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HIGHLIGHTS

� SNPeCPR improves coronary perfusion pressure, tissue perfusion, and carotid blood flow compared to epinephrine-based

standard advanced cardiac life support.

� In a porcine model of prolonged resuscitation, SNPeCPR was associated with decreased arterial oxygen saturation but

improved tissue oxygen delivery due to improvement in blood flow.

� Oxygen supplementation led to alleviation of hypoxemia and maintenance of the SNPeCPR hemodynamic benefits.

� Arterial oxygen saturation must be a safety endpoint that will be prospectively assessed in the first SNPeCPR clinical trial

in humans.
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ABBR EV I A T I ON S

AND ACRONYMS

A-a = alveolar-arterial

ACLS = advanced cardiac life

support

BLS = basic life support

CBF = carotid blood flow

CPP = coronary perfusion

pressure

CPR = cardiopulmonary

resuscitation

FiO2 = fraction of inspired

oxygen

ITD = impedance threshold

device

ROSC = return of spontaneous

circulation

SNP = sodium nitroprusside

SNPeCPR = sodium

nitroprusside–enhanced

cardiopulmonary resuscitation

VF = ventricular fibrillation
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Sodium nitroprusside–enhanced cardiopulmonary resuscitation has shown superior resuscitation rates and

neurologic outcomes in large animal models supporting the need for a randomized human clinical trial. This

study is the first to show nonselective pulmonary vasodilation as a potential mechanism for the hemodynamic

benefits. The pulmonary shunting that is created requires increased oxygen treatment, but the overall

improvement in blood flow increases minute oxygen delivery to tissues. In this context, hypoxemia is an

important safety endpoint and a 100% oxygen ventilation strategy may be necessary for the first human

clinical trial. (J Am Coll Cardiol Basic Trans Science 2020;5:183–92) © 2020 The Authors. Published by

Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
E ach year, approximately 400,000 out-
of-hospital cardiac arrests occur in
the United States (1,2). Of these,

approximately only 5% to 10% achieve
neurologically intact survival (3). Approxi-
mately one-third of patients experiencing
out-of-hospital cardiac arrests present with
ventricular tachycardia/ventricular fibrilla-
tion (VF) (4). Epinephrine is a commonly used
vasoconstrictor for standard cardiopulmonary resus-
citation (CPR) in and out of hospital protocols in
congruence with current American Heart Association
guidelines; however, no study to date has shown
improvement in long-term outcomes (5).
SEE PAGE 193
A new method of CPR has been proposed that
significantly increases forward blood flow and overall
patient outcomes (6–11). Sodium nitroprusside–
enhanced CPR (SNPeCPR) is the combination of 3
basic components: 1) SNP, a potent vasodilator, to
decrease peripheral vascular resistance in tandem
with abdominal binding (7,8) to decrease descending
aorta runoff and redirect blood flow to the vital organs;
2) an impedance threshold device; and 3) active
compression/decompression CPR to actively increase
venous return (11). Together, these components act
synergistically to increase coronary and cerebral
perfusion during CPR (12).

Previous studies of SNPeCPR have indicated an
improved carotid blood flow (CBF), end-tidal CO2, and
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return of spontaneous circulation (ROSC) rates and
short-term 24- to 48-h survival rates with favorable
neurologic function compared to those of standard
CPR (8,12–18). There appears to be a vital timepoint
after which hemodynamic decompensation during
extended standard CPR is inevitable and irreversible
(19). The use of SNPeCPR shifts the survival curve,
increasing a valuable window for which to resuscitate
the patient (8,12–18). This shift of the metabolic wall
represents an invaluable clinical application of patient
selection for furthered resuscitation efforts. As more
patients are treated following prolonged periods of
CPR, and with increasing access to enhanced CPR
(eCPR) and veno-arterial extracorporeal membrane
oxygenation therapies, providing a superior advanced
cardiac life support (ACLS) and CPR method will
become critical (20). Before the first clinical trial for
SNPeCPR can be performed, safety must be further
evaluated.

