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Abstract

Objective

Monogenic diabetes can be misdiagnosed as type 1 or type 2 diabetes in children. The

right diagnosis is crucial for both therapeutic choice and prognosis and influences genetic

counseling. The main objective of this study was to search for monogenic diabetes in Span-

ish pediatric patients suspected of type 1 diabetes with lack of autoimmunity at the onset

of the disease. We also evaluated the extra value of ZnT8A in addition to the classical IAA,

GADA and IA2A autoantibodies to improve the accuracy of type 1 diabetes diagnosis.

Methods

Four hundred Spanish pediatric patients with recent-onset diabetes (mean age 8.9 ± 3.9

years) were analyzed for IAA, GADA, IA2A and ZnT8A pancreatic-autoantibodies and

HLA-DRB1 alleles. Patients without autoimmunity and those with only ZnT8A positive were

screened for 12 monogenic diabetes genes by next generation sequencing.

Results

ZnT8A testing increased the number of autoantibody-positive patients from 373 (93.3%) to

377 (94.3%). An isolated positivity for ZnT8A allowed diagnosing autoimmune diabetes in

14.8% (4/27) of pediatric patients negative for the rest of the antibodies tested. At least 2 of

the 23 patients with no detectable autoimmunity (8%) carried heterozygous pathogenic vari-

ants: one previously reported missense variant in the INS gene (p.Gly32Ser) and one novel

frameshift variant (p.Val264fs) in the HNF1A gene. One variant of uncertain significance

was also found. Carriers of pathogenic variants had HLA-DRB1 risk alleles for autoimmune

diabetes and clinical characteristics compatible with type 1 diabetes except for the absence

of autoimmunity.
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Conclusion

ZnT8A determination improves the diagnosis of autoimmune diabetes in pediatrics. At least

8% of pediatric patients suspected of type 1 diabetes and with undetectable autoimmunity

have monogenic diabetes and can benefit from the correct diagnosis of the disease by

genetic study.

Introduction

Type 1 diabetes (T1D) is an organ-specific autoimmune disorder caused by the destruction of

insulin-producing pancreatic β-cells leading to an absolute insulin deficiency. Although T1D

can be diagnosed at any age, it is one of the most common chronic diseases of childhood.

Peaks in presentation occur between 5–7 years of age and at or near puberty [1]. The presence

of autoantibodies against several pancreatic islet molecules in response to the autoimmune

process is, to date, the best predictive and diagnostic marker for T1D [2]. The autoantibodies

that have been of most interest from a clinical and research perspective are islet-cell cyto-

plasmic autoantibodies (ICA), those against the 65kD isoform of glutamic acid decarboxylase

(GADA), the pancreatic tyrosine phosphatase-like molecule IA-2 (IA-2A) and insulin autoan-

tibodies (IAA). More recently, Zinc transporter 8 protein islet autoantibodies (ZnT8A) have

also been identified [3]. Nevertheless, not all patients with suspected T1D show evidence of

autoimmunity on the basis of the above-mentioned markers [4].

The trigger of the autoimmune process associated with T1D is determined by complex

interactions between several genetic loci (nearly 40 loci described so far) and environmental

factors [1]. Susceptibility to and protection against the development of autoimmune diabetes

are mainly associated with the highly polymorphic sequences of the HLA class II genes on

chromosome 6p21. In Caucasians, HLA haplotypes DRB1�03:01-DQA1�05:01-DQB1�02:01

and DRB1�04-DQA1�03:01-DQB1�03:02 confer the greatest susceptibility, while the

DRB1�15:01-DQA1�01:02-DQB1�06:02 haplotype provides disease protection [5].

Monogenic diabetes (MD) is a clinically and genetically heterogeneous disease that includes

maturity onset diabetes of the young (MODY) and infancy-onset and neonatal diabetes melli-

tus, which are characterized by functional defects of pancreatic β-cells resulting in insulin defi-

ciency and moderate to severe hyperglycemia in early life [6]. It accounts for at least 1–2% of

all cases of diabetes. MODY, the most common type of monogenic diabetes, is an autosomal-

dominant form of non-autoimmune diabetes, typically diagnosed before 25 years of age. More

than 12 different genes have been associated with MODY. Pathogenic variants in GCK and

HNF1A genes account for approximately 80% of all MODY cases followed by HNF4A and

HNF1B genes representing about 10% and 6% respectively, although percentages can differ

dramatically country-to-country due to different recruitment biases. Pathogenic variants in

the remainder of the genes are rare forms of MODY [7].

