
likely to develop cardiovascular events compared to the lowest quintile. 
In contrast, the relationship of Lp(a) and CVD was no longer statistically 
significant in those taking hormone replacement therapy [73]. The 
mechanism is unclear although hypothesized that the direct biological 
effects of estrogen may induce increased uptake of Lp(a) by the LDL 
receptor and reduce Lp(a) production by the liver [74]. Conversely, a 
study of postmenopausal patients from the UK Biobank showed no evi-
dence of lower Lp(a)-associated risk in those using hormone replace-
ment therapy as compared to nonusers [75]. Differences between these 
two studies may be due to variations in hormonal use patterns over time. 
Furthermore, other studies do demonstrate changes in Lp(a) concen-
trations based on menopausal status [76]. In a large systematic review 
and meta-analysis that combined seventeen studies, Lp(a) concentra-
tions were lower in premenopausal than in postmenopausal women 
[76]. Similarly, in data from 37,545 women from the Copenhagen 
General Population study, Lp(a) levels were 27 % higher after meno-
pause, with women having an increase in levels around age 50 [77]. 
While there were differences in Lp(a) levels based on sex, elevated Lp(a) 
was associated with increased risk of MI, ischemic heart disease, and 
aortic valve stenosis in sex-stratified multivariable adjusted models 
[77]. 

6.3. Lp(a) and inflammation 

Prior data has implicated that inflammation may play an important 
role for Lp(a) in the mediation of CVD as oxidized phospholipids are a 
large contributor to pro-inflammatory effects and resultant atheroge-
nicity [13]. Mechanistically, patients with high Lp(a) exhibit an 
enhanced arterial wall inflammation and macrophage activation and 
this effect can be removed by inactivated oxidized phospholipids on Lp 
(a) [13]. In an exploratory post hoc analysis of the Assessment of Clinical 
Effects of Cholesteryl Ester Transfer Protein Inhibition with Evacetrapib 
in Patients at a High Risk for Vascular Outcomes (ACCELERATE) trial, 
which included patients with established vascular disease, increasing 
quintiles of Lp(a) were significantly associated with greater risks of 
death, MI, and stroke in those with high-sensitivity C-reactive protein 
(hsCRP) greater than 2 mg/L, but not in those with hsCRP less than 2 
mg/L [78]. This is consistent with analyses of a primary prevention 
population from the MESA study that demonstrated the association of 
elevated Lp(a) with a significantly higher risk of incident CVD events 
was only present among those with elevated hsCRP (>2 mg/L) (HR 1.62, 
95 %CI 1.25–2.10) [79]. 

Other reports have demonstrated that Lp(a)-associated ASCVD risk is 
modulated by the presence of a proinflammatory IL-1 genotype; patients 
that carry this pro-inflammatory IL-1 genotype (presumed to be asso-
ciated with higher rates of inflammation) and Lp(a) above the median 
had worse event-free survival compared to IL-1 genotype negative pa-
tients (HR 3.59, 95 % CI 1.07–12.03) [80]. While these findings pose the 
question of whether individuals with certain markers of inflammation 
may derive more benefit from future Lp(a)-lowering therapies, further 
mechanistic studies are still needed. 
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Lp(a) is also linked to IL-6, with the LPA gene having several 
response elements to IL-6 which can work to promote apo(a) production 
[81]. There are several lines of evidence that highlight the role of IL-6. 
For instance, the IL-6 monoclonal antibody tocilizumab inhibits IL-6 
induced expression of LPA in human hepatocytes in vitro (both at the 
mRNA and protein level) and can inhibit IL-6 response elements in the 
promoter region of the LPA gene [82]. These results appear specific to 
IL-6 as prior studies have shown that TNF inhibition does not signifi-
cantly influence Lp(a) levels [82]. Post-hoc analyses of randomized 
controlled trials investigating IL-6 inhibitors, such as tocilizumab or 
sarilumab, and more recently ziltivekimab, demonstrate a reduction in 
Lp(a) between 16 and 41 % though most did not investigate relationship 
with major adverse cardiovascular events [83–85]. Therefore, inhibition 
of the IL-6 signaling pathway may be a potential therapeutic strategy to 
target Lp(a)-associated ASCVD risk, but trials designed to test this 
question are still pending. 