We sought to investigate the blood flow effects of
SNPeCPR during prolonged CPR and to understand
the predominant mechanism of its action. We hy-
pothesized that the predominant effect of SNPeCPR is
indiscriminate profound pulmonary vasodilation. As
such, the ability to maintain adequate oxygenation
with SNPeCPR was the main focus of this study.
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FIGURE 1 Study Protocol

ACLS ¼ advanced cardiac life support; admin ¼ administration (of); BLS ¼ basic life support; CPR ¼ cardiopulmonary resuscitation;

DC ¼ decompression; ISO ¼ isoflurane; ROSC ¼ return of spontaneous circulation; SNPeCPR ¼ sodium nitroprusside–enhanced

cardiopulmonary resuscitation; VF ¼ ventricular fibrillation; q5 min ¼ every 5 min.
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care was compliant with the National Research
Council’s Guide of 1996 for the Care and Use of Lab-
oratory Animals (protocol number 1802-35586A)(21).

ANIMAL MODEL. We used 25 Yorkshire pigs with an
average weight of 51.5 � 1.4 kg. Twelve animals were
randomized to receive SNPeCPR and 13 to receive
standard CPR. The surgical preparation, anesthesia,
and data monitoring have been described thoroughly
in previous studies (7,22). Intramuscular ketamine and
xylazine was provided as sedation (5 ml of 100 mg/ml
dose and 1 to 3 mg/kg, respectively). This was followed
by inhaled isoflurane at a dose of 1% to 1.4%. Endo-
tracheal intubation was performed with a 7.5-mm
endotracheal tube. Animals were ventilated with a
tidal volume of 10ml/kg using room air volume control
ventilation (Narkomed, Draeger Medical, Telford,
Pennsylvania). The respiratory rate was adjusted to
maintain partial pressure of carbon dioxide (PaCO2) of
40 mm Hg as measured by arterial blood (Gem 3500,
Instrumentation Laboratory, Bedford, Massachu-
setts). Arterial blood gases were obtained at baseline
and every 5 min until 30 min of CPR. Animal temper-
ature was measured with an esophageal temperature
probe and normothermia (37 � 0.5 oC) was maintained
with convective warming unit (Covidien Warm Touch,
Mansfield, Massachusetts). Vascular access was ob-
tained in the femoral artery and the right external ju-
gular vein percutaneously using ultrasound guidance
with an 8-F and 6-F catheter, respectively. The central
aortic blood pressure was measured with a Millar
catheter (Millar Instruments, Houston, Texas) placed
in the descending thoracic aorta. The right atrial
pressure was also measured with a Millar catheter that
was inserted via the right external jugular sheath. The
measurements from these Millar catheters were used
for calculation of coronary perfusion pressure as the
difference between diastolic blood pressure and right
atrial pressure in spontaneous circulation, and the
difference between decompression phase arterial
pressure and the right atrial pressure at maximal
decompression during the arrest. Both sheaths were
placed percutaneously with an ultrasound-guided
Seldinger technique. The left common carotid artery
was surgically exposed and a Doppler flow probe
(Transonic, 400-Series Multi-channel, Transonic Sys-
tems Inc. Ithaca, New York) was placed around it to
quantify the CBF. All animals received a 5,000-U
intravenous bolus of heparin upon completion of sur-
gical access. Hemodynamic data were continuously
recorded (Labview 2015, National Instruments,
Austin, Texas). Electrocardiograms were continuously
recorded, as well as end-tidal CO2, tidal volume,
minute ventilation, and blood oxygen saturation
(Cardiocap/5, Datex-Ohmeda, Louisville, Colorado).

EXPERIMENTAL PROTOCOL. Following the afore-
mentioned surgical preparation, baseline values were
recorded. The timeline for the experimental protocol
is outlined in Figure 1. VF was electrically induced in



FIGURE 2 Hemodynamic Comparison of SNP and Epinephrine During CPR

(A) Coronary perfusion pressure (B), lactate, (C) carotid flow, and (D) aortic pressure over the 30 min of cardiopulmonary resuscitation (CPR). All parameters except

systolic blood pressure are statistically significant between treatment groups after the 20-min CPR time mark. The 10-min CPR directly precedes intervention of

sodium nitroprusside (SNP) or epinephrine administration. Lactate p value for treatment is 0.003. p values for coronary perfusion pressure, carotid flow, systolic aortic

pressure, and diastolic aortic pressure on relaxation were <0.001, 0.002, 0.394, and 0.021, respectively. *p < 0.05, **p < 0.01, ***p < 0.001. BL ¼ basic life;