Given that the clinical features of MD are often non-specific, it is estimated that around

80% of MD cases remain undiagnosed or are misdiagnosed as type 1 or type 2 diabetes [7].

Identification of the correct etiology of diabetes is crucial for clinical management, therapeutic

choice and prognosis, as well as for genetic counseling, when applicable [8].

The main objective of this study was to search, in a cohort of Spanish pediatric patients sus-

pected of T1D, whether a monogenic form of diabetes could be identified in cases with absence

of immunological markers at the onset of the disease. We also aimed to assess the further value

MODY in children diagnosed with type 1 diabetes
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of ZnT8A screening in addition to the classical IAA, GADA and IA2A autoantibodies for the

diagnosis of autoimmune diabetes.

Methods

Patients

We recruited 400 unrelated pediatric patients with recent-onset type 1 diabetes diagnosed

according to the International Society for Pediatric and Adolescent Diabetes (ISPAD) criteria

[9] who were less than a week on insulin replacement therapy. Participants were recruited

from seven referral hospitals in Spain between 2012 and 2017 (mean onset age 8.9 ± 3.9 years,

47.3% female). In all cases HLA-DRB1 alleles and IAA, GADA, IA2A and ZnT8A at diagnosis

were analyzed. It was considered positive autoimmunity to have at least one positive antibody.

Clinical data collected from all patients at diabetes onset included: age, presence of diabetic

ketoacidosis (DKA) according to the ISPAD criteria [10] and family history of diabetes

(Table 1 and S1 Table).

In cases with absence of autoimmunity, more detailed clinical data recorded at diagnosis

and at the last check-up was added. These included: body mass index (BMI) expressed as z-

score for children according to the 2010 Spanish growth charts [12], duration of diabetes

symptoms (polydipsia, polyphagia, polyuria, weight loss and/or blurred vision), analytical data

and insulin dose (Table 2). The study was approved by the corresponding Clinical Research

Ethics Committee and written informed consent was obtained from all subjects and/or their

parents.

Antibody analyses

Pancreatic autoantibodies (IAA, GADA, IA2A and ZnT8A) were determined in serum at diag-

nosis, using previously described standardized radio-assays [13]. IAA were determined using a

competitive fluid-phase radio-assay which uses [125I]-labelled, recombinant human insulin

(PerkinElmer Inc., Waltham, MA, USA) as antigen. GADA, IA2A and ZnT8A were deter-

mined by means of standardized radio-binding assays using in vitro transcribed and translated

[35S]-labelled recombinant human full-length GAD65, IA2ic (amino acids 605–979) and ZnT8

antigen. The ZnT8A assay simultaneously measures autoantibodies against both variants of

Table 1. Characteristics of the population included in the study according to antibody status.

Antibody-positive (n = 377) Antibody-negative (n = 23) p-value

Gender (% female) 48.0 34.8 n.s.a

Age of onset (years) 8.9 ± 3.9 9.6 ± 4.2 n.s.c

1st degree relatives with any DM 17.2 13.0 n.s.b

Presence of DKA 40.8 18.2 0.035a

HLA-DRB1� 0 risk alleles 8.0 8.7 n.s.b

HLA-DRB1� 1 risk allele 42.4 43.5 n.s.a

HLA-DRB1� 2 risk alleles 49.6 47.8 n.s.a

Age is shown as mean ± SD. Rest of data is shown as %. 1st degree relatives: parents and/or siblings (Ab+ n = 372; Ab- n = 23). DKA: Diabetic Ketoacidosis (Ab

+ n = 377; Ab- n = 22). HLA-DRB1 risk alleles are defined based on the report [11]: 0 risk alleles (no DR3 no DR4); 1 risk allele (DR3 or DR4); 2 risk alleles (DR3/3,

DR4/4 or DR3/4).
a Pearson´s chi-square test
b Fisher‘s exact test
c Mann-Whitney U-test

n.s.: no significant differences (p>0.05).

https://doi.org/10.1371/journal.pone.0220634.t001
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the COOH-terminal domain (Arg325/Trp325). Antibody results for GADA, IA2A and ZnT8A

are expressed as a semi-quantitative index calculated using a dilution curve of a positive sam-

ple. All cut-off values were set at the 99th percentile of the control population. Our laboratory

has participated in different islet autoantibody standardization program (IASP) workshops,

the last one in 2018. Specificity was 100% for all four antibody assays and sensitivity was 65%

for IAA, 68% for GADA and 62% for IA2A and ZnT8A.