7. Existing medications and effects on Lp(a) 

7.1. Statins 

Studies have demonstrated conflicting findings regarding the extent 
to which statin therapy affects Lp(a) levels. In an older meta-analysis of 
randomized controlled trials of atorvastatin through 2011, results 
demonstrated lower Lp(a) concentrations in the atorvastatin than con-
trol group; however, there was significant trial heterogeneity [86]. In 
contrast, in a meta-analysis of 5,256 patients from six randomized trials, 
there was an increase in Lp(a) from baseline ranging from 11.6 % to 20.4 
% in the pravastatin group and 18.7 % to 24.2 % in the atorvastatin 
group [87]. This specific study used an inclusion criterion of the same Lp 
(a) assay resulting in a smaller number of trials being included; however, 
the homogeneity in Lp(a) assays may have led to more accurate results. 

Given the various forms and dosages of statins used in these studies 
which could result in inconsistency, a larger pairwise and a network 
meta-analysis of 23,065 participants was performed and demonstrated 
that statins did not have a clinically significant effect on Lp(a) concen-
trations [88]. Relatedly, another more contemporary systematic review 
and meta-analysis specifically examined the effect of statins as 
compared to placebo on levels of Lp(a) and observed little to no differ-
ences in Lp(a) level [89]. The study had high heterogeneity and since not 
all analyses were pre-specified, the results should be considered 
explorative. Overall, while statins may possibly lead to minor increases 
in Lp(a), this should not impact the utilization of these agents for ASCVD 
risk reduction. 

7.2. Ezetimibe 

In a meta-analysis of 10 randomized placebo-controlled clinical tri-
als, ezetimibe therapy did not have effect on plasma Lp(a) concentra-
tion. There was no difference based on ezetimibe monotherapy or 
addition of ezetimibe to statin therapy [90]. 

7.3. Niacin 

Niacin has previously been suggested to be a therapy that can lower 
Lp(a) by ≤ 30 %; and can downregulate the transcriptional activity of 
the LPA promoter [91]. In the HPS2-THRIVE trial of patients with 
vascular disease randomized to 2 g of extended-release niacin and 40 mg 
of laropiprant or matching placebo, there was an absolute difference of 
− 9.5 (p = 0.006) in Lp(a) levels; however, the trial did not show any 
benefit in regard to cardiovascular outcomes [92] and thus niacin is not 
considered to be a first-line treatment strategy for high Lp(a). 

7.4. PCSK9i 

Out of all current lipid lowering therapies, proprotein convertase 

subtilisin/kexin type 9 (PCSKK9) inhibitors provide the greatest reduc-
tion in Lp(a), approximately 20–25 % [93]; however, whether this de-
gree of Lp(a) reduction leads to direct cardiovascular benefit beyond 
that attributable to LDL-C lowering is not entirely clear. 

In the LAPLACE-TIMI 57 trial of 631 patients, evolocumab reduced 
Lp(a) by 18 % with low dose and 32 % with high dose at 12 weeks. 
Patients with higher levels of Lp(a) at baseline had larger absolute re-
ductions but smaller percent reductions in Lp(a) [94]. In the FOURIER 
(Further Cardiovascular Outcomes Research with PCSK9 Inhibition in 
Subjects with Elevated Risk) trial, evolocumab significantly reduced Lp 
(a) by a median of 26.9 %. Patients with higher baseline Lp(a) experi-
enced greater absolute reduction in Lp(a) and derived greater ASCVD 
reduction from PCSK9 inhibition. Evolocumab reduced risk of CHD 
death, MI, and urgent revascularization by 23 % in pts with baseline Lp 
(a) > median vs 7 % in those Lp(a) <median [95]. In the ODYSSEY 
outcomes trial, which randomized patients on high-intensity statin 
therapy to alirocumab or placebo, alirocumab reduced Lp(a) by 5 mg/dL 
and this reduction of Lp(a) independently predicted lower risk of major 
adverse cardiovascular events (MACE) [96]. In a post-hoc analysis of 
this trial that evaluated the benefit of adding a PCSK9 inhibitor in pa-
tients with LDL-C near 70 mg/dL, alirocumab provided incremental 
benefit only when Lp(a) was at least mildly elevated [97]. 

