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Direct observation of room-temperature
out-of-plane ferroelectricity and tunneling
electroresistance at the two-dimensional limit
H. Wang1, Z.R. Liu2, H.Y. Yoong1, T.R. Paudel 3, J.X. Xiao1, R. Guo1, W.N. Lin1, P. Yang4, J. Wang1, G.M. Chow1,

T. Venkatesan 1,5, E.Y. Tsymbal3, H. Tian2 & J.S. Chen 1

Out-of-plane ferroelectricity with a high transition temperature in nanometer-scale films is

required to miniaturize electronic devices. Direct visualization of stable ferroelectric polar-

ization and its switching behavior in atomically thick films is critical for achieving this goal.

Here, ferroelectric order at room temperature in the two-dimensional limit is demonstrated in

tetragonal BiFeO3 ultrathin films. Using aberration-corrected scanning transmission electron

microscopy, we directly observed robust out-of-plane spontaneous polarization in one-unit-

cell-thick BiFeO3 films. High-resolution piezoresponse force microscopy measurements show

that the polarization is stable and switchable, whereas a tunneling electroresistance effect of

up to 370% is achieved in BiFeO3 films. Based on first-principles calculations and Kelvin

probe force microscopy measurements, we explain the mechanism of polarization stabili-

zation by the ionic displacements in oxide electrode and the surface charges. Our results

indicate that critical thickness for ferroelectricity in the BiFeO3 film is virtually absent, making

it a promising candidate for high-density nonvolatile memories.
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In condensed matter, order parameters, such as ferromagnetic
magnetization1, superconducting energy gap2, and ferro-
electric polarization3–5, are usually suppressed at reduced

dimensions due to size, surface, and interface effects, and quan-
tum fluctuations6. Recently, it has been observed that a mono-
layer Fe film exhibits a long-range ferromagnetic order7 and two-
dimensional superconductivity exists in a single layer metal film8

and an FeSe film9, which entirely break the dimensional limit of
long-range order. In ferroelectricity, although robust in-plane
spontaneous polarization has been experimentally observed in
atomic-thick SnTe10, it is considered that there exists a critical
thickness for out-of-plane ferroelectricity in a pristine film due to
an intrinsic depolarizing field, arising from incomplete screening
of polarization charges at the ferroelectric (FE)/metal interface11,
and the extrinsic effects of interfacial strain12, misfit disloca-
tions13, and surface reconstruction14. Theoretically, the critical
thickness of 2.4 nm has been predicted for BaTiO3 (BTO)15,
whereas experimentally it has been shown that there exists a
critical thicknesses of 1.2 nm for PbTiO3 (PTO)16 and 1 nm for
copolymer17. Recently, spontaneous polarization with 17% of the
bulk value has been observed in 1.5-unit cells (u.c.) thick
PbZr0.2Ti0.8O3 (PZT) film thinned by ion milling18. So far,
however, direct growth of atomically thick FE films with polar-
ization normal to the film surface at room temperature remains a
challenge even though desired for high-density nanodevices.

Ferroelectricity in ultrathin films has mainly been characterized
by Raman spectroscopy5, X-ray scattering16, X-ray photoelectron
diffraction19, and scanning transmission electron microscopy
(STEM)18. The presence of stable and switchable polarization in
an FE film at the two-dimensional limit has not been verified and
directly observed yet. To reveal ferroelectricity in an ultrathin
film, local atomic-scale information on the atomic displacement is
needed in conjunction with the mesoscopic polarization switch-
ing. BiFeO3 (BFO), a lead-free multiferroic material, is promising
for non-volatile memories and electrically controlled magnetism
due to its significant remnant polarization and magnetoelectric
coupling above room temperature20. Even though ferroelectric
polarization of BFO could be enhanced by surface boundary
conditions21, ferroelectricity vanishes below 2 nm thickness22,
limiting its practical application in miniaturized electronic
devices.