Genetic analyses

DNA extraction was performed using the QiAamp DNA blood kit (Qiagen, Hilden, NRW,

Germany). DNA quality and quantification was assessed using both NanoDrop ND-1000

(Thermo Fisher Scientific, Waltham, MA, USA) and Qubit 2.0 Fluorometer (Thermo Fisher

Scientific) consistent with the manufacturers’ instructions.

HLA-DRB1 typing. Polymerase chain reaction sequence-specific oligonucleotide

method (PCR-SSO) combined with Luminex technology was carried out using the LABType

RSSOH2B1 (HLA-DRB1-HD) commercial kit (One Lambda, Inc., Canoga Park, CA, USA).

All procedures were performed according to the manufacturers’ instructions. HLA-DRB1 risk

alleles for T1D were defined based on the previous report published by our group [11].

Genetic screening. Genetic testing was performed by next generation sequencing (NGS).

A customized gene panel was designed with the Ion AmpliSeq Designer tool v.4.4.8 (www.

ampliseq.com). The gene panel comprised the 3’ and 5’ UTR regions, promoters, the entire

coding region and exon-intron boundaries (± 50 bp) of 12 known genes related to monogenic

diabetes, including the most frequent genes, such as GCK, HNF1A, HNF4A, HNF1B, INS,

ABCC8, KCNJ11 and the infrequent ones, PDX1, NEUROD1, KLF11, PAX4 and BLK. The tar-

get size was 69,220 bp (272 amplicons from 125 to 375 bp in size) with a theoretical coverage

of 99.13% for the targeted regions.

Libraries were prepared in three pools per patient with the Ion Ampliseq Library kit 2.0

(Thermo Fisher Scientific) according to the manufacturer´s protocol. Sequencing was per-

formed on a PGM Ion Torrent NGS sequencer using the Ion PGM Hi-Q View Sequencing kit

(Thermo Fisher Scientific) and an Ion 316 chip to obtain an average coverage depth of 100

reads per base. Sequence alignment and variant calling were performed using Torrent Suite

Software v.5.0.4. Resulting aligned reads (BAM files) and variant calling files (VCF files) were

then transferred to Ion Reporter Software v.5.10.0 for variant annotation. Variants with low

quality (Phred-like score� 30 associated with a p-value > 0.001) and Minor Allele Frequency

(MAF) > 0.01 in population databases were excluded. The minimal depth per base established

to validate the sequence was 20 reads and any area of interest that did not reach at least 20

reads was sequenced by Sanger (ABI 3130xl Genetic Analyzer, Thermo Fisher Scientific). The

average coverage depth achieved per base and per patient was 508 reads (from 885 to 218 with

a base coverage uniformity of 92%) and 98% of targeted bases were covered by more than 20

reads.

For the validation of this panel we included independent DNA samples from 29 patients

with 64 previously sequenced variants. The analysis showed a sensitivity of 98.5% and a speci-

ficity of 96.5% for point variations and small indels (from 1 to 15 bases).

All variants of interest were confirmed by Sanger sequencing using the Big Dye Terminator

v.3.1 Cycle Sequencing Kit (Thermo Fisher Scientific) and the ABI 3130xl DNA sequencing

system (Thermo Fisher Scientific). When possible, parents and family members of positive

patients were analyzed.

