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Circular RNAs (circRNAs) are abundantly expressed in cancer. Their resistance to exonucleases enables them to have po-

tentially stable interactions with different types of biomolecules. Alternative splicing can create different circRNA isoforms

that have different sequences and unequal interaction potentials. The study of circRNA function thus requires knowledge

of complete circRNA sequences. Here we describe psirc, a method that can identify full-length circRNA isoforms and quan-

tify their expression levels from RNA sequencing data. We confirm the effectiveness and computational efficiency of psirc

using both simulated and actual experimental data. Applying psirc on transcriptome profiles from nasopharyngeal carci-

noma and normal nasopharynx samples, we discover and validate circRNA isoforms differentially expressed between

the two groups. Compared with the assumed circular isoforms derived from linear transcript annotations, some of the al-

ternatively spliced circular isoforms have 100 times higher expression and contain substantially fewer microRNA response

elements, showing the importance of quantifying full-length circRNA isoforms.

[Supplemental material is available for this article.]

Circular RNAs (circRNAs) are a class of single-stranded RNAs with
the 5′ and 3′ ends covalently linked (Jeck and Sharpless 2014;
Chen 2016; Li et al. 2018b). Although they have been known for
a long time (Hsu andCoca-Prados 1979;Nigro et al. 1991), research
on circRNAs has only been reinvigorated in recent years by the dis-
coveries that some circRNAs are highly abundant (Danan et al.
2012; Salzman et al. 2012) and conserved across species (Rybak-
Wolf et al. 2015) and have regulatory potentials by functioning
as microRNA (miRNA) sponges (Hansen et al. 2013; Memczak
et al. 2013). Several additional sequence- or structure-specific func-
tions of circRNAs have also been proposed (Chen 2016, 2020;
Greene et al. 2017; Li et al. 2018b; Liu et al. 2019).

A number of circRNAs are highly expressed in cancer or are
differentially expressed between cancer and normal tissues
(Kristensen et al. 2018). Some of them have been shown to
play oncogenic (Guarnerio et al. 2016) or tumor-suppressive (Li
et al. 2015) roles. Because circRNAs are relatively stable compared
with their linear counterparts owing to their resistance to RNA
exonuclease (Memczak et al. 2013), they can potentially be
used as diagnostic biomarkers of cancer (Qu et al. 2015; Vo
et al. 2019).

Currently, the standard way of detecting circRNAs genome-
wide is RNA sequencing (RNA-seq). Because circRNAs are not poly-
adenylated, protocols without poly(A) enrichment are used, such
as those that involve ribosomal RNA (rRNA) depletion. The result-
ing data contain a mixture of sequencing reads from both linear
and circular transcripts. A usual way to enrich for circRNA reads

is to apply RNase R treatment, which preferentially digests linear
transcripts (Suzuki et al. 2006; Memczak et al. 2013).

Regardless of the RNA-seq protocol, a common step in identi-
fying circRNAs from the sequencing data is to look for back-splic-
ing junctions (BSJs), that is, junctions that connect the 3′ end of a
downstream exon to the 5′ end of an upstream exon, which indi-
cate potential circularization events. Several computational meth-
ods have been proposed for identifying circRNAs from RNA-seq
data using this idea (Wang et al. 2010; Memczak et al. 2013; Hoff-
mann et al. 2014; Westholm et al. 2014; Zhang et al. 2014, 2016,
2020; Gao et al. 2015, 2018; Szabo et al. 2015; Cheng et al. 2016;
Chuang et al. 2016; Izuogu et al. 2016; Song et al. 2016; Li et al.
2017, 2018a; Metge et al. 2017; Wu et al. 2019; Zheng et al.
2019). Major differences among these methods include their
read alignment strategy, signals used to detect BSJs, dependency
on annotations of linear transcript isoforms, and ability to distin-
guish circRNAs from other events that may also create unexpected
junctions, such as lariats, fusion genes, and tandem duplications.
Thesemethods have been extensively compared using benchmark
data sets (Hansen et al. 2016; Zeng et al. 2017; Hansen 2018). The
identified circRNAs and their expression information are cataloged
in several databases (Glažar et al. 2014; Chen et al. 2016; Zhang
et al. 2016; Dong et al. 2018; Xia et al. 2018; Vo et al. 2019; Wu
et al. 2020).

Similar to linear transcripts, circular transcripts can also be al-
ternatively spliced to create different isoforms with the same BSJ
(Gao et al. 2016; Zhang et al. 2016). Fourmajor types of alternative
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splice site selection—namely, cassette exon, intron retention, al-
ternative 5′ splice site, and alternative 3′ splice site—can all be
found in circRNAs (Zhang et al. 2016). Because the function of a
circRNA depends on its exact sequence, for example, in determin-
ing the presence of miRNA response elements (MREs) and binding
sites of RNA-binding proteins, it is critical to resolve full-length
circRNA sequences and quantify their expression levels (Gao and
Zhao 2018).

Most existing circRNA detection methods can only identify
BSJs but cannot determine full-length circular transcripts. Some
other methods can either infer full-length circRNA isoforms or
quantify their expression levels, but not both. For example, given
a BSJ formed by two exons of a linear
transcript, Sailfish-cir (Li et al. 2017) as-
sumes these two exons and all other ex-
ons between them are present in the
circular transcript and performs quantifi-
cation of it. The only existing methods
that can both identify and quantify full-
length circRNA transcripts from standard
RNA-seq data are CIRI-full (Zheng et al.
2019) and CircAST (Wu et al. 2019).
CIRI-full detects mostly short transcripts
such as those shorter than the total
length of the two sequencing reads pro-
duced by paired-end sequencing from a
fragment (Zheng et al. 2019), whereas
longer transcripts could be missed.
CircAST works best with RNase R–treated
data, in which most linear transcripts
have been depleted, but may not work
well in normal RNA-seq data that contain
a large proportion of reads from linear
transcripts.

In this paper, we propose pseudo-
alignment identification of circRNAs
(psirc), the first complete pipeline that
can detect full-length circRNA transcript
isoforms of all lengths and quantify their
expression levels directly from standard
RNA-seq data. As shown in some previ-
ous studies (Li et al. 2018a; Asghari
et al. 2020), avoiding full sequence align-
ments by making use of k-mer matching
can reduce the running time, whereas
the alignment details are not crucial for
circRNA identification and quantifica-
tion, which motivated our use of pseu-
doalignment in the current study.

Results

The psirc method

The overall procedure of psirc consists of
three steps, namely, (1) identifying BSJs,
(2) determining potential full-length
transcript isoforms, and (3) quantifying
the expression levels of full-length tran-
script isoforms (Methods) (Fig. 1).