CPP ¼ coronary perfusion pressure; other abbreviations as in Figure 1.
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all animals with a pacing wire inserted through the
right jugular vein sheath into the right ventricle.
Upon inducing VF, mechanical ventilation was sus-
pended. VF was left untreated for 3.5 min to mimic an
arrival time for first responders. After untreated VF,
basic life support (BLS) with active decompression
(ACD) and an impedance threshold device (ITD)
(ACD þ ITD) and mechanical ventilations at a rate of
10 respirations per minute was initiated for all ani-
mals. The mechanical CPR parameters were held
constant: compression/decompression duty cycle of
50%, rate of 100 compressions per minute, and target
depth of 20% of the anteroposterior diameter. Me-
chanical ACD þ ITD CPR was used for all animals to
optimize perfusion during BLS (6). BLS was per-
formed for 10 min to simulate the time required for
arrival of ACLS providers.

Following 10 min of BLS, animals were randomized
to either SNPeCPR or standard ACLS CPR groups.

SNPeCPR group. SNPeCPR added manual abdom-
inal binding on the ongoing mechanical ACD þ ITD
CPR and SNP 1mg intravenous bolus every 5 min as
previously described (7).

Standard ACLS group. The standard ACLS group
continued to receive ACD þ ITD CPR (similar to BLS)
and received epinephrine 0.5 mg intravenous bolus
every 5 min starting at minute 10 (6).

At 28 min of total CPR, all animals were adminis-
tered 25 mg amiodarone and 50 mEq bicarbonate. At
the 30-min CPR mark, animals were defibrillated with
200-J biphasic shocks. Shocks were performed every 2
to 3 min for an additional 15 min at which point ef-
forts were terminated if no ROSC was achieved. Ani-
mals with ROSC were followed for a total of 60 min, at
which point they were sacrificed.

VENTILATION, OXYGEN DELIVERY STRATEGY, AND

ALVEOLAR-ARTERIAL GRADIENT CALCULATION.

All animals were ventilated as stated above at 10
breaths per minute with 10 ml/kg tidal volume. Room
air was used during preparation and at the initiation
of the VF. During CPR, oxygen was increased only if a
saturation of <90% was observed (as indicated by



TABLE 1 Hemodynamic Data at Baseline and at 5-Min Intervals During 30 Min of CPR

Time Treatment RA Pressure, mm Hg
Compression RA
Pressure, mm Hg SBP, mm Hg DBP, mm Hg CPP, mm Hg %CBF

BL SNPeCPR 5 � 0.9 Not applicable 111 � 17.0 76 � 13.6 71 � 12.7 100 � 0

Standard ACLS CPR 4 � 0.4 Not applicable 107 � 15.5 72 � 13.0 68 � 8.9 100 � 0

5 min SNPeCPR 7 � 1.1 72 � 8.9 73 � 9.3 28 � 6.5 21 � 5.8 25 � 5.5

Standard ACLS CPR 8 � 2.3 65 � 18.8 64 � 19.7 26 � 5.2 18 � 5.8 24 � 10.8

10 min* SNPeCPR 6 � 1.7 68 � 10.5 69 � 11.1 28 � 5.1 22 � 5.6 22 � 4.5

Standard ACLS CPR 8 � 2.7 65 � 22 64 � 21.4 27 � 10.0 19 � 6.4 26 � 12.1

15 min SNPeCPR 7 � 2.1 63 � 10.8 64 � 10.0 31 � 9.2 24 � 5.0† 30 � 10.0†

Standard ACLS CPR 6 � 1.6 69 � 20.6 68 � 21.4 25 � 9.8 19 � 7.1† 23 � 2.0†

20 min SNPeCPR 5 � 2.9 61 � 14.2 63 � 13.7 30 � 11.6 25 � 6.0† 30 � 11.1†

Standard ACLS CPR 6 � 3.1 66 � 20.9 67 � 22.5 23 � 10.2 17 � 5.6† 21 � 4.4†

25 min SNPeCPR 6 � 3.2 60 � 18.2 59 � 17.7 30 � 11.1† 24 � 7.5† 31 � 14.1†

Standard ACLS CPR 4 � 1.8 58 � 17.3 59 � 17.6 20 � 5.7† 16 � 6.1† 17 � 1.7†

30 min SNPeCPR 10 � 6.5 59 � 23.9 58 � 25.2 30 � 13.1† 20 � 11.7† 24 � 8.1†

Standard ACLS CPR 3 � 0.6 57 � 17.8 56 � 19.5 17 � 5.2† 14 � 4.6† 18 � 3.1†

Values are mean � SEM. *The dividing line at 10 min indicates the initiation of randomization and drug administration. †p < 0.05.