Variant classification. The pathogenicity of rare variants detected (MAF� 0.01) was

determined according to the recommendations of the American College of Medical Genetics

MODY in children diagnosed with type 1 diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0220634 July 31, 2019 5 / 14

http://www.ampliseq.com
http://www.ampliseq.com
https://doi.org/10.1371/journal.pone.0220634


(ACMG) for variant classification and reporting [14]. These guidelines classify variants into

five categories: pathogenic, likely pathogenic, variant of unknown significance (VUS), likely

benign and benign. The ACMG criteria for variant classification are based on a set of different

evaluation fields. Population data was determined from public genomic databases (1000

Genomes Project, GnomAD and dbSNP). Other criteria to consider were based on the type of

variant (eg. frameshift, nonsense and essential splice variants) and on clinical, functional and

genotype-phenotype data from the literature and disease databases (Human Gene Mutation

Database Professional, PubMed). If such variants had not been reported previously, they were

evaluated to predict their possible functional significance using in silico prediction tools such

as SIFT (http://sift.jcvi.org/), PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/), PROVEAN

(http://provean.jcvi.org/index.php), Mutation Taster (http://www.mutationtaster.org/), Pan-

ther (http://pantherdb.org/tools/csnpScoreForm.jsp), MutPred2 (http://mutpred.mutdb.org/)

and SNPs&GO (https://snps-and-go.biocomp.unibo.it/snps-and-go/). Rare variants were con-

sidered to be a VUS if the available information had limited or contradictory evidence for

pathogenicity.

MLPA analysis. Patients without pathogenic variants detected by NGS were analyzed by

Multiplex Ligation-dependent Probe Amplification (MLPA) to identify partial and whole gene

deletions or duplications of GCK, HNF1A, HNF4A and HNF1B genes, using the SALSA MLPA

MODY P241 Kit (MRC-Holland, Amsterdam, The Netherlands) according to the manufactur-

er’s instructions. Fragments were separated by capillary electrophoresis (ABI 3130xl Genetic

Analyzer) and analyzed using Gene-Mapper, v.4.0 software (Thermo Fisher Scientific).

Statistical analysis

Statistical analysis was carried out using SPSS software (v.21; SPSS Inc., Chicago, IL). Quanti-

tative variables were expressed as means and standard deviations and qualitative variables as

frequencies and percentages. The Mann-Whitney U test was used to compare quantitative var-

iables. Frequencies were compared using Pearson´s chi-square analysis and Fisher’s exact test

when necessary. The significance level was defined as p< 0.05.

Results

Immunological data

As shown in Table 3, prevalence of GADA, IA2A, IAA and ZnT8A in the 400 new onset pedi-

atric T1D patients was 73.3, 67.3, 64.8 and 57.3%, respectively. In 94.3% of the patients an

autoimmune response against the pancreatic β-cells was detected and 82.8% of them had two

or more positive antibodies. ZnT8A testing increased the number of autoantibody-positive

patients from 373 (93.3%) to 377 (94.3%) and allowed us to diagnose T1D in 14.8% (4/27) of

pediatric patients who were negative for the rest of the antibodies tested. Finally, 23 pediatric

patients (23/400, 5.7%) with clinical T1D diagnosis had negative autoimmunity.

Clinical data and HLA-DRB1 typing

The frequency of ketoacidosis at diagnosis was higher in patients with positive autoimmunity

compared with patients who did not show autoimmunity (40.6% vs. 18.2%, p = 0.036). There

were no significant differences in the age at diagnosis, the family history of diabetes and the

presence of HLA-DRB1 risk alleles for T1D between these two groups of patients (Table 1).

The clinical characteristics and HLA-DRB1 typing of the 23 autoimmune negative patients

are detailed in Table 2. In these 23 patients the mean onset age was 9.6 ± 4.2 years and 34.8%

were female. At the time of diagnosis, the mean BMI z-score was 0.02 ± 1.24, only two patients
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had obesity. All patients had hyperglycemia with a low mean C-peptide value of 0.28 ± 0.22

nmol/l and symptoms of diabetes at disease onset lasting from 3 days to 6 months. However,

ketoacidosis was identified at clinical presentation in only 18.2% (4/22) of them. HLA-DRB1

risk alleles for T1D were absent in two patients and the rest had 1 or 2 risk alleles.

Genetic data

A customized panel of 12 MODY genes was tested in 23 patients with negative autoimmunity.

The genetic screening revealed a total of five different rare variants (MAF < 0.01) in 6 patients;

all variants were present in a heterozygous state (Table 4). Two of them were classified as path-

ogenic, representing 8% (2/23) of pediatric patients with suspected T1D and negative autoim-

munity. No partial or whole gene deletions or duplications were detected.