In the first step (Fig. 1A), two types
of signals are used to identify BSJs, name-

ly, junction-crossing reads and last–first exon read pairs. A junc-
tion-crossing read is a sequencing read split-pseudoaligned to
cover the 3′ most positions of a downstream exon and the 5′

most positions of an upstream exon. A last–first exon read pair is
a read pair, respectively, pseudoaligned to the first and last exons
of an annotated linear transcript in an outward-facing manner.
In the second step (Fig. 1B), all RNA-seq reads are pseudoaligned
to the linear transcripts that contain both the defining exons of
any BSJ. The potential full-length circRNA transcript isoforms are
then generated as those with all the involved forward- and back-
ward-splicing junctions supported by sequencing reads using a
graph searching algorithm. Because the BSJs identified in the first

B

A

C

Figure 1. The psirc method. In the first step (A), sequencing reads are pseudoaligned to potential BSJs
in single-end mode and to the first and last exons of each transcript in paired-end mode. For each read
that is pseudoaligned to a BSJ (by means of rotating the end of the downstream exon to the beginning of
the upstream exon), if its mate read is not pseudoaligned to the same transcript or not pseudoaligned in
the opposite orientation, both of them will not be considered to support the BSJs (arrows in light gray
with a red cross next to them). In the second step (B), the potential circRNA transcript isoforms are de-
termined as those with all forward-splicing and backward-splicing junctions supported by sequencing
reads. In the third step (C), a T-DBG is constructed for all linear and circular transcript isoforms for esti-
mating their expression levels by another round of pseudoalignment.

Quantifying full-length circular RNAs in cancer

Genome Research 2341
www.genome.org



step of psirc can be defined by any pairs of exons, psirc allows the
detection of circRNA isoforms that contain exon combinations
not identical to any annotated linear isoforms. Finally, in the third
step (Fig. 1C), a transcript de Bruijn graph (T-DBG) (Bray et al.
2016) is constructed for all linear and potential circular transcript
isoforms. The pseudoalignments of sequencing reads are thenused
to quantify the expression level of each linear and circular tran-
script isoform by likelihood maximization, with boundary effects
taken care of by adjusting effective transcript lengths (Methods).

In all three steps, full alignments of sequencing reads are
avoided by using kallisto (Bray et al. 2016) to performpseudoalign-
ments, which makes psirc highly efficient in terms of both run-
ning time and memory consumption.

Effective BSJ detection with low time and memory requirements

We first verified the ability of psirc in identifying BSJs using three
data sets, involving human fetal samples and two human cell lines
(Supplemental Table S1). We used psirc and four other methods to
identify BSJs from each sample. These methods were (1) CIRI2
(Gao et al. 2018) and (2) CIRCexplorer2 (Zhang et al. 2016), two
methods that consistently ranked top in benchmarking studies
(Hansen et al. 2016; Zeng et al. 2017; Hansen 2018), and (3)
CircMarker (Li et al. 2018a) and (4) CircMiner (Asghari et al.
2020), two methods that aim at achieving high speed efficiency
by using k-mermatching and pseudoalignment to avoid expensive
sequence alignments. From the results (Supplemental Figs. S1–S3;
Supplemental Results), in terms of identifying BSJs, psirc requires
much less computational resources but still achieves comparable
sensitivity and precision as the best of the other four methods.

Accurate quantification of full-length circRNA isoforms

Wenext tested the ability of psirc in quantifying expression levels.
First, we used the data set of human fetal samples mentioned
above, which also included the expression levels of some BSJs in-
dependentlymeasured by RT-qPCR (Szabo et al. 2015).We applied
psirc to deduce the expression level of each full-length circRNA iso-
formusing the RNA-seq data, based onwhichwe computed the ex-
pression level of each BSJ by aggregating the expression levels of all
the full-length circRNA isoforms that involved this junction. We
then compared these deduced BSJ expression levels with those
measured by RT-qPCR. For benchmarking purposes, we also de-
duced BSJ expression levels directly from the RNA-seq data using
the other four methods.

For all five methods, the deduced BSJ expression levels were
correlated with the RT-qPCR results whether the read counts
were normalized (Supplemental Fig. S4A) or not (Supplemental
Fig. S4B). Among the five methods, the correlation values were
slightly stronger for psirc than the other four methods.

In the above comparisons, each method was evaluated based
on the BSJs identified by it, which could be different from the BSJs
identified by the other methods. To compare the quantification
capability of the different methods on the same ground, we de-
signed a novel benchmarking procedure. First, we divided the
whole BSJ quantification process into three components, namely,
BSJ calling (B), full-length circRNA isoform inference (F), and ex-
pression level quantification (Q). The quantification component
was further divided into two types, namely, quantification of
BSJs without inferring full-length isoforms (Qb) and quantification
of BSJs by quantifying and aggregating full-length circRNA isoform
expression levels (Qf). Some of the methods provided all three
components, whereas the others provided only some of them

(Supplemental Table S2). We then established full pipelines by
mixing and matching components of different methods, such
that the quantification performance of different methods could
be fairly compared based on the same set of BSJs or full-length tran-
script isoforms. For this part of analysis, we included CircAST and
Sailfish-cir because, although these methods could not identify
BSJs by themselves, the BSJs identified by other methods could
be supplied to them as input in the pipelines. In addition, we in-
cluded two new methods of the CIRI series, CIRI-full (Zheng
et al. 2019) and CIRI-quant (Zhang et al. 2020), to provide supple-
mental or alternative components for CIRI2.

Using the benchmarking procedure, we first compared the
quantification performance of five pipelines based on the BSJs
identified by CIRI2 (Fig. 2A–E). Among the four pipelines that
computed BSJ expression levels by aggregating expression levels
of full-length isoforms (i.e., those with the Qf component), three
of them achieved stronger correlations than the pipeline that com-
puted BSJ expression levels directly fromBSJs (i.e., the onewith the
Qb component). The only exception was the pipeline involving
CIRI-full, which was unable to infer any full-length transcript iso-
form for many BSJs because it was designed to identify short
isoforms. Among all five pipelines, the one with expression quan-
tification performed by psirc achieved the strongest correlation of
−0.832.