In this work, we report coherent growth and room temperature
stable ferroelectricity of BFO films on the tetragonal SrRuO3

(SRO)-buffered STO (001) substrate. Using aberration-corrected
STEM images and energy dispersive X-ray (EDX) maps, we
visualize, at the atomic level, the out-of-plane atomic displace-
ment in the two-dimensional BFO films. The existence of
switchable and stable polarization is verified using piezoresponse
force microscopy (PFM), while the switching mechanism is
investigated using Kelvin probe force microscopy (KPFM) and
the polarization stability is explained based on the first-principles
calculations. A surprisingly high-tunneling electroresistance effect
of ~370% is observed in ferroelectric tunnel junctions (FTJ) using
a 1-u.c.-thick BFO film as a barrier at room temperature.

Results
Direct observation of spontaneous polarization at the two-
dimensional limit. The ferroelectric polarization and interfacial
chemical environment are directly determined at the atomic level
by aberration-corrected STEM12,23. Figure 1 and Supplementary
Figure 2 show the typical STEM images of the cross-section along
the [001] zone axis. Atomically resolution high-angle annular
dark-field STEM (HAADF-STEM) images illustrated in Fig. 1a, d
reveal that both BFO and SRO are coherently grown on the STO
substrate. As indicated by the clear contrast from the HAADF

images, SRO/BFO and SRO/STO interfaces are sharp, consistent
with the AFM and XRD results (Supplementary Figures 1 and
27). Atomic-resolution energy dispersive X-ray (EDX) maps of
3-u.c. BFO are presented in Fig. 1f–j. The number of unit cells in
BFO is clearly seen from the positions of Fe and Bi atoms. The
interfacial terminations between BFO and SRO are identified as
–RuO2–BiO–, which is different from the previous works22,24.
Using two-dimensional (2D) Gaussian fitting of the STEM image
intensity, displacement vector (DFe) maps of Fe atoms with
respect to the mass center of the Bi sublattice (as shown in
Fig. 1c) are determined unit cell by unit cell (details in Supple-
mentary Note 5), shown in Fig. 1b, e. The outer unit cell of BFO is
not considered to avoid the possible effect on the displacement
vector from deposited Pt layer in the process of focused ion beam
sample preparation. The average value of DFe in 2-u.c. and 3-u.c.
BFO is about 19 pm (15–25 pm) and 35 pm (30–50 pm),
respectively. Figure 1b, e reveals a monodomain polar phase in
both 2-u.c. and 3-u.c. BFO films, which is different from a 180°
strip domain structure usually formed in ultrathin PTO on
STO16. This difference suggests that the depolarizing field is
effectively compensated by free charges from tetragonal SRO
electrode, not like in the case of PZT (20 nm)/SRO (3 u.c.), in
which the depolarizing field is not fully screened by such a thin
oxide electrode, resulting in the PZT layer having a 180° strip
domain25.

Using the empirical linear relation (Ps= κ*DFe) between the
spontaneous polarization Ps and the displacement vector DFe, the
spontaneous polarization can be roughly evaluated12. Here κ is a
constant of 2.50–2.58 μCcm−2 pm−1 adopted in the estimation
of Ps for BTO, PTO, and BFO systems. The spontaneous
polarization of 2-u.c. and 3-u.c. BFO films are estimated to be
about 49 μCcm−2 and 88 μCcm−2, respectively. The polarization
of 2-u.c. BFO is comparable to the reported result of thick BFO
film on SRO electrodes26. We also examine the ferroelectric
polarization at the ultimate thickness limit of a monolayer.
One could observe an obvious atomic relative displacement
(25–40 pm) in 1-u.c.-thick BFO films (Supplementary Figure 3).
To verify the contribution of electrical boundary conditions to
spontaneous polarization in ultrathin BFO films, we examine the
atomic displacement of BFO in a symmetric environment (SRO/
BFO/SRO) using STEM. The displacement vector map (Supple-
mentary Figure 4) shows that the BFO films placed in a
symmetric environment have a smaller atomic displacement than
that in an asymmetric environment. This suppression of
spontaneous polarization is also observed in SRO/BTO/SRO
system, which is associated with the different depolarizing field in
the two cases27. In light of the influence of termination of SRO
electrode on the ferroelectricity, we prepared the BFO film
buffered by the SRO electrode with SrO termination (details in
Supplementary Note 2). We find that the atomic displacement of
BFO on SrO-terminated SRO is about 25 pm, which is smaller
than that of BFO on RuO2-terminated SRO (Supplementary
Figure 5).