We also performed the genetic study in the 4 patients with only ZnT8A positive autoimmu-

nity. None of them were found to have any variant suspected of monogenic diabetes.

The p.Gly32Ser pathogenic variant in the INS gene (patient 11) is known to cause proinsu-

lin misfolding [15] and has been previously reported in patients with permanent neonatal dia-

betes [16] and also in patients with diabetes onset during infancy, childhood or adulthood

[17–19]. Parental samples were unavailable for genetic analysis. We also identified a novel

pathogenic variant (p.Val264fs) in the HNF1A gene (patient 18) that, as far as we know, has

not been published. This variant involves the thymine duplication at nucleotide 789, resulting

in a frameshift that generates a premature stop codon at position 53 of the new reading frame.

Thus, it is expected to result in a truncated protein with loss of normal function. The variant

co-segregates with early-onset diabetes in the relatives of this family. It was identified in the

younger brother of the proband who had been diagnosed later with diabetes at the age of 10

Table 3. Patients with positive autoimmunity according to the number of antibodies evaluated.

1 antibody Patients with positive autoinmmunity %

ZnT8A 229 57.3

IAA 259 64.8

IA2A 269 67.3

GADA 293 73.3

2 antibodies

IA2A, ZnT8A 316 79.0

IAA, IA2A 333 83.3

IAA, ZnT8A 337 84.3

GADA, ZnT8A 338 84.5

GADA, IAA 351 87.8

GADA, IA2A 361 90.3

3 antibodies

IAA, IA2A, ZnT8A 352 88.0

GADA, IA2A, ZnT8A 367 91.8

GADA, IAA, ZnT8A 370 92.5

GADA, IAA, IA2A 373 93.3

4 antibodies

GADA, IA2A, IAA, ZnT8A 377 94.3

In all patients (n = 400) IAA, GADA, IA2A and ZnT8A were analyzed at diagnosis. Data shows the results of the

different combinations of one or more antibody detection assays. It is considered positive autoimmunity to have at

least one antibody-positive.

https://doi.org/10.1371/journal.pone.0220634.t003
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years. His mother, who was diagnosed primarily with gestational diabetes and subsequently

with diabetes, also carries the same variant.

In our cohort, three other rare variants were found. One VUS variant in the HNF1B gene

(p.His336Asp) was found in patient 14. Parental samples were unavailable for genetic analysis

and there is no information about extra-pancreatic complications. Additionally, in silico analy-

ses were inconsistent. Two other rare variants have recently been re-classified as likely benign

variants. The p.Gly31Asp variant in the HNF1A gene was found in patient 17. Parental analysis

revealed that the variant is carried by her asymptomatic mother and in silico analysis predicted

contradictory results. Finally, the p.Gly76Cys variant in the HNF1B gene is carried by patients

9 and 22. In both cases the variant was inherited from asymptomatic parents who had no

apparent extra-pancreatic complications associated with HNF1B. All the in silico algorithms

predicted a deleterious impact.

Discussion

Different studies of newly diagnosed T1D patients indicate that 6–18% of children and adoles-

cents with clinical T1D do not show evidence of humoral islet autoimmunity at disease onset

[4,32,33]. Our study, with 6% (23/400) of pediatric patients with clinical diagnosis of T1D and

undetectable autoimmunity, corroborates these results.

The molecular genetic screening performed in these autoimmune negative patients showed

five different rare variants. At least two of them are clearly pathogenic alterations responsible

for monogenic diabetes: p.Gly32Ser in the INS gene and p.Val264fs in the HNF1A gene. Con-

sequently, monogenic diabetes was identified in at least 8% (2/23) of pediatric patients with

suspected T1D and negative autoimmunity. Other studies with different approaches, have esti-

mated a prevalence comparable to that of our cohort [34–37]. Furthermore, our study provides

additional evidence that pathogenic variants in INS and HNF genes play critical roles in child-

hood-onset patients with antibody-negative but insulin-requiring diabetes. We did not find

any pathogenic variant in the GCK gene despite its major role in MODY. It is not a surprising

result because heterozygous GCK pathogenic variants result in moderate diabetes that does

not match the typical clinical features of T1D onset on which our study is focused.