ACLS ¼ advanced cardiac life support; BL ¼ baseline values; CBF ¼ carotid blood flow; %CBF ¼ proportion of CBF as a percent of the initial baseline value; CPP ¼ coronary
perfusion pressure; CPR ¼ cardiopulmonary resuscitation; DBP ¼ diastolic blood pressure; RA ¼ right atrial; SBP ¼ systolic blood pressure; SNPeCPR ¼ sodium nitroprusside–
enhanced cardiopulmonary resuscitation.
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arterial blood gas [ABG] values taken at 5-min in-
tervals). Fraction of inspired oxygen (FiO2) was
recorded and adjusted incrementally by w25%, only
enough to increase the O2 saturation above 90%. After
the FiO2 adjustment, the alveolar-arterial (A-a)
gradient was calculated based on the recorded Fi02

and the arterial partial pressure of oxygen (PaO2)
standard formula at the next ABG reading:

A� a Gradient ¼
�
FiO2ðPatm �PH2OÞ�

PaCO2

0:8

�
� PaO2

As such, the study sought to evaluate both the effect
of SNPeCPR on pulmonary vasodilation but also the
level of FiO2 support needed to maintain adequate
tissue oxygenation over time.

STATISTICAL ANALYSIS. All statistics were compiled
using GraphPad Prism 6 software (GraphPad Soft-
ware, La Jolla, California). All values are expressed as
means � SEM and categorical data as fractions. An
unequal variance Student t test was utilized to
analyze statistical differences in the hemodynamic
and blood gas data. Two-way analysis of variance
tests were used to evaluate treatment, time effects on
lactic acid, and A-a gradient data; and Scheffe’s
method was used for alpha-adjustment. A p value
<0.05 was considered statistically significant. An
additional random effect model analysis was
completed in R studio (R development core team,
2018) to assess the effects of time to the value of
lactate in the different treatment groups. The Fisher
exact test was performed to assess the ROSC rates at
the end of prolonged CPR. A Kaplan-Meier curve was
constructed to assess the rate of decrease in coronary
perfusion pressure over time between the 2 different
groups. Log-rank test was used to assess the equality
of the curves.

RESULTS

SURVIVAL. All animals randomized received at least
30 min of CPR. The ROSC rate was significantly higher
for SNPeCPR animals (9 of 12 [75%]) compared to
standard ACLS animals (3 of 13 [23%]) (p ¼ 0.017).
ROSC efforts were continued for up to 15 min after
completion of the 30-min CPR protocol. All animals
that achieved ROSC survived for the full 1-h obser-
vation period.
HEMODYNAMICS. Use of SNPeCPR maintained higher
systemic perfusion and minimized ischemia as
observed through slower rise of lactic acid during
prolonged CPR (Figure 2). Furthermore, use of
SNPeCPR increased coronary perfusion pressure
(p < 0.001) and CBF (p ¼ 0.002) (Table 1). The hemo-
dynamic effects of SNPeCPR were immediate and seen
within the first 5 min after the first injection at minute
10 of CPR (Figure 1). Moreover, SNP animals had
significantly higher diastolic blood pressure (p ¼
0.021), whereas no difference was observed between
systolic blood pressure in the 2 groups (p ¼ 0.394).