Similarly, when the BSJs were identified by psirc (Fig. 2F–K),
the five pipelines involving the inference of full-length transcripts
achieved stronger correlations than the pipeline that quantified
the BSJs directly. Among these five pipelines, when the full-length
isoform inferencemethod was fixed, using psirc for quantification
achieved stronger correlations than Sailfish-cir (−0.817 for “BFQf :
psirc” vs. −0.779 for “BF:psirc,Qf :Sailfish-cir”; −0.817 for “B:psirc,
F:Sailfish-cir,Qf:psirc” vs. −0.775 for “B:psirc, FQf :Sailfish-cir”), al-
though the differences do not reach statistical significance. The
quantification results of psirc also correlated more with the RT-
qPCR results than CircAST (−0.817 for “BFQf :psirc” vs. −0.794
for “B:psirc, FQf:CircAST”).

All these conclusions still hold when the deduced BSJ expres-
sion levels were normalized (Supplemental Fig. S5). Overall, these
results show that the full-length circRNA isoform inference and
quantification of psirc enabled it to deduce BSJ expression levels
that were correlated with RT-qPCR results.

Next, we set forth to evaluate psirc’s accuracy in quantifying
the expression levels of full-length circRNA isoforms. Because
large-scale experimental data of full-length circRNA expression
levels based on short-read RNA-seq data alone are not available,
we first performed this evaluation using two sets of simulated
data (Supplemental Methods). We benchmarked the results of
psirc against those produced by Sailfish-cir on the basis of its
good performance in quantifying BSJs in the evaluations above.
To directly compare the quantification component of the two
methods, we supplied the simulated full-length transcript isoform
sequences as the common input to both methods.

In the first set of simulated data, we followed the original ap-
proach of Li et al. (2017) to testing Sailfish-cir to simulate 11
groups of genes. Each group contained 500 genes with one linear
isoform and one circular isoform having independent expression
levels, leading to 1000 isoforms per group. The 11 groups differed
by the degree of overlap between the linear and circular sequences,
ranging from 0% to 100% (Supplemental Fig. S6). When the over-
lap ratio was low, both psirc and Sailfish-cir were able to estimate
expression levels accurately, with the correlation between the esti-
mated and actual expression levels of the 1000 isoforms in each
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group as high as 0.99 (Fig. 3A,B). However, when the overlap ratio
was 100%, the correlation value of Sailfish-cir dropped to below
0.93, whereas that of psirc remained higher than 0.99. To check
whether psirc’s high correlation was owing to biases caused by im-
proper data normalization, we plotted transcript expression levels
against their lengths for the group with 100% sequence overlap
(Fig. 3C) but did not observe any obvious correlation between ex-
pression level and gene length that could have caused biases. We
further plotted the estimated and actual read counts of this group
of isoforms (Fig. 3D) and found that Sailfish-cir tended to overesti-
mate read counts of linear transcripts and underestimate those of
circular transcripts, which could not be shown in the previous

BSJ quantification results that involved
only circular transcripts. In contrast,
psirc was able to quantify both linear
and circular transcripts accurately.

To test whether psirc can handle
more complex gene structures, we pro-
duced a second set of simulated data. In
this set of data, there were 10 genes
each in 10 groups. Each gene in the ith
group had i linear transcript isoforms
and the same number of circular iso-
forms with exactly the same sequences
as the linear counterparts (i.e., 100% se-
quence overlap) but independent expres-
sion levels. For each group, we produced
10 different sets of data by performing
10 independent random sampling of
the transcripts in this group. For all 10
groups, psirc outperformed Sailfish-cir
by a clear margin (Fig. 4A,B). In general,
the performance of both methods
dropped as the number of transcript
isoforms per gene increased. Yet, the
correlation between psirc’s estimated ex-
pression levels and the actual expression
levels remained higher than 0.9 even
when there were 10 linear and 10 circular
isoforms per gene. When we plotted the
estimated and actual read counts of the
isoforms (Fig. 4C–I), again we observed
that the quantification results of psirc
were closer to the actual values than
were the results of Sailfish-cir in all cases,
even the genes chosen to be included in
the plots were already the ones that
Sailfish-cir performed the best in each
group.

Finally, we used a data set with both
short-read and long-read RNA-seq data to
evaluate the full-length circRNA isoforms
identified by psirc. This data set con-
tained three biological replicates of RN-
ase R–treated HEK293 cells with short-
read data produced (Supplemental Figs.
S1–S3; Supplemental Table S1) and three
technical replicates from each of two bio-
logical replicates of HEK293 cells with
long-read data produced (L1–L3, L4–
L6). We used psirc and CircAST to identi-
fy and quantify full-length circRNAs

from the short-read data; isoCirc (Xin et al. 2021), from the long-
read data.

From the results (Fig. 5), psirc and isoCirc identified compara-
ble numbers of full-length circRNAs from each sample despite the
different types of data they worked on, whereas CircAST identified
only around one-fifth on average (Fig. 5A). In general, the
circRNAs identified by isoCirc overlapped more with those identi-
fied by psirc than those by CircAST, in terms of both the absolute
numbers (Fig. 5A) and relative ratios (Fig. 5B). Focusing on the
commonly identified circRNAs, we further compared the correla-
tion of their expression levels in pairs ofmethod–sample combina-
tions (Fig. 5C). Again, the correlations between isoCirc and psirc

E F

BA C

D

I

KJ

G H

Figure 2. Comparison of different pipelines based on their determined read counts that support each
BSJ from the human fetal samples. Each point corresponds to one primer pair in one sample. Each panel
(A–K) corresponds to a different pipeline by combining the three components from different methods. If
the same method was used for multiple components, they are written together. For example, “B:psirc,
FQf:Sailfish-cir” means the BSJs were identified by psirc, whereas both the full-length transcript isoforms
and their expression levels were deduced by Sailfish-cir. All pipelines involving full-length quantification
(Qf) aggregated the expression levels of all transcripts that involved a BSJ into the expression level of the
junction.
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(0.42–0.49) were higher than the correlations between isoCirc and
CircAST (0.20–0.32).

Discovery of cancer-related circRNAs in nasopharyngeal

carcinoma

With the effectiveness and efficiency of psirc verified by the series
of tests above, we applied it to identify BSJs and full-length
circRNA transcript isoforms and deduced their expression levels
from rRNA-depleted RNA-seq data of 11 nasopharyngeal carcino-
ma (NPC) cell lines, xenografts, and patient tumor specimens
and four normal nasopharynx (NP) cell lines (Supplemental
Table S3). Sequencing reads were aligned to both the human and
Epstein–Barr virus (EBV) genomes at the same time, allowing for
a joint detection and quantification of both human and EBV
full-length circRNAs.