It is worth noting that the DFe of the interfacial unit cell is even
larger than that of the second unit cell in some local areas of the
ultrathin film, which might be caused by defects from film growth
and preparation of TEM samples. To examine the uniformity of
the polar displacement, we measured more samples and different
regions across a larger length scale. We found all BFO films
exhibiting the atomic displacement with the same orientation but
slightly different absolute values (Supplementary Figure 6). These
results directly show the presence of robust out-of-plane FE
polarizations at room temperature in the two-dimensional as-
grown BFO films. Below we demonstrate that this polarization is
switchable by an applied electric field, thus revealing the
ferroelectric nature of the polar state.
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Stabilizing mechanism of ferroic order. To clarify the screening
mechanism of the depolarizing field at the two-dimensional limit,
a quantitative analysis of atomic displacement at the interface of
SRO/BFO was conducted. Figure 2a displays the STEM intensity
profiles of A-site and B-site cations across the SRO/BFO het-
erointerface, clearly indicating a relative displacement between
the B-site cation and the center of mass for A-site sublattice. The
line profiles of the displacement along the growth direction in
Fig. 2b indicate the relative displacement of 30–50 pm in BFO. It
is notable that Ru cations in the bulk centrosymmetric SRO have
a displacement ~10 pm over a distance of 2–3 u.c. from the
interface. This result indicates that ionic polar displacements
from the ferroelectric layer penetrate into the conductive oxide
electrode, which is consistent with the theoretical predictions for
PTO/SRO25 and BTO/SRO28 heterostructures. Our results show
that only 1–2 u.c. of SrO-terminated SRO electrode are weakly
polarized to screen a depolarizing field in. To reveal the origin of
the polarized SRO, we conducted the cross-sectional STEM
imaging of SRO layer without a BFO layer. We found that the
tetragonality of SRO film was about 1.02–1.03, whereas the
atomic displacement in SRO was less than 5 pm (Supplementary
Figure 7), which agrees with the centrosymmetric structure of
bulk SRO. Thus, the large off-center displacement of Ru cations
near the SRO/BFO interface is caused by the polarization of BFO
films.

Our first-principles calculations in Fig. 2b predict a similar
trend for the displacement of B-site cations at the interface of the
FE layer/oxide electrode. Theoretically, in both asymmetric and

symmetric environments, ultrathin BFO films should have a
similar relative displacement (Supplementary Figure 8). For the
SRO/BFO/vacuum heterostructure, surface ionic charges and
screening charges assist to stabilize two polarization states. The
tetragonal BFO with c/a of 1.05 observed in the experiment gains
an energy ~0.54 eV per unit cell with respect to the paraelectric
phase due to ionic off-centering and volume enlargement
(Supplementary Figure 9).

We also observe that the out-of-plane lattice parameter c
estimated from A–A site distance and B–B site distance maintains
a constant value in STO but gradually increases in SRO when
approaching the SRO/BFO interface, eventually reaching the
value of BFO (Fig. 3c). The in-plane lattice parameter a across the
entire heterostructure maintains a constant value of about
0.39 nm, which reveals good coherent epitaxy. The tetragonality
value (c/a) of BFO is estimated to be 1.04–1.05, which is quite
close to the value measured by XRD. The strain across the SRO/
BFO interface is only 0.88% (Supplementary Figure 10), suggest-
ing not be the main factor responsible for ferroelectricity in the
ultrathin BFO films. Thus, our experimental and theoretical
results demonstrate that a sizable ionic polarization of the oxide
electrode at the interface may be one of the reasons resulting in
the critical thickness for ferroelectricity to be reduced or absent in
our BFO films28. Note that another important reason of
stabilizing ferroelectricity in the two-dimensional BFO includes
screening of polarization charge at the top surface by various
ionized surface adsorbates such as hydroxyl groups and protons,
derived from H2O molecules and organic molecules27,29,30. The
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Fig. 1 Atomic-scale observation of polarization in 2- and 3-u.c. BFO. a Atomic-resolution HAADF-STEM image of 2-u.c. BFO. The scale bar is 2 nm.
b Superposition of a magnified image and B-site atomic displacement vector map from the area marked with a white dashed rectangle in a. c Schematic of
the unit cell of ferroelectric BFO, DFe denotes the relative displacement of the Fe atoms. d HAADF-STEM image of 3-u.c. BFO film. The scale bar is 2 nm.
e Superposition of a magnified image and B-site atomic displacement vector map from the area marked with a white dashed rectangle in d. In the insets of
b, e, yellow arrows represent the displacement vectors of B-site atoms and white dashed lines are drawn to guide visually. The length and direction of the
arrows represent the magnitude and direction of the displacement vectors concerning the scale bar in the upper right corner, respectively. f–j The false-
color Bi, Fe, Sr, Ru, and overlaid EDX elemental maps of e, respectively. The scale bar is 0.5 nm
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role of surface screening charges in the ferroelectric polarization
switching is demonstrated below.