In the HNF1A-MODY case (p.Val264fs), three family members carried the same patho-

genic variant, the proband, his mother and the younger brother. The genetic finding allowed

Table 4. Rare genetic variants in MD genes identified in patients with suspected T1D and negative

autoimmunity.

Patient

ID

Gene Exon Nucleotide

change

AA change Type dbSNP MAF_ALL

GnomADe

Variant

effect

Ref.

11 INS 2 c.94G>A p.Gly32Ser Missense rs80356664 0 Pathogenic [15–

19]

18 HNF1A 4 c.789dupT p.Val264fs Frameshift None 0 Pathogenic

14 HNF1B 4 c.1006C>G p.

His336Asp

Missense rs138986885 0.0002 VUS [20–

22]

17 HNF1A 1 c.92G>A p.

Gly31Asp

Missense rs137853247 0.001 Likely

benign

[23–

27]

9 & 22 HNF1B 1 c.226G>T p.

Gly76Cys

Missense rs144425830 0.001 Likely

benign

[27–

31]

Reference sequences: INS, NM_000207.2; HNF1A, NM_000545.5; HNF1B, NM_000458.2. dbSNP: Single Nucleotide

Polymorphism Database. MAF_ALL in GnomADe: Maximum Allele Frequency of the variant in the Exome Genome

Aggregation Database. VUS: Variant of Uncertain Significance

https://doi.org/10.1371/journal.pone.0220634.t004
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us to adjust the treatment of the mother with oral anti-diabetic agents and to prescribe sulfo-

nylureas for the younger brother from the onset of the disease. We simultaneously changed

the treatment of the proband from insulin to sulfonylureas. Mother and younger brother dem-

onstrated a successful response to sulfonylureas. Due to the non-compliance with therapy, the

proband exhibited unstable diabetes control.

Regarding the p.His336Asp variant in the HNF1B gene, it is unclear if it is pathogenic.

Published data do not show clear evidence of pathogenicity [20,21] and it has been classified

as a variant of uncertain significance in a recent report [22]. The other two rare variants, p.

Gly31Asp in the HNF1A gene and p.Gly76Cys in the HNF1B gene, have been recently re-clas-

sified as likely benign polymorphisms [27]. Although the p.Gly31Asp variant has been previ-

ously described in the literature associated with monogenic diabetes [23], the pathogenicity of

this variant is currently questioned based on allele frequency data in the general European

population [24,25] and on functional studies that do not demonstrate a clear impairment of

protein functionality [26]. In addition, the family study shows the variant is inherited from an

unaffected mother. Therefore, based on this information, we interpret p.Gly31Asp as a likely

benign variant. The situation is similar concerning the p.Gly76Cys variant in the HNF1B gene

which, although previously described in the literature associated with monogenic diabetes

[28], has been recently found at a frequency of 0.5% in a healthy Spanish population [29] and

greater than 8% in the North African population [30,31]. This allele frequency is higher than

that expected based on the estimated prevalence of monogenic diabetes in the population.

Moreover, the family study shows that unaffected relatives carry the variant, so based on this

information we interpret p.Gly76Cys as a likely benign variant.

The clinical and analytical data of the patients with non-autoimmune diabetes in our cohort

support the diagnosis of T1D and, except for the absence of autoantibodies, do not specifically

suggest monogenic diabetes. Low fasting serum C-peptide values at the onset of the disease

(less than 0.2 nmol/l) denote low endogenous insulin production and correlate with T1D [38].

In our cohort, 55% (11/20) of the children with negative autoimmunity had low C-peptide lev-

els in conjunction with hyperglycemia at diagnosis. The presence of slightly higher levels in

the rest of the patients might be related to a greater pancreatic reserve at the onset of the dis-

ease. On the other hand, there are only two patients with obesity (patient 2 and 8) who might

be suspected of having T2D. However the likelihood of T2D has been discarded as it is a rare

disease in pediatrics in Europe [39,40]. In addition, both cases are Caucasian, with healthy

parents, clear symptoms of diabetes at diagnosis, not too high C-peptide levels and no clinical

or analytical evidence of insulin resistance. Furthermore, one of them has autoimmune thy-

roiditis. Therefore, although the absence of positive pancreatic-autoantibodies suggests mono-

genic diabetes, a diagnosis of T1D in our cohort should not be definitively ruled out. There

could be other autoantibodies, still not identified, that could have contributed to the develop-

ment of the autoimmune process in these patients and that could be signaled by positivity to

islet cell antibodies (ICA) [32,41]. Additionally, some mildly positive cases could not be identi-

fied by the assays. This error is minimized in our study by the combined measurement of four

pancreatic-antibodies for the diagnosis, achieving a 94.3% autoimmunity detection rate at the

onset of the disease.