We detected 8401–28,809 BSJs from the different samples,
from which 8350–32,959 full-length circRNA isoforms were in-
ferred. Focusing on only the frequently expressed cases, defined
as those expressed in at least 70% of NPC or NP samples, 3145–
5862 BSJs and 2247–4637 full-length isoforms were identified
from the samples (Table 1; Supplemental Files S1–S4).

Taking all the NPC and NP samples together, 6723 unique fre-
quently expressed BSJs were identified from the human cellular ge-
nome (plus seven from the EBV genome). Looking up these BSJs
from three circRNA databases, namely, CIRCpedia v2 (Dong et al.
2018), CSCD (Xia et al. 2018), and MiOncoCirc v0.1 (Vo et al.
2019), we found that 5786 of them (86.2%) were contained in at
least one of these databases, whereas the remaining 930 (13.8%)
were novel (Fig. 6A). Because of our definition of frequently ex-
pressed BSJs, each of these novel BSJs was called in at least three,

and usually even more, samples (Fig.
6B), suggesting that these novel BSJs are
frequently expressed in NP and NPC in a
tissue-specific or cancer type–specific
manner. We also checked the average
number of supporting reads for each of
these novel BSJs among the samples
from which it was called, and found that
around half of these novel BSJs had an av-
erage of five or more supporting reads
across those samples (Fig. 6C), further
supporting the reliability of these BSJ
calls.

To see how the expression levels of
linear and circular isoforms are related to
each other, from each sample we extract-
ed all pairs of linear and circular isoforms
with identical sequences with at least one
of them expressed. These pairs reveal a ge-
neral positive correlation between the lin-
ear and circular expression levels, but
some variations do exist (Supplemental
Fig. S7). This is consistent with observa-
tions from previous studies based on spe-
cific examples or BSJs (Chen 2020).

We then performed differential ex-
pression analysis and obtained 222 BSJs
and 319 full-length circRNA isoforms,
coming from 177 and 271 genes, res-
pectively, with relatively strong differen-
tial expression between the NPC and

NP samples (Wilcoxon Q-value≤0.2) (Supplemental Files S2, S4).
Among these genes, 41 fromtheBSJ list and 57 from the full-length
list were up-regulated in NPC, 19 of which were common. The
numbers of down-regulated genes were larger, with 136 from the
BSJ list and 214 from the full-length list, 89 of which were com-
mon. This trend of reduced circRNA expression in NPC is consis-
tent with similar observations in prostate cancer and colorectal
cancer (Bachmayr-Heyda et al. 2015; Chen et al. 2019). The differ-
ences between the BSJ and full-length lists show that some differ-
entially expressed full-length circRNA isoforms would be missed
if only the BSJs were quantified. Next, we performed a functional
enrichment analysis of the differentially expressed genes on the
full-length list using g:Profiler (Raudvere et al. 2019). For the up-
regulated genes, there were no significantly enriched functional
terms. For the down-regulated genes, a fairly large number of func-
tional terms were significantly enriched (Fig. 6D), including the
Human Protein Atlas (Uhlén et al. 2015) terms “tonsil; squamous
epithelial cells” (adjusted P=4.98×10−5), “thyroid gland” (adjust-
ed P=8.30×10−5), and “nasopharynx” (adjusted P=1.38×10−3).

Among the full-length circRNA isoforms with a differential
expression P-value <0.05, we found 24 of them with at least 10
MREs of a single miRNA family (Methods) (Supplemental Table
S4). Among them, a circRNA generated by back-splicing of an
exon of the ATXN1 gene was predicted to harbor 29 MREs of the
miRNA family miR-93-3p (Fig. 6E).

To further explore the significance of quantifying full-length
circRNA isoforms, we compared the MREs of each frequently ex-
pressed circRNA isoform involving exon skipping with the corre-
sponding isoforms derived from all annotated linear isoforms
that contain the two exons defining the BSJ. We call the latter
the “default isoforms” and the former the “alternative isoform.”

BA

C D

Figure 3. Quantification performance of psirc and Sailfish-cir on the first simulated data set. Pearson
(A) and Spearman’s (B) correlation coefficients were computed between the estimated and actual expres-
sion levels for the 1000 transcript isoforms in each of the 11 groups. For the group with 100% sequence
overlap between linear and circular transcript isoforms, the scatter plots show the actual expression levels
in transcripts per million (TPM) against transcript lengths (C) and the read counts per million reads
aligned (RPM) estimated by the twomethods against the actual read count of each transcript isoform (D).
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In total, from252 frequently expressed alternative isoforms,we de-
rived 276 default isoforms. On average, each of these alternative
isoforms harbors 45.6 fewer MREs than their default isoforms. In
one extreme example, an alternative isoform harbors 10 fewer
MREs from the same miRNA family than its default isoforms.
Importantly, 31.2% of these alternative isoforms had an expres-
sion level over 100 times higher than the corresponding default
isoforms. These results show that if full-length circRNA isoforms
are not inferred and quantified but rather default isoforms are as-
sumed based on BSJs and annotated linear isoforms alone, func-
tional studies of circRNA could be seriously misinformed.

Finally, we experimentally verified some of the differentially
expressed circRNAs between the NPC and NP groups. We started

with a verification of the BSJs using RT-
PCR (Fig. 7A). The results are highly con-
sistent with the TPM values of these BSJs
determined by psirc based on the sup-
porting reads (Fig. 7B). For example, the
BSJ from NETO2 was mostly expressed
in the NP group but not the NPC group
according to both RT-PCR and psirc. In
contrast, the BSJs from NTRK2 and the
EBV-encoded RPMS1 were mostly ex-
pressed in the NPC group but not the
NP group according to both methods.

Next, we designed primers speci-
fically for some differentially expressed
full-length transcript isoforms. The RT-
PCR results (Fig. 7C) again show high
consistency with the corresponding
TPM levels deduced by psirc in distin-
guishing between the two sample groups
(Fig. 7D). This trend was further con-
firmed by the RT-PCR results based on
different reverse transcriptases for an
NTRK2 BSJ and a full-length transcript
isoform of it (Supplemental Fig. S8A).

To get a more quantitative evalua-
tion of the deduced expression levels, we
further performed RT-qPCR on two short
full-length isoforms, selected according
to the detection limit of RT-qPCR. The re-
sults (Fig. 7E,F) show that the two iso-
forms had almost no expression in the
NP group based on both the psirc and
RT-qPCR results. When considering only
the NPC samples, the two sets of results
correlated positively (Pearson correlation
=0.75/0.48 for circRPMS1_E6B4 with/
without RNase R treatment, and 0.71/
0.82 for circNTRK2_E12B10 with/with-
out RNase R treatment), with some differ-
ences between them likely caused by a
combination of technical and biological
reasons such as cell passages. We further
tested the circRPMS1_E6B4 case using a
BaseScope RNA in situ hybridization as-
say, a sensitive non-RT-based experiment,
and observed the same differential expres-
sion between the NPC and NP groups
(Supplemental Fig. S8B).