Ranges of Lp(a) lowering with inclisran, a small interfering RNA 
against PCSK9, are similar. In the ORION-1 (Trial to Evaluate the Effect 
of ALN-PCSSC Treatment on Low Density Lipoprotein Cholesterol) trial, 
median Lp(a) levels decreased by 15–25 % from baseline in the single 
and 2-dose groups but did not reach statistical significance in any group 
as there was significant interindividual variation. 90 % of participants in 
the 300-mg two-dose group had lower Lp(a), and the 26 % median 
reduction at day 180 was similar to other PCSK9i trials [98]. In the 
ORION-11 primary prevention trial, the placebo-corrected percent 
reduction in Lp(a) levels from baseline to day 450 was 28.5 % with 
twice-yearly dosing of inclisran [99]. 

The exact mechanisms by which PCSK9 inhibition leads to a reduc-
tion in Lp(a) is not known but recent evidence suggest that they may 
enhance Lp(a) clearance and reduce production [100–102]. PCSK9 in-
hibitors do not significantly alter inflammation along the hsCRP 
pathway in patients with elevated Lp(a); in a randomized study of pa-
tients receiving evolocumab and median baseline Lp(a) of 200 nmol/L, 
arterial wall inflammation was not altered and PCSK9 inhibition did not 
lead to a significant reduction in hsCRP [103]. It is important to note 
that Lp(a) was only reduced by 14 % in this study, and whether a more 
significant reduction in Lp(a) would alter the inflammatory response is 
currently unknown. 

7.5. Bempedoic acid 

Bempedoic acid, an ATP citrate lyase inhibitor, has not been shown 
to reduce Lp(a). In a secondary analysis of the CLEAR Harmony trial that 
randomized patients with ASCVD and/or familial hypercholesterolemia 
on maximally tolerated statin therapy to bempedoic acid to placebo, 
placebo-corrected median percent change in Lp(a) from baseline to 12 
weeks was only 2.4 % [104]. 

7.6. Antiplatelet agents 

Since Lp(a) may play a role in thrombosis and fibrinolysis [11,12], 
there have been proposed hypotheses that aspirin may benefit in-
dividuals with elevated Lp(a). In the Women’s Health Study which 
compared aspirin 100 mg every other day with placebo in healthy 
women older than age 45, women with elevated Lp(a) (>44 mg/dL) 
were 1.47 times more likely to develop CVD events than women with 
low Lp(a) [105]. Notably, in women carrying the genetic variant asso-
ciated with high Lp(a), there was a twofold reduction in CVD risk in 
those randomized to aspirin. This was further validated in an analysis of 
the ASPREE (ASPirin in Reducing Events in the Elderly) trial in which 
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participants who carried genotypes associated with elevated Lp(a), 
particularly rs3798220-C carriers, were found to have a reduction in 
MACE by 11.4 per 1000 person years with aspirin as compared to 1.7 
events per 1000 person-years amongst the entire population of partici-
pants [106]. In a recent propensity-matched analysis from MESA, 
aspirin use was associated with a reduction in coronary heart disease 
events in those with Lp(a) > 50 mg/dL (HR 0.54; 95 %CI 0.32–0.94). 
Furthermore, those with aspirin use and Lp(a) > 50 mg/dL had similar 
event rates as participants with Lp(a) ≤ 50 mg/dL, while participants 
with Lp(a) > 50 mg/dL and no aspirin use had the highest event rates 
[107]. These studies suggest that aspirin may be a potential therapeutic 
agent for individuals with elevated Lp(a) for primary prevention, but 
further studies with larger sample sizes and data from randomized trials 
are needed. 