FE polarization switching at room temperature. The stability
and switchability of the FE polarization of two-dimensional
BFO film at a larger scale were examined by high-resolution
PFM. Figure 3a, c shows the out-of-plane switching spectro-
scopy PFM (SS-PFM) results for 2-u.c. and 3-u.c. BFO films
measured in air, respectively, while Fig. 3b, d shows the SS-PFM
results for the same films measured in dry high-purity argon,
respectively. The in-plane PFM signals of such thin ferroelectric
films are too weak to be measured in our scanning probe
microscope (not shown here). The strong hysteresis behavior
and butterfly-like shape are observed in phase and amplitude
signals, respectively, confirming that ferroelectricity is sustained
when the thickness of BFO films is down to 2-u.c. Similar
behavior has been observed in other ultrathin ferroelectric
films, such as 9-u.c. PTO31, 4-u.c. BTO32, and 1–2 layer
PVDF33. Even when the BFO thickness is decreased to 1-u.c.,

clear hysteresis loops and butterfly-like shapes are observed
(Supplementary Figure 11). Moreover, SS-PFM results show a
squarer phase loop and larger coercivity when measured under
dry and inert Ar atmosphere as compared to those measured in
air. This is likely due to organic molecules and moisture present
in air, aiding the polarization switching via domain nucleation
mechanism34,35. On the other hand, polarization switching in
Ar atmosphere occurs more coherently via continuous
mechanism35, which results in a larger coercivity. A larger
coercive voltage was also observed in our 2-u.c. sample as
compared to the 3-u.c. sample. This increase in coercive voltage
due to the change in the mechanism of polarization switching
from domain nucleation to continuous is further confirmed by
SS-PFM measurements on a 12 nm thick BFO sample (Sup-
plementary Figure 12). The out-of-plane PFM images of 2-u.c.
BFO in air (Fig. 3e, f) and in Ar (Fig. 3g, h) are consistent with
the results of SS-PFM measurements. The phase and amplitude
images measured in Ar show better contrast than those mea-
sured in air, which is likely associated with the surface
screening charges from adsorbates. SS-PFM maps (Supple-
mentary Figure 13) on 2-u.c. and 3-u.c. BFO under Ar atmo-
sphere, respectively, indicate that the ferroelectric properties of
BFO films are uniform over a large area.

With decreasing ferroelectric film thickness, especially for
several unit cells thick film, surface screening charges consider-
ably affect the PFM results for ultrathin BFO (Fig. 3), making
them similar to those for 1-nm BTO36, 2-nm La-doped
BiMnO3

37, and 3-nm Sm-doped BFO38. We employ a grounded
conductive tip without electrical bias to scan the bare surface of
ferroelectric film (details in Supplementary Note 3), reducing the
effect of such surface screening charges through a friction
process39. A better phase contrast (Supplementary Figure 14) is
obtained, which agrees with the STEM observation. Surface
potential distribution after electrical poling was also measured by
KPFM to understand the screening mechanism in polarization
switching (Supplementary Figure 15). A change of the depolariz-
ing field arising from the polarization switching is completely
compensated by the surface charges, which assists in stabilizing
the oppositely polarized state of ultrathin BFO in the electrical
switching process. Time-dependent PFM signals (Supplementary
Figure 16) show that the amplitude difference of poling regions
decreases by few (10%) percent in the first 2 h after electrical
poling, and then almost remains constant over next 48 h. It is
much larger than the lifetime (<0.5 h) of non-ferroelectric
signals40, which reveals the polar states in the two-dimensional
BFO films are switchable and stable.