ABGs. Arterial and venous blood gas results over the
entire 30 min of prolonged CPR are shown in Table 2.
SNPeCPR showed a significant decrease in PaO2 levels
after SNP delivery which coincided with an increased
A-a gradient. Increasing the FiO2 led to adequate PaO2

and overall tissue oxygen delivery while the increase



TABLE 2 Arterial and Venous Blood Gas Results at Baseline and at 5-Min Intervals During 30 Min of CPR

Time Treatment pH PaCO2 PaO2 PvO2 Lac FiO2

BL SNPeCPR 7.48 � 0.06 38 � 7.6 113 � 17 46 � 3 1.0 � 0.4 0.25 � 0.017

Standard ACLS CPR 7.5 � 0.04 41 � 3.8 106 � 20 44 � 7.3 0.8 � 0.2 0.26 � 0.024

5 min SNPeCPR 7.44 � 0.08 30 � 5.0 96 � 17.5 29 � 5.6 3.9 � 1.1 0.25 � 0.017

Standard ACLS CPR 7.43 � 0.07 32 � 5.7 103 � 15.0 28 � 7.5 4.2 � 0.8 0.26 � 0.016

10 min* SNPeCPR 7.39 � 0.04 29 � 3.0 98 � 18.4 26 � 3.3 5.1 � 1.5 0.26 � 0.016

Standard ACLS CPR 7.39 � 0.05 31 � 4.9 102 � 14.4 26 � 8 5.3 � 0.9 0.26 � 0.016

15 min SNPeCPR 7.36 � 0.06 32 � 3.6 67 � 13.9† 28 � 5.5 6.0 � 1.7 0.26 � 0.025

Standard ACLS CPR 7.37 � 0.05 29 � 5.0 94 � 17.7 23 � 5.3 6.3 � 1.1 0.26 � 0.015

20 min SNPeCPR 7.33 � 0.08 34 � 8.1† 68 � 18.1† 29 � 7.2† 6.6 � 2.1 0.43 � 0.23†

Standard ACLS CPR 7.35 � 0.06 26 � 5.4 95 � 17.4 21 � 8.5† 7.4 � 1.1 0.26 � 0.016

25 min SNPeCPR 7.33 � 0.15 37 � 11.2† 64 � 11.5† 26 � 7.4 7.2 � 2.3† 0.56 � 0.31†

Standard ACLS CPR 7.32 � 0.06 26 � 5.9 93 � 16.7 20 � 11.4 8.7 � 1.1† 0.26 � 0.016

30 min SNPeCPR 7.39 � 0.13 51 � 21.8 53 � 14† 26.4 � 6.5 8.2 � 2.5† 0.58 � 0.31†

Standard ACLS CPR 7.37 � 0.21 39 � 20 77 � 24.4† 21 � 6.0 10.0 � 1.5† 0.27 � 0.037

Values are mean � SEM. All partial pressures are shown in mm Hg. *The dividing line at 10 min indicates the initiation of randomization and drug administration. †p < 0.05.

FiO2 ¼ fraction of inspired oxygen; Lac ¼ lactate levels in mmol/l in arterial blood; PaCO2 ¼ partial pressure of carbon dioxide in arterial blood; PaO2 ¼ partial pressure of
oxygen in arterial blood; PvO2 ¼ partial pressure of oxygen in venous blood; other abbreviations as in Table 1.

Ripeckyj et al. J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 5 , N O . 2 , 2 0 2 0

Sodium Nitroprusside–Enhanced CPR F E B R U A R Y 2 0 2 0 : 1 8 3 – 9 2

188
in circulating blood flow induced by SNP infusion was
maintained. The higher normal mixed venous oxygen
tension (PvO2) in the SNPeCPR animals suggests
increased tissue perfusion and oxygen delivery. The
lower arteriovenous proportion of SO2 difference
further suggests adequate oxygen delivery in agree-
ment with the higher blood flow markers and perfu-
sion pressures (Figure 3, Table 1).

A coronary perfusion pressure of <15 mm Hg has
been negatively associated with achieving ROSC and
successful defibrillation (23,24). SNPeCPR animals fell
below this threshold later than compared to control
animals (Table 1, Figure 4). As it can be seen in the
Kaplan-Meier plot (Figure 4), animals reaching of cor-
onary perfusion pressure (CPP) <15 mm Hg are signif-
icantly delayed in the SNPeCPR cohort (p ¼ 0.047).