There are limited investigations regarding other antiplatelet agents 
and their relationship with Lp(a). Notably, in a recent analysis from the 
PEGASUS-TIMI 54 trial that randomized patients 1 to 3 years after MI, 
the effect of prolonged or intensified DAPT was investigated as a func-
tion of baseline Lp(a) concentration. Patients with high Lp(a) random-
ized to placebo had 48 % greater risk of MACE compared with patients 
with low Lp(a), defined as <200 nmol/L (HR 1.48, p = 0.036). In those 
randomized to ticagrelor, the risk due to having high Lp(a) was atten-
uated (HR 1.18, p = 0.27), suggesting that ticagrelor may partially 
mitigate risk conferred by higher Lp(a), though these results are only 
hypothesis generating [108]. Clinical trials of standard vs. prolonged 
DAPT in patients with acute coronary syndrome and elevated Lp(a) 
undergoing PCI are needed to further assess whether there is improve-
ment in outcomes [109]. 

8. Lipoprotein apheresis 

Lipoprotein apheresis is effective in reducing Lp(a) but burdensome 
and requires weekly or biweekly sessions ranging from two to four hours 
in duration [110,111], and it is infrequently used to treat isolated 
elevation in Lp(a) [110]. In a prospective study in Germany, lipoprotein 
apheresis reduced Lp(a) by 68.1 % on average [112]. However, in other 
studies when averaged over time, the reduction in Lp(a) achieved by 
apheresis is only approximately 30 % [110]. While there are several 
observational studies comparing cardiovascular event rates in patient’s 
pre-apheresis to post, data from randomized clinical trials are still 
pending. In the German Lipoprotein Apheresis Registry, there was a 90 
% decrease in major adverse coronary events with lipoprotein apheresis 
which reduced both LDL-C and Lp(a) levels [113]. In another prospec-
tive observational multicenter study, mean annual rates for major 
adverse coronary events declined from 0.41 for 2 years pre-apheresis to 
0.09 for 2 years post-apheresis [114]. The ongoing randomized Multi-
SELECt trial (Effect of Lipoprotein(a) Elimination by Lipoprotein 
Apheresis on Cardiovascular Outcomes) is investigating the effects of Lp 
(a) reduction by apheresis on CV outcomes (NCT02791802) [115]. 

9. Lifestyle modifications 

Lifestyle modifications are a core component of ASCVD risk modi-
fication; however, most dietary changes display minimal impact on Lp 
(a) levels. Replacement of saturated fat with carbohydrates or unsatu-
rated fats was studied in the two DELTA trials (Dietary Effects in Lipo-
proteins and Thrombogenic Activity) which demonstrated opposite 
changes in Lp(a) and LDL-C in response to dietary SFA replacement, Lp 
(a) increased by approximately 15 % whereas LDL-C was reduced by 
7–11 % as predicted [116–118]. Furthermore, the Omni Heart ran-
domized, controlled feeding study assessed the effect of the DASH diet 
(Dietary Approaches to Stop Hypertension) with differing macronutrient 
compositions, including high carbohydrate diet, high-protein diet, and 
diet high in unsaturated fat, and found that Lp(a) increased by 8–18 % 
with all three diets; the high-protein diet led to the largest increase in Lp 
(a) and the high-unsaturated fat diet led to the least [119]. Studies 

examining the effect of low-fat, high carbohydrate diets vs. high-fat, low 
carbohydrate diet have shown increases in Lp(a) with low-fat, high 
carbohydrate diet [120]. 