In our cohort, the addition of the ZnT8A test to the traditional set of diabetes associated

autoantibodies has made it possible to identify autoimmunity in four patients who were

ZnT8A positive and otherwise antibody-negative. This represents a non-negligible percentage,

close to 15% of patients (4/27), who were diagnosed properly as T1D. The absence of patho-

genic variants in the four patients with only ZnT8A positive, supports recently published data

confirming ZnT8A as a marker for excluding patients from genetic testing for monogenic dia-

betes [42,43].
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Although autoantibodies are so far considered as the best biomarker to discriminate

MODY from T1D, we cannot ensure that there is no monogenic diabetes among pediatric

patients with positive autoimmunity at diagnosis. Nevertheless, both in our experience [11]

and in previously published studies [44,45], the proportion of patients with positive autoim-

munity and molecular diagnosis of MODY is the same as expected in the control population,

suggesting that autoantibodies are rare in MODY. However, other studies with different

approaches show higher prevalence of positive autoantibodies among MODY cases. GADA

and IA2A were found in Czech patients with MODY and delayed diabetes onset with insuffi-

cient disease control [46]. Pancreatic autoantibodies were also found in a high proportion

(17%) in German and Austrian patients with MODY, but this might be an overestimation due

to the fact that the diagnosis of MODY was not confirmed by genetic testing in 20% of studied

patients. Surprisingly, using the same testing protocol, the positive rate in patients with type 2

diabetes was even greater than in MODY patients [47].

A significantly lower presence of ketoacidosis at diagnosis in autoimmune negative patients

was found in our cohort, reflecting a less aggressive onset of diabetes in this subset of patients.

Nevertheless, factors involved in DKA development are not yet clear. A recent report has

found a correlation between the number of positive antibodies and the severity of ketoacidosis

[48], which supports the relation of DKA to the intensity of destruction of pancreatic β-cells.

Other reports have found a greater risk of DKA associated with different specific antibodies

[48,49]. However, most of the published data find no difference in rates of DKA and presence

or absence of autoimmunity [50,51] which substantiates the relationship of DKA to delayed

diagnosis rather than to the expression of antigenicity. Our study did not have the capacity to

find any other clinical differences among patients with positive and negative autoimmunity

and carriers and non-carriers of pathogenic variants, probably due to the small number of

patients. The two probands carrying pathogenic variants in this study had been previously

diagnosed with T1D, despite the absence of autoimmunity. In these particular cases, neither

clinical data nor HLA-DRB1 helped to differentiate MODY. In fact, both patients with MODY

had HLA-DRB1 risk alleles for T1D (1 and 2 risk alleles). Furthermore, as the presence of two

HLA-DRB1 risk alleles for T1D increases the probability of developing autoimmune diabetes

[11] we cannot dismiss the possibility that the proband carrying two HLA-DRB1 risk alleles

may also develop autoimmune diabetes in the future.

The main strength of the current study is the well-characterized cohort of T1D patients

based on the combination of four autoantibody assays. This enabled us to accurately define the

antibody-negative patients who were the target of the molecular testing. Another advantage is

the screening approach by NGS that extends the search for genetic variants to twelve genes

related to MD as well as the MLPA analysis. The possibility of misdiagnosing patients with

rarer forms of monogenic diabetes cannot be completely excluded, as patients may carry

variants in other known MD genes not tested in this study or in a gene not yet identified as a

monogenic cause of diabetes.

In summary, our study shows that ZnT8A is an autoantibody to be considered for improv-

ing the diagnosis of T1D in pediatrics. In addition, at least 8% of pediatric patients suspected

of T1D but with undetectable autoimmunity have monogenic diabetes and can benefit from

the correct diagnosis of the disease by genetic study.
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