Discussion

In this study, we have developed psirc, the first complete pipeline
that can identify both BSJs and full-length circRNA transcript iso-
forms of all lengths and quantify their expression levels. We have
shown the effectiveness and computational efficiency of psirc us-
ing simulated data and RNA-seq data fromhuman cell lines and fe-
tal tissue samples. At the BSJ level, psirc achieved comparable
sensitivity and precision as the best of CIRCexplorer2, CIRI2,
and CircMarker while requiring substantially less running time
and memory. At the full-length isoform level, psirc detected a lot
more isoforms than CIRI-full and produced more accurate expres-
sion level quantification than Sailfish-cir, especially in terms of the

BA
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Figure 4. Quantification performance of psirc and Sailfish-cir on the second simulated data set.
Pearson (A) and Spearman’s (B) correlation coefficients were computed between the estimated and ac-
tual expression levels. Each box plot shows the distribution of correlations from the 10 sets of random
transcripts, with each correlation coefficient computed based on all the transcripts from the 10 genes
in that set. (C–F) The estimated and actual read counts per million reads aligned are shown for each tran-
script isoform for the gene that Sailfish-cir achieved the strongest Pearson correlation in each group,
when each gene had one (C), four (D), seven (E), or 10 (F) linear isoforms per gene.
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relative expression levels of linear and circular transcripts. The full-
length quantification results of psirc were more consistent with
the isoCirc results obtained from long-read sequencing data than
the results of CircAST.

The efficiency of psirc is owing to its use of pseudoalignment
by kallisto, which avoids time-consuming full alignments of se-
quencing reads but is still able to accurately determine the tran-
script isoforms from which each sequencing read could come by
using the T-DBG. In contrast, the k-mer-based method of
Sailfish-cir can assign reads to wrong transcript isoforms by ignor-
ing the order of k-mers.

The good performance of psirc in identifying and quantifying
full-length circRNA isoforms is owing to a number of factors. First,
the design of psirc permits the detection of circRNAs of different
lengths, including both short and long ones. Second, psirc can
detect many possible isoforms by considering exon combinations
based on read-supported BSJs and forward-splicing junctions.
Third, psirc quantifies linear and circular transcript isoforms to-

gether, allowing it to accurately determine the relative expression
levels of the linear and circular isoforms.

Wehave found that for some differentially expressed circRNA
isoforms between NPC and NP, their expression levels were much
higher than default isoforms produced by “circularizing” annotat-
ed linear isoforms that contain the two exons defining the BSJ. The
highly expressed alternative isoforms could have far fewer MREs
than the default isoforms owing to exon skipping. Being able to
identify full-length circRNA isoforms and quantify their expres-
sion levels thus enables much more accurate study of potential
circRNA functions such as their interactions with miRNAs and
RNA-binding proteins. In general, psirc can help identify poten-
tially interesting miRNA–circRNA interactions by providing infor-
mation about the expression levels of full-length circRNA isoforms
and miRNAs that may interact with them for further validations
and detailed studies with additional experiments.

A recent study has shown that circRNAs can form16- to 26-bp
duplex structures, which act as inhibitors of double-stranded RNA-

B
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Figure 5. Evaluation of full-length circRNA identification and quantification by comparing with results obtained from long-read sequencing data. (A) The
absolute numbers of full-length circRNAs identified by different method–sample combinations and their overlaps. (B) Codetection ratios of the identified
full-length circRNAs, defined as the intersection size divided by the union size of the circRNAs identified by each pair of method–sample combinations. (C)
Pearson’s correlation of the expression levels of the full-length circRNAs commonly detected by two method–sample combinations.
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activated protein kinase (EIF2AK2 [also known as PKR]), and these
circRNAs are degraded by RNase L for activating EIF2AK2 during
early innate immune response (Liu et al. 2019). The structures of
circRNAs and their corresponding functional mechanisms are still
under investigation, but the full-length sequences of circRNAs
likely play some roles in determining the possible structures.

By considering the read supports of individual forward-splic-
ing junctions and BSJs, psirc is able to infer circular transcript iso-
forms that contain an exon combination different from any
annotated linear isoforms. However, psirc still relies on an input
set of linear transcript isoforms to define exon boundaries. As a re-
sult, it cannot detect nonexonic circRNAs such as intron–exon
circRNAs (elciRNAs) or circRNAs that involve cryptic 5′ or 3′ splice
sites not at the boundaries of annotated exons. This limitation can
be potentially overcome by first performing a linear transcript as-
sembly on the RNA-seq data and augmenting the transcript anno-
tation set with the novel transcripts identified, at the expense of
extra computational resources.

Methods

Details of the psirc method

Identification of BSJs

In the first step of psirc (Fig. 1A), to detect junction-crossing reads,
we construct a library of all possible BSJ sequences according to the
transcripts defined in a gene annotation set. In the default setting
of psirc, GENCODE (v29) (Harrow et al. 2012) is used. For each an-
notated linear transcript, we consider each pair of exons in turn to
construct a sequence that contains the x nucleotides at the 3′ end
of the 3′ exon in the pair followed by the xnucleotides at the 5′ end
of the 5′ exon, and add the sequence to the library. The value of x is
determined according to the size of k-mers (length-k subsequenc-
es) used in pseudoalignment as a trade-off between the sensitivity
and specificity of BSJ detection. In the default setting of psirc with
a k-mer size of 31, x is set to 24 such that each of the two exons has

at least 7 bp of the k-mer pseudoaligned to. All the BSJs with pseu-
doaligned sequencing reads are then collected.

Similarly, we also constructed sequence libraries to gain addi-
tional support for these BSJs and for detecting the last–first exon
read pairs (Supplemental Methods).

In all the above processes, pseudoalignment is performed us-
ing kallisto, which determines the set of all sequences that could
have produced the read. This is performed by comparing k-mers
in the read with the k-mers in the library sequences. This pseudo-
alignment step in psirc is very fast because (1) the total length of
the library sequences is small compared with the whole genome
or transcriptome, (2) kallisto uses a hash table to efficiently map
each k-mer to the sequences that contain it (called its “k-compati-
bility class”), and (3) kallisto uses a T-DBG to determine the k-mers
that do not need to be checked when they belong to the same k-
compatibility class and appear on the same nonbranching path
in the graph. Although the pseudoalignment results do not con-
tain full alignments between the reads and the library sequences
at the per-nucleotide resolution, they do contain the aligned loca-
tion(s) of each read, which is sufficient for our purpose of identify-
ing BSJs. By default, we allow each read to be pseudoaligned to, at
most, 10 different locations. The version of kallisto used in psirc is
a forked version that wemodified from themain trunk, which can
support multithreading and produce a SAM file as output.