Similar to diet, the role of physical activity has been examined after 
an early report suggested a possible benefit in healthy young to middle- 
aged men after an 8-day cross-country skiing regimen [121]. However, 
when examined further in various cohorts, Lp(a) did not change 
consistently with exercise [122,123]. Although there may be unique 
populations (such as diabetic or younger) based on the available data 
[124], the totality of the data is that modulation of physical activity does 
not largely impact Lp(a) levels [125]. Overall, while lifestyle modifi-
cations continue to be an important pillar of ASCVD prevention, there is 
no evidence to suggest a role in lowering Lp(a). 

10. Therapeutics in clinical trials 

10.1. Antisense oligonucleotides 

Emerging therapies to lower Lp(a) focus on inhibiting apo(a) syn-
thesis (Fig. 1). Antisense oligonucleotides are a short single-stranded 
synthetic analogue of nucleic acids which are targeted to bind 
messenger RNA in a sequence-specific manner via Watson-Crik base-pair 
interaction, ultimately inhibiting the synthesis of the target protein in a 
highly specific manner, making it an ideal technology for Lp(a) lowering 
[126]. In phase I and II studies, anti-sense oligonucleotides, like 
IONIS-APO(a)-LRx, effectively decreased Lp(a) without serious adverse 
effects [127,128]. In the phase 1 trial, this pharmaceutical agent 
decreased plasma Lp(a) by 40–78 %. A more targeted version of this 
antisense oligonucleotide, pelacarsen, is a N-acetylgalactosamine (Gal-
Nac), which is a conjugated version of IONAIS-APO(a)-LRx [129], pre-
viously known as AKCEA-APO(a)-L(Rx). The GalNac addition allows for 
specific targeting to the hepatocyte. Trials have shown that this conju-
gated version is roughly 30 times more potent than the original version, 
with mean percentage reduction in Lp(a) of 92.4 % in a phase 1/2 
investigation [128]. A randomized controlled trial demonstrated that 
pelacarsen reduced Lp(a) in a dose dependent manner in patients with 
established CVD and elevated Lp(a) (>60 mg/dL, 150 nmol/L), with 
mean percent decreases ranging from 35 to 80 % [130]. At the highest 
cumulative dose regimen, 98 % of patients achieved an Lp(a) level of 
lower than 50 mg/dL or 125 nmol/L. Pelacarsen was well-tolerated with 
the most common adverse events reported as mild injection-site re-
actions [130]. 

The Lp(a) HORIZON trial (NCT 04023552) is a current phase 3 
cardiovascular outcomes trial investigating pelacarsen, with estimated 
study completion in 2025. The trial enrolled patients with established 
ASCVD defined as a history of MI, ischemic stroke, or symptomatic pe-
ripheral arterial disease who are already on LDL-C lowering therapy and 
have an Lp(a) > 70 mg/dL (175 nmol/L). Patients were randomized to 
80 mg pelacarsen subcutaneously monthly versus placebo and the pri-
mary outcome is MACE which consists of cardiovascular death, nonfatal 
MI, nonfatal stroke, and urgent coronary revascularization. Addition-
ally, there is another planned phase 3 trial of pelacarsen in patients with 
Lp(a) >125 and mild or moderate calcific aortic stenosis (NCT 
05646381). 