DISCUSSION

SNPeCPR increased the cardiac output generated by
chest compressions resulting in increased CPP and
CBF and decreased lactic acid levels when compared
to standard ACLS. SNP is the most potent vasodilator
available with potent dilatory effects in both the
arterial and venous circulation, including the pul-
monary vasculature (25,26). This study has shown
that pulmonary arterial vasodilation was an impor-
tant mechanism of the positive hemodynamic effects
of SNPeCPR. The 6-fold increase in A-a gradient sug-
gested a substantial increase in transpulmonary flow
resulting in increased left ventricular preload and
increased cardiac output. Importantly, in the setting
of prolonged CPR, the increased cardiac output and
resulting increase in diastolic blood pressure pro-
vided by SNPeCPR prolonged the duration of ROSC-
compatible hemodynamics by maintaining the CPP
needed to achieve ROSC (27). This allowed for higher
ROSC rates after 30 min of prolonged CPR and higher
survival rates with ongoing observation (7,8,12–18).

The observed 6-fold increase in A-a gradient in the
SNPeCPR group showed a substantial increase in
pulmonary shunt due to increased transpulmonary
blood flow. Profound pulmonary vasodilation
induced by SNP increases perfusion throughout the
pulmonary vasculature. This reversal of hypoxemic
vasoconstriction and increased perfusion to non-
ventilated alveoli increased shunt physiology,
thereby decreasing arterial oxygen content. In
SNPeCPR animals, oxygen saturation of <90% was
reversed by increasing FiO2 in 25% increments all the
way up to 1.0, if needed, over the 20 min of ACLS. A
moderate increase in FiO2 to 0.5 was adequate in the
majority of the SNPeCPR treated animals to keep
saturation above 90% to 92%. While arterial oxygen
saturation was reduced, total oxygen delivery to tis-
sues was maintained or even increased with SNPeCPR
due to increased cardiac output. This was shown by
the simultaneous increase in A-a gradient and
decrease in PaO2 levels in association with lower
lactic acid levels and similar mixed venous oxygen
levels. Stable oxygen delivery despite decreased PaO2

levels suggested higher perfusion in agreement with
the increased CPP and CBF.

The requirement for increased FiO2 did not
compromise the outcomes in the SNPeCPR cohort as
supported by the resuscitation rates between the 2



FIGURE 3 Blood Oxygenation Comparison Between SNP and

Epinephrine During CPR

Alveolar-arterial (A-a) gradient (A) and arteriovenous oxygen-

ation gradient (B) over the 30 min of CPR. All parameters are

statistically significant between treatment groups after the

20-min CPR time mark. A-a gradient values are unitless. The

10-min CPR directly precedes intervention of SNP or

epinephrine administration. The p values of treatment for A-a

gradient and arteriovenous oxygenation gradient is <0.001 and

0.004, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.

Abbreviations as in Figures 1 and 2.
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groups. CPR is a low-flow state, and the impact of
high arterial oxygen levels on outcomes is poorly
understood. In our study, although the SNPeCPR
group had lower PaO2 and relative hypoxemia, tissue
oxygen consumption was improved due to the in-
crease in CPR-generated blood flow; therefore, there
was no evidence of worsening tissue hypoxia
compared to standard ACLS. The clinical effect of
SNPeCPR, with the need for a higher FiO2, on neuro-
logical intact survival in humans can be only assessed
with a clinical trial after safety has been documented
in a Phase 1 trial.
SNPeCPR increased CBF immediately upon injec-
tion which was maintained throughout the 30 min of
CPR performed in this study (12). Similar increases in
CPP were also seen although coronary blood flow was
not directly measured. It remains unknown if in-
creases in CBF were due to SNP-induced vasodilation
of cerebral vasculature or simply a manifestation of
the increased cardiac output and arterial blood pres-
sure caused by SNP combined with external carotid
vasodilation. In addition, SNPeCPR animals appeared
to have a higher PaCO2, most likely related to large
ventilation perfusion mismatch. Although shunting
immediately affects PaO2, PaCO2 does not begin to
increase until shunt reaches or exceeds 50% (28). The
combination of direct vasodilation and increased
PaCO2 may contribute to an increase of cerebral blood
flow. The consistently observed increase in CBF with
SNPeCPR may be associated with the improved
neurologic outcomes that have been reported in pre-
vious publications (8,12,14,15,17).