Identification of potential full-length circular transcript isoforms

In the second step of psirc (Fig. 1B), for each linear transcript iso-
formwith a BSJ detected in the first step, we identify a set of poten-
tial full-length circular transcript isoforms as follows. Suppose the
original linear transcript isoform in the annotation file involves
exons E1,E2,…,En, and in the first step of psirc, a BSJ was detected
between exons Ei and Ej, where 1≤ i≤ j≤n. A directed graph is con-
structedwith each exon Ei, Ei + 1,…, Ej forming a node. For eachpair
of nodes Ea and Eb where i≤a< b≤ j, if the forward-splicing junc-
tion from Ea to Eb is supported by sequencing reads, an edge will
be drawn from the former to the latter. In addition, edges are
also added for exons that are adjacent in the original linear tran-
script isoform, that is, from Ea to Ea + 1 for 1≤a<n. A depth-first
search is then performed to identify all noncyclic paths from Ei
to Ej, and the nodes on each of these paths will form a potential
full-length circular transcript isoform. Finally, if i= j, a potential
full-length circular transcript isoform involving this exon alone
will also be added to the list.

A concrete example and some additional filtering steps are de-
scribed in Supplemental Methods.

Expression quantification of full-length transcript isoforms

In the third step of psirc (Fig. 1C), the expression level of each lin-
ear and circular transcript isoform is estimated based on likelihood
maximization. The overall workflow involves indexing, pseudo-
alignment, and quantification (Supplemental Fig. S9).

In the indexing stage, all the potential linear and circular
transcript isoforms, including the ones originally in the annota-
tion file of linear transcript isoforms and the ones identified
in the second step of psirc, are used to construct a colored T-
DBG. In the pseudoalignment stage, all sequencing reads are
pseudoaligned to the transcriptome defined by the T-DBG con-
taining both linear and circular transcript isoforms. In the quanti-
fication stage, the expression level of each transcript isoform,
defined as the number of transcript copies, is quantified by maxi-
mizing the data likelihood according to a probabilisticmodel (Bray
et al. 2016) under the assumption that reads are correctly
pseudoaligned.

Table 1. Numbers of human and EBV BSJs and full-length circular
isoforms identified by psirc from the NPC and NP samples

Sample

Identified
Among commonly

expressed

BSJs Circular isoforms BSJs Circular isoforms

C666-1 15,812 19,280 4842 3758
NPC43 22,090 29,648 5368 4236
C15 8,401 8,350 3145 2247
C17 16,131 22,422 4505 3396
Xeno-32 17,270 17,888 4966 3763
Xeno-666 19,809 21,412 5118 3976
Xeno-1915 13,290 15,104 4145 3138
Xeno-2117 13,465 16,101 4332 3278
Xeno-99186 11,432 13,113 3938 2964
NPC-M1 15,526 17,148 4953 3837
NPC-M2 28,809 32,959 5862 4637
NP69 14,708 18,161 5160 4162
NP361 9,574 9,965 4580 3553
NP460 16,998 18,611 5681 4562
NP550 12,482 14,699 5141 4129

The samples are listed in the same order as in Supplemental Table S3,
with the NPC samples listed before the NP samples. The total numbers
identified (i.e., with read supports) from each sample are listed in the
first two columns. The last two columns consider only BSJs and isoforms
expressed in at least 70% of the NPC or NP samples.

Quantifying full-length circular RNAs in cancer

Genome Research 2347
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275348.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275348.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275348.121/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.275348.121/-/DC1


More details and additional steps for bias correction and qual-
ity checking are described in the Supplemental Methods.

Data sets for testing psirc’s performance

We obtained four RNA-seq data sets for testing psirc’s performance
and compared it with other circRNA detection methods

(Supplemental Table S1). The first data set contained rRNA-deplet-
ed RNA-seq data of human fetal samples (NCBI Gene Expression
Omnibus [GEO; https://www.ncbi.nlm.nih.gov/geo/] accession
GSE64283) (Szabo et al. 2015). Among the 35 samples in this
data set, 11 of them had RT-qPCRmeasurements of the expression
of BSJs from eight genes, with 79 measurements in total. We used
only these 11 samples in our analyses and downloaded the corre-
sponding RNA-seq data from the NCBI Sequence Read Archive
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Figure 6. Analyses of the results produced by psirc from theNPC andNP samples. (A) AVenn diagram comparing the frequently expressed BSJs identified
from the NPC and NP samples with those in three circRNA databases. (B,C) Histograms of the frequently expressed novel BSJs not contained by any of the
three databases, in terms of the number of NPC and NP samples fromwhich they were called (B) and their average number of supporting reads among the
samples from which they were called (C). (D) Enriched functional terms (adjusted P<0.01) of the down-regulated genes based on the full-length circRNA
isoform analysis. (E) MREs on the differentially expressed ATXN1 circRNA.
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(SRA; https://www.ncbi.nlm.nih.gov/sra) (Leinonen et al. 2011).
The CT values were obtained from column 5 of the additional
file 15 of Szabo et al. (2015). The second and third sets of data con-
tained rRNA-depleted RNA-seq and RNase R–treated RNA-seq data
of HeLa and Hs68 cells (Jeck et al. 2013; Mercer et al. 2015).
Replicate samples were combined by pooling the data directly.
The fourth data set contained short-read RNA-seq data produced
from three biological replicates of HEK293 cells, with long-read
RNA-seq data produced from three technical replicates from each
of two biological replicates of HEK293 cells (GEO accession
GSE141693) (Xin et al. 2021). In the original data set, long-read
data were also produced from 12 human tissues, and the full-
length circRNAs reported by isoCirc were those identified from
at least two of the 18 samples. In our analyses, we took the subset

of these circRNAs from the six HEK293 samples directly from the
original investigators’ results.