10.2. Small-interfering RNA 

Olpasiran is a GalNac-conjugated small-interfering ribonucleic acid 
(siRNA) molecule that degrades apo(a) mRNA and prevents translation 
of the protein [131]. siRNAs function by using the RNA-induced 
silencing complex (RISC) to cleave target mRNA [131]. Olpasiran was 
studied in a phase 1 trial that enrolled predominately Japanese partic-
ipants; mean percent decreases in Lp(a) ranged from 56 % to 99 % with 
no serious adverse events [132]. The randomized, double-blind, place-
bo-controlled phase 2 trial, OCEAN(a)-DOSE trial, enrolled patients with 
established ASCVD and Lp(a) >150 nmol/L and randomized patients to 
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one of four doses of olpasiran – 10 mg every 12 weeks, 75 mg every 12 
weeks, 225 mg every 12 weeks, or 225 mg every 24 weeks or matching 
placebo. The primary endpoint was percent change in Lp(a) concen-
tration from baseline at week 36. The trial demonstrated significant 
reduction in Lp(a) in a dose dependent manner; a 97.4 % reduction was 
seen with the 75 mg dose [133,134]. The percent lowering of Lp(a) 
concentration was consistent across prespecified subgroups including 
LDL-C concentrations. The phase 3 OCEAN(a)-Outcomes trial is 
currently enrolling patients with Lp(a) ≥ 200 nmol/L and history of 
ASCVD [defined as MI and/or coronary revascularization with percu-
taneous coronary intervention (PCI) and at least 1 additional risk factor 
(which includes age greater than 65 years, diabetes mellitus, ischemic 
stroke, PAD, and multivessel PCI)] (NCT 05581303). The primary 
outcome is time to CHD death, MI, or urgent coronary revascularization. 

Another siRNA in development is SLN360, also covalently linked to a 
GALNAc moiety, thereby leading to selective uptake in hepatocytes 
[135]. The phase 1 APOLLO trial of 32 participants was well tolerated 
after a single dose and led to a dose-dependent reduction in Lp(a) con-
centration persisting up to 150 days [136]. There is another phase 1 trial 
of SLN360 that has been completed in patients with Lp(a) >125 nmol/L 
and high ASCVD risk with results pending (NCT 04606602). Further-
more, a phase 2 trial of SLN360 targeting enrollment of 160 participants 
in this same population is ongoing (NCT 05537571). Lastly, a novel 
therapeutic siRNA for Lp(a) lowering is LY3819469, now named lep-
odisiran - a GALNAc-conjugated mixed 2-I-me, 2-fluoro and unmodified 
dicer siRNA. A phase 1 study has been completed though results are still 
pending (NCT 04914546). There is also an ongoing phase 2 trial that is 
expected to be completed by October 2024 (NCT 05565742). 

10.3. Oral agents 

Muvalaplin is an orally administered medication that inhibits Lp(a) 
formation by disrupting the noncovalent interaction between apo(a) and 
apoB100, preventing the disulfide bond and Lp(a) formation. In a phase 
1 trial of 114 participants at one site in the Netherlands, muvalaplin was 
well tolerated. Maximum placebo adjusted Lp(a) reduction was 63–65 % 
[137]. 

11. Future directions 

As new therapeutic agents for Lp(a) lowering are being investigated, 
it is crucial to raise awareness amongst healthcare providers of the 
utility of this biomarker given that Lp(a) testing remains relatively 

infrequent across the United States [138]. Further work on how to best 
incorporate Lp(a) into commonly used prediction and risk stratification 
tools will be important to guide clinicians on therapeutic decision 
making. 

Results of phase 3 cardiovascular outcome trials of Lp(a) lowering 
agents are eagerly awaited. Given the global burden of cardiovascular 
disease and the residual CV risk that exists despite control of other risk 
factors, new therapeutic agents have the potential to be pivotal in CV 
risk reduction (Fig. 1). A key question is how much Lp(a) lowering is 
required to decrease CHD outcomes. Data from Mendelian randomiza-
tion studies suggest that Lp(a) lowering by 65.7 mg/dL is required to 
attain the same effect on clinical outcomes as a reduction in LDL-C by 
38.67 mg/dL – a reduction that has been shown to lower cardiovascular 
risk by 20–25 % [139]. This is consistent with data from the Copenhagen 
General population study which estimated that to achieve 20 and 40 % 
risk reduction in MACE for those with a history of ASCVD, plasma Lp(a) 
would need to be lowered by 50 mg/dL and 99 mg/dL for 5 years, 
respectively [140]. Thus, it is likely that large absolute reductions in Lp 
(a) will be necessary to show significant cardiovascular benefit. 