Note that some non-ferroelectric mechanisms, such as
surface and interface-trapped charges and field-induced-ion
redistribution41,42 can also contribute to PFM signals. To rule
out those mechanisms, we employ special PFM approaches32,42,
where PFM images are obtained after applying different VDC

voltages (Supplementary Figure 17), and local hysteresis curves
are measured using different VAC voltages (Supplementary
Figures 18 and 19). Long lifetime, sharp phase contrast, and
VAC dependence of loops reveal the signature features typical for
ferroelectric materials. We note that PFM measurements of SRO
electrode show no ferroelectric behavior (Supplementary Fig-
ure 20). We also find the negligible PFM signals for 2-u.c. BTO
and STO (Supplementary Figures 21–23). On the other hand,
ferroelectricity of the ultrathin BFO films is confirmed by
measuring the ferroelectric hysteresis loops directly on the
top electrode (Supplementary Figure 24). Overall, combining
systematic PFM measurements with KPFM characterization,
we demonstrate that the out-of-plane FE polarization of
ultrathin BFO film is stable and switchable, even down to a
thickness of 1-u.c.
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Ferroelectric tunnel junctions with a two-dimensional BFO
barrier. Using the out-of-plane polarization of a ferroelectric
ultrathin film, FTJ device with 1-u.c.-thick BFO barrier layer
(Fig. 4a) was examined with conductive AFM. Polarization
switching produces a high resistance (OFF) state and a low
resistance (ON) state, through modulating a potential barrier
height. Figure 4b shows the performance of the 1-u.c. BFO-FTJ at
room temperature. Current density–voltage (J–V) curves between
−0.3 and 0.3 V are measured after a 30 ms square write voltage
pulse of ±5 V with the write and read voltage sequence (Inset of
Fig. 4b) and reveal a nonlinear characteristic and a noticeable
difference in resistance. Using direct tunneling equation based on
the Wentzel−Kramers−Brillouin (WKB) theory extended by
Gruverman et al.43, we could simultaneously fit the ON/OFF state
conductance curves, indicating that the tunneling electro-
resistance (TER) effect in ultrathin BFO originates from
polarization-modulated tunnel transmission44. To rule out the
extrinsic effect from an electrode on TER, we examined transport
behavior and ferroelectricity of SRO (Supplementary Figure 20).
As expected, SRO electrode shows no ferroelectric response, and
the J–V curves of SRO at the virgin state and poled state by
voltage pulses exhibit a typical Ohmic resistance behavior of a
metallic material. We obtain a large TER ratio (defined as TER=
(Jon−Joff)/Joff) of 370% for 1-u.c. BFO-FTJ and an even larger TER
ration of 2700% for 2-u.c. BFO-FTJ (Supplementary Figure 25).
We compare the performance of our tetragonal BFO (T-BFO)-

FTJ with other similar ultrathin FTJs reported recently, listed in
the Supplementary Table II. It is evident that the tetragonal BFO
junctions display higher TER at a smaller thickness, which is very
crucial for the application of FTJs in miniaturized electronic
devices.

Discussion
It has been reported that ferroelectricity of BFO grown on SRO
disappears below 2 nm of thickness. In those reports, the BFO
films grown on the monoclinic (Pbnm) SRO electrode were in the
rhombohedral or monoclinic phase22,26. On the contrary, both
BFO and SRO films in our work show coherent epitaxial growth
with the STO substrate and are of purely tetragonal phase with
the same orientation, as shown in Fig. 5 and supplementary
Fig. S26. Also, the absence of peak-splitting in all BFO reflections
reveals a single domain structure of the BFO film, which fully
agrees with the STEM and PFM results. The lattice parameters
were further refined via the reciprocal space vector (RSV) method
(details in Supplementary Note 4) and summarized in Supple-
mentary Table I. The c/a ratio of current BFO film is 1.04, which
is larger than 1.02 of rhombohedral BFO. To further gain insight
on the preservation of ferroelectricity at the two-dimensional
limit, we compared our BFO with other conventional tetragonal
ferroelectric materials (i.e., PZT, PTO, and BTO)15,16 grown on
SRO electrode; there are two key differences. First, the termina-
tion of SRO at our SRO/BFO interface is B-site (RuO2) as shown
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schematically in Fig. 5a and confirmed by HAADF-STEM images.
Therefore, the first FeO2 layer has the same neighboring chemical
environment as bulk BFO and the B-site termination more