Comparisons with other circRNA-calling methods

We compared psirc with a number of existing methods that
identified and/or quantified circRNAs from short-read RNA-seq
data, including CircAST (Wu et al. 2019; https://github.com/
xiaofengsong/CircAST, git commit c2f36ad4), CIRCexplorer2
(v2.3.8) (Zhang et al. 2016), CircMarker (Li et al. 2018a; https
://github.com/lxwgcool/CircMarker, git commit 06aa680a),
CircMiner (v0.4.5) (Asghari et al. 2020), CIRI2 (v2.0.6) (Gao et al.
2018), CIRI-full (v2.0, with CIRLAS v1.2 and CIRI-vis v1.4)
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Figure 7. Experimental validations of the computational results of psirc. (A) Validation of differentially expressed BSJs in the RNase R–treated NP andNPC
RNA samples using RT-PCR. Each row corresponds to a BSJ and each column corresponds to a sample, with the NPC samples labeled in blue and the NP
samples labeled in red. (B) Expression levels of the same BSJs determined by psirc. The expression value of each BSJ was computed by summing up the TPM
values of all transcripts that involved this BSJ. (C ) Validation of differentially expressed full-length transcript isoforms using RT-PCR. (D) TPM values of the
same full-length isoforms inferred by psirc. (E,F) RT-qPCR results of two short full-length transcript isoforms, circRPMS1_E6B4 (E) and circNTRK2_E12B10
(F), with or without RNase R treatment. Each RT-qPCR experiment was repeated three times with independent RT preparations, with the standard deviation
of each triplicate indicated by the error bars. In each of these two panels, normalizationwas performed by dividing each value by the largest value among all
samples.
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(Zheng et al. 2019), CIRI-quant (v1.1) (Zhang et al. 2020), and
Sailfish-cir (v0.11, with sailfish v0.9.2) (Li et al. 2017).

We categorized thesemethods based on their abilities to iden-
tify BSJs, infer full-length transcript isoforms, and quantity the ex-
pression of them (Supplemental Table S2). For methods that infer
and quantify full-length transcript isoforms, BSJ read counts were

computed as
∑

i
ni∗l
Ei

, where ni is the read count of transcript i, l is

the read length, Ei is the effective length of transcript i, and the
summation is over all transcripts that involve the BSJ. In our anal-
yses, we considered both raw read counts and normalized read
counts, defined as raw read counts per million aligned reads.

Additional details of the experimental configurations are de-
scribed in the Supplemental Methods.

Testing psirc’s ability to identify BSJs

We applied CIRCexplorer2, CircMarker, CircMiner, CIRI2, and
psirc to identify BSJs from the two data sets as explained in the
Results. For CIRCexplorer2, we failed to run it in its default setting
on the sample Hs68 C1. Therefore, we instead downloaded the
CIRCexplorer2 results of HeLa and Hs68 from the Supplemental
Materials (“Presentation2.zip”) of Hansen (2018) and used these
results in the comparisons directly.

For the analyses involving the HeLa and Hs68 data, for each
BSJ identified, we classified it into either enriched, unaffected, de-
pleted, or abolished, according to the numbers of reads that sup-
port this junction in the rRNA-depleted data and RNase R–
treated data. Following methods of previous studies (Hansen
et al. 2016; Zeng et al. 2017; Hansen 2018), unnormalized read
counts were used to define these classes. For each of the two sam-
ples, because the total number of read pairs after pooling the data
form replicates is highly consistent with or without the RNase R
treatment (Supplemental Table S1), using unnormalized read
counts should not create any strong systematic bias. For a particu-
lar BSJ, suppose the number of supporting reads in the rRNA-de-
pleted data is d, the number of supporting reads in the RNase R–
treated data is t, and α is an enrichment factor (Hansen et al.
2016; Hansen 2018); the definitions of the four classes are as
follows:

• Enriched: t≥ d×α;
• Unaffected: d×α> t≥d;
• Depleted: d > t >0;
• Abolished: t=0.

We used the enrichment factor α=1.5 for HeLa and α=5 for
Hs68. The value for Hs68 was taken directly from previous studies
(Hansen et al. 2016; Hansen 2018), whereas the value for HeLawas
the total number of identified BSJ reads in the RNase R–treated
samples divided by that in the untreated samples.

Although the enriched cases were likely true positives and the
abolished cases were likely false positives, the unaffected and de-
pleted cases were more ambiguous. We therefore considered four
different measures of precision in order to provide a comprehen-
sive evaluation of the performance of the four methods. In all
four definitions, precision was defined as TP/(TP+ FP), where TP
stands for true positives and FP stands for false positives. The
four precision measures differed by their definitions of TP and FP:

• Precision 1—TP involved the enriched cases only, and FP in-
volved the abolished cases only;

• Precision 2—TP involved the enriched and unaffected cases, and
FP involved the abolished cases only;

• Precision 3—TP involved the enriched cases only, and FP in-
volved the depleted and abolished cases;

• Precision 4—TP involved the enriched and unaffected cases, and
FP involved the depleted and abolished cases.

We quantified the computational costs by elapsed time, CPU
time, and RAM usage. Elapsed time was defined as the duration of
the physical running time, from the time that a method started to
the time that it completed. CPU timewas the total amount of time
used by the CPU on all the threads of the method. These two time
measurements differed mainly in two aspects, namely, (1) elapsed
time could be shortened by multithreading, but CPU time was the
total of all threads, and (2) elapsed time included all the overheads
such as disk I/O, butCPU time just included the time spent onCPU
cycles. RAM usage was defined as the peak memory usage during
the whole execution process.

When gathering the running time and RAM usage informa-
tion, all the methods were run on a machine with 64 Intel Xeon
E5-4610 v2 cores@2.30 GHz with 520 GB of RAM. At any time,
only one method was run on one sample without any other user
processes running in the background.

Comparing with RT-qPCR measurements

Expression values deduced from RNA-seq data were log2-trans-
formed after addition of a small constant (c) to handle the zero-ex-
pression cases. The value of c was set to one and 0.01 for raw and
normalized BSJ read counts, respectively. These values were cho-
sen because they were close to the smallest nonzero values
observed.

Production and processing of RNA-seq data from the NPC and

NP samples

Four immortalized normal nasopharyngeal epithelial cell lines
(NP69, NP361, NP460, and NPC550), two EBV-positive NPC cell
lines (C666-1 and NPC43), seven patient-derived xenografts
(Xeno-666, Xeno-2117, Xeno-1915, Xeno-99186, C15, C17, and
Xeno-32) (Huang et al. 1989; Bernheim et al. 1993; Cheung et al.
1999; Tsao et al. 2002; Li et al. 2006; Tsang et al. 2012; Chung
et al. 2013; Lin et al. 2018), and two patient tumor specimens
(NPC-M1 and NPC-M2) were used in this study. NPC tumor spec-
imens were from patients admitted to Prince of Wales Hospital,
The Chinese University of Hong Kong. Patient consents were ob-
tained according to institutional clinical research approval (IRB)
at The Chinese University of Hong Kong, Hong Kong Special
Administrative Region. Total RNA extracted from the NP and
NPC samples were subjected to rRNA depletion by a Ribo-Zero
kit (Illumina), followed by TruSeq stranded total RNA library con-
struction and sequencing on the Illumina HiSeq 2000 system ac-
cording to the manufacturer’s protocols (Chung et al. 2013).