Current considerations for ongoing investigation include the optimal 
recruitment criteria for enrollment in trials (Table 2). While current 
trials are focused on high-risk secondary prevention populations, future 
studies will need to assess the potential role of Lp(a) lowering therapies 
in high-risk primary prevention populations, and possible patients with 
lower Lp(a) thresholds than used in HORIZON or OCEAN(a) Outcomes. 
Ultimately, the results will shed light onto which patients will derive the 
most benefit with Lp(a) lowering. Another important consideration in Lp 
(a) lowering trials is to define what threshold of elevated Lp(a) to use for 
trial eligibility. Challenges include the absence of standardized assays, 
variable reporting according to mass and molar quantity, and no stan-
dardization of conversion factors. The threshold for enrollment in the Lp 
(a) HORIZON trial (NCT 04023552) is above 70 mg/dL (175 nmol/L) 
whereas the OCEAN(a)-Outcomes trial (NCT 05581303) requires a 
threshold of 200 nmol/L. In an observational cohort from the Mass 
General Brigham Lp(a) Registry resembling OCEAN(a)-Outcomes’ main 
enrolment criteria, the primary composite outcome occurred more 
frequently in those with Lp(a) ≥ 200 nmol/L (HR 1.3, 95 % CI 
1.09–1.53) [141]. These findings support the threshold of 200nmo/L for 
identifying patients who have a higher risk of various cardiovascular 
outcomes. Another noteworthy difference between these two trials is 
their respective clinical endpoints (Table 2). Namely, OCEAN(a)-Out-
comes’ primary outcome is a composite of CHD death, MI, or urgent 
revascularization and does not include ischemic stroke, an outcome 

Fig. 1. Summary of emerging Lp(a) therapeutics 
RNA=ribonucleic acid, mRNA=messenger RNA. 
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which has demonstrated inconsistent associations with Lp(a) levels [55] 
While current trials are focused on secondary prevention, future 

trials in primary prevention will be the next frontier but necessarily 
present unique challenges in terms of enrollment of larger populations 
and determination of ideal outcomes. Exploration of coronary athero-
sclerosis imaging – whether by AI based techniques or dedicated cardiac 
imaging – may be useful for selecting high risk populations who are 
more likely to benefit from Lp(a) therapies [142]. 
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Table 2 
Comparison between ongoing phase 3 cardiovascular outcomes trials.   

HORIZON (Pelacarsen) OCEAN(a)-Outcomes 
(Olpasiran) 

Sponsor 
(Phase) 

Novartis (P3) Amgen (P3) 

Study Design Randomized double-blind, 
placebo-controlled, multicenter 
trial 

Randomized double-blind, 
placebo-controlled, 
multicenter trial 

Population Age 18 to 80 years 
N = 7680 

Age 18 to 85 years 
N~6000 

Mechanism Antisense oligonucleotides 
(ASO) 

Small interfering RNA 
(siRNA) 

Intervention SC injection Q4 weeks SC injection Q12 weeks 
Key Inclusion 

Criteria 
Lp(a) ≥ 70 mg/dLCVD, as 
evidence by either:  
○ MI (≥ 3 months to ≤ 10 yrs)  
○ Ischemic stroke (≥ 3 months 

to ≤ 10 yrs)  
○ Symptomatic PAD 

Lp(a) > 200 nmol/LASCVD, 
as evidence by either:  
○ MI  
○ Coronary Revascularization 

with PCI + 1 additional risk 
factor 

Primary 
Endpoint 

Cardiovascular death, nonfatal 
MI, non-fatal stroke and urgent 
coronary revascularization 
requiring hospitalization (~4.25 
years) 

CHD death, MI, urgent 
coronary revascularization 

Status Enrollment completed Enrollment ongoing 

P3=phase 3, SC=subcutaneous, CVD=cardiovascular disease, MI=myocardial 
infarction, PAD=peripheral arterial disease, PCI=percutaneous coronary 
intervention. 
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