effectively screens the depolarizing field than the A-site termi-
nation (Supplementary Figure 5). It has been pointed out that
environment of B sites plays a key role in reducing the critical
thickness of PTO for ferroelectricity16. Second, the tetragonality
of our BFO still remains as high as 1.04 even the thickness is
reduced to 1- and 2-u.c. This is in contrast to tetragonality of
PTO decreasing from 1.06 to 1.01 when the thickness is reduced
from bulk to 1-u.c.3,16,19. Only when the tetragonality is larger
than 1.03 (corresponding to 3-u.c.), the ferroelectricity of PTO
persists.

Recently, ferroelectricity was observed at 1.5-u.c. PZT thinned
by an ion milling process, which is mainly attributed to the
strong Pb–O bond or the proximity effect of thicker FE region18.
In our BFO films, besides the crystal structure, tetragonality and
interfacial chemical environment, the effective screening from
ionic displacements of the bottom oxide electrode and screening
charges at the interface and top surface might help to stabilize
the polar states at atomic thickness. It has been reported that
oxygen vacancy may also be able to induce polarization such as
in LAO (LaAlO3)/STO system41, for which at least 5-u.c. of LAO
and very low oxygen growth pressure are required. However,
our samples are fabricated under high oxygen pressure and
cooled to room temperature under pure oxygen ambient at a
slow cooling rate (5 °C min−1) to minimize oxygen vacancies.
Besides, after electrical poling, the topography of films also
appears unaffected as confirmed by AFM, which implies elec-
trochemical phenomena in our experiment is weak45. Therefore,
oxygen vacancies induced polarization and electrochemical
reaction in BFO do not play a major role in our measured
ferroelectric behavior.

In summary, the out-of-plane room-temperature ferroelec-
tricity and its switchability down to the two-dimensional limit
in tetragonal BiFeO3 films were observed. The experimental
observations and theoretical calculations suggest that the
crystallographic structure, tetragonality, interfacial chemical
environment, and the ionic polarization of oxide electrode
contribute to reduce or eliminate the critical thickness for fer-
roelectricity. In addition, a TER ratio of ~370% was achieved in
FTJ with 1-u.c. tetragonal BiFeO3 tunnel barrier, which shows
great promise for high-density data storage. Our findings will
open up possibilities for miniaturizing ferroelectric-based
devices.
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Methods
Sample preparation. All ultrathin BFO films were epitaxially grown on atomically
smooth (001) STO single-crystal substrates (Crystec GmbH) by laser molecular
beam epitaxy (LMBE) technique (KrF laser 248-nm). After deposition, the samples
were cooled to room temperature under a pure oxygen ambient at a cooling rate of
5 °C min−1 to reduce oxygen vacancy.

Sample characterization. AFM, PFM, KPFM, and C-AFM measurements were
carried out on a commercial scanning probe microscope (Asylum Research MFP-
3D) instrument to characterize the morphology, ferroelectricity, distribution of
surface electrostatic potential, and nanoscale resistance switching, respectively.
Atomically flat atomic force microscopy (AFM) images of STO, SRO, and BFO,
with clear terraces separated by ~0.39 nm high steps, respectively, were observed,
as shown in supplementary Figure 1. The crystal structure and strain state were
characterized by synchrotron XRD using a four-circle diffractometer at the
Singapore Synchrotron Light Source (SSLS). The atomically smooth surface and
interface were also verified by X-ray reflectivity (XRR) (Supplementary Figure 27).
Cross-sectional TEM samples were prepared with a focused ion beam setup
(DA300, FEI). The microstructure, thickness, and element distribution of the
films were characterized using aberration-corrected STEM at high-angle annular
dark-field mode and energy dispersive X-ray mapping on FEI Titan G2 80–200
microscope equipped with a Super-X EDX detector at an emission voltage of
200 kV.

Others. The schematic crystal structure is produced using VESTA 346. The detailed
information of the film growth, characterization, atom position determination, and
first-principles calculations are listed in the supplementary section.

Data availability. The authors declare that all other relevant data supporting the
findings of the study are available in this article and in its Supplementary Infor-
mation file. Access to our raw data can be obtained from the corresponding author
on reasonable request.
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