Comparing the frequently expressed BSJs identified from theNPC

and NP samples with those in circRNA databases

The frequently expressed cellular BSJs identified from theNPC and
NP samples were combined and deduplicated, resulting in a set of
6723 unique BSJs from the human cellular genome. These BSJs
were compared with those from three circRNA databases. For
CIRCpedia v2, a total of 183,943 unique BSJs from all human
cell lines were downloaded from https://www.picb.ac.cn/
rnomics/circpedia/. For CSCD (accessed on June 9, 2020), the
union of all common, normal, and cancer-specific BSJs was taken,
all downloaded from http://gb.whu.edu.cn/CSCD/, resulting in a
set of 1,393,002 unique BSJs. For MiOncoCirc v0.1, BSJs from all
cancer samples were downloaded from https://mioncocirc.github
.io/download/, with a total of 232,665 unique BSJs. All genomic
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positions in the four sets were based on the human reference ge-
nome GRCh38.

Functional enrichment analysis

We used g:Profiler to perform functional enrichment analysis of
the differentially expressed circRNAs obtained from the full-length
quantification results of psirc. We ran g:Profiler using its default
setting, which included the following functional categories:
Gene Ontology subontologies (molecular function, cellular com-
ponent, and biological process), biological pathways (KEGG,
Reactome, and WikiPathways), regulatory motifs in DNA
(TRANSFAC and miRTarBase), protein databases (Human Protein
Atlas and CORUM), and human phenotype ontology (HP).

Prediction of MREs

Information about high-confidence human and EBVmiRNAs and
their families was downloaded from miRBase (release 22)
(Kozomara et al. 2019). In total, 897 human miRNAs from 736
families and 44 EBV miRNAs from 44 families were involved.
Different miRNAs in the same family share the same seed. One
EBV miRNA (ebv-miR-BART4-3p) was found to have the same
seed as a human miRNA (hsa-miR-499a-3p). Therefore, altogether
736+44-1= 779miRNA families were considered. MREs on poten-
tial circRNA sequences were identified using TargetScan (v7.0)
(Agarwal et al. 2015) with default parameter values. All bases on
the sequences were not masked, which allowed MREs to appear
anywhere on the sequences. To allow for detection of MREs that
overlap the BSJs, 10 bases from the 5′ end of each sequence were
copied and pasted to the 3′ end. Redundant MREs that appeared
completely within the 10 bases were removed to avoid double
counting.

Experimental validations

The candidate BSJs and full-length isoforms of selected differen-
tially expressed cellular and viral circRNAs of NPC and NP samples
identified by psirc were subjected to conventional RT-PCR analysis
and RT-qPCR analysis. The predicted BSJs of cancer gene–derived
circRNAs either predominantly overexpressed (e.g., circAKT3,
circNTRK2) or down-regulated (circNETO2, circVEGFC) in multi-
ple NPC tumor samples were selected for validation by conven-
tional RT-PCR with primers flanking the junction. For validation
of full-length isoforms predicted by psirc, conventional RT-PCR
analysis with an inverse primer pair in the same exon for selected
overexpressed EBV-encoded (circRPMS1) and cellular (circNTRK2,
cir-cRAPGEF5) circRNAs, as well as down-regulated circRNAs
(circNETO2), was performed in a panel of NPC and NP samples.
For the RT-PCR experiments, the total RNA of the samples was ex-
tracted with TRIzol reagent (Invitrogen), treated with 10 units of
RNase R (BioVision) for 30 min at 37°C and purified with a
miRNeasy kit (Qiagen). The RNA samples were then subjected
to cDNA synthesis with SuperScript III reverse transcriptase
(Invitrogen) and PCR amplification with a KAPA2G fast HotStart
PCR kit (Roche) according to the manufacturer’s protocol. PCR
products were run on a 2% agarose gel. The primers involved in
the validations of BSJs and full-length transcripts are listed in
Supplemental Tables S5 and Table S6, respectively. The predicted
BSJs in the amplified RT-PCR products of the samples were con-
firmed by Sanger sequencing (Supplemental Fig. S10).

For the additional experimental validations using different re-
verse transcriptases, 2 μg of total RNA was treated with 10 units of
RNase R (BioVision M1228-500) for 30 min at 37°C and purified
with a miRNeasy kit (Qiagen 217004). First-strand cDNA was gen-
erated with M-MLV (Invitrogen 18080044) or AMV (Promega

M5101) reverse transcriptase. The cDNA products were then am-
plified by PCR with a KAPA2G fast HotStart PCR kit (Roche
KK5519) as described above. The PCR products were run on a
1.5% agarose gel.

Two relatively small-sized circRNAs (circRPMS1_E6B4, 399
bp; circNTRK2_E12B10, 237 bp) were further validated by RT-
qPCR analysis andDNA sequencing. cDNA sampleswere subjected
to quantitative PCR analysis using the TaqMan universal PCRmas-
ter mix (Applied Biosystems) on a LightCycler 480 instrument II as
previously described (Ungerleider et al. 2018). The primers in-
volved are listed in Supplemental Table S7. The RT-qPCR results
were analyzed by delta-delta Ct method and normalized by
GAPDH expression.

Following the method of Huang et al. (2019), BaseScope RNA
in situ hybridization assays were performed using the BaseScope
reagent kit v2-RED according to the manufacturer’s instructions
(Advanced Cell Diagnostics). Briefly, the cell or tissue sections
were baked for 1 h at 60°C, deparaffinized, and treated with pre-
treat solution for 10 min at room temperature. Target retrieval
was performed for 15 min at 100°C, followed by protease treat-
ment for 15 min at 40°C. The circRPMS1_E6B4 BaseScope probe
(BaseScope probe-BA-V-EBV-BART-E4-2zz-st, Advanced Cell
Diagnostics) was then hybridized for 2 h at 40°C followed by
BaseScope amplification and fast red chromogenic detection.

Software availability

The source code of psirc is available atGitHub (https://github.com/
Christina-hshi/psirc.git) and is also provided as a Supplemental
Code file.
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