Prolonged CPR leads to death by progressive
accumulation of tissue oxygen debt, ischemic injury,
and cell death. As such, treatments meant to prolong
patient viability during resuscitation should target
this detrimental progression to increase the potential
for ROSC and thereby limit brain ischemia and anoxic
injury following prolonged periods of CPR. SNPeCPR
extended ROSC potential and patient viability as
shown by the slower accumulation of arterial lactic
acid and preservation of CPP and CBF compared to
that of control animals. Lactic acid is a reliable and
reproducible indicator of tissue hypoxia that has been
directly correlated with mortality (29) and poor
neurologic outcomes (30). The slower rate of lactic
acid accumulation in the SNPeCPR group indicates
improved tissue oxygenation and, along with the
preservation of CPP, supports an increase in the
duration of patient viability and potential for ROSC
(31). In recent studies, only 2.3% of patients receiving
CPR longer than 30 min achieved ROSC (32-36). In
contrast, this study has shown an ROSC rate of 75%
with 30 min of CPR in pigs receiving SNPeCPR. In the
setting of refractory VF, prolonged CPR may be
particularly critical as patients are often transported
to an eCPR-capable hospital. Transport may require
additional time. Prolonged patient viability with
SNPeCPR would be hypothesized to improve patient
outcomes in this setting.

STUDY LIMITATIONS. This study has multiple limi-
tations. Although our study was designed to mimic
the clinical reality of patients suffering refractory out-
of-hospital VF cardiac arrest, unavoidable discrep-
ancies persist. First, the animal model may have



FIGURE 4 CPP-Guided Survival Function

Kaplan-Meier curve for the time until coronary perfusion pressure (CPP) < 15 mm Hg within the SNPeCPR and standard CPR cohorts. Our data

suggest that after 20 min of CPR (within 10 min of ACLS initiation). CPP drops below 15 mm Hg much faster in the standard CPR cohort.

CPp < 15 mm Hg has been adversely related to achieving ROSC (23). SNPeCPR delays the decay of CPP to below ROSC threshold.

sCPR ¼ standard cardiopulmonary resuscitation; other abbreviations as in Figures 1 and 2.
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limited translatability to humans due to the relatively
young age of the pigs and lack of coronary artery
atherosclerosis and cardiovascular comorbidities
such as diabetes. Second, during the ACLS phase, our
study model provided no defibrillations to maintain
the extended CPR model. Therefore, we cannot
accurately assess the ability of SNPeCPR or control
treatment to facilitate ROSC before 30 min of CPR.
Furthermore, this leads to inclusion of all animals in
the prolonged CPR group. This may also lead to in-
clusion of animals with more severe systemic injury
that would have otherwise achieved ROSC early
which would be expected to minimize differences
between groups and minimize the observed relative
effect of SNPeCPR. The use of anesthesia, as required
for animal studies, may also limit the observed dif-
ferences between groups as inhaled anesthetics such
as isoflurane used in this study can provide car-
dioprotective effects. Moreover, the pulmonary
vascular resistance was calculated indirectly and in
the absence of direct assessment of cardiac output
due to the inaccuracy of measurements in cardiac
arrest due to significant motion artifact and the
extreme low blood flow. Finally, we did not thor-
oughly examine the dose-dependent effects of SNP,
but we have based the dosing on previously pub-
lished studies where it was correlated with positive
clinically relevant outcomes.

CONCLUSIONS

SNPeCPR improves vital organ blood flow and tissue
oxygenation during prolonged resuscitation. This is
predominantly achieved by a significant decrease in
pulmonary artery resistance that leads to a sub-
stantial increase in the A-a oxygen gradient over
time. However, tissue oxygen delivery is not
compromised when FiO2 can be increased to
compensate. Our results support the implementation
of the first clinical trial of SNPeCPR in humans. It
further informs us of the necessary use of the 100%
oxygen ventilation strategy and hypoxia as the pri-
mary safety endpoints.
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Yannopoulos, Center for Resuscitation Medicine,
Office of Academic Clinical Affairs, University of
Minnesota Medical School, 420 Delaware Street,
Southeast, MMC 508 Mayo, Minneapolis, Minnesota
55455. E-mail: yanno001@umn.edu.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: SNPeCPR is a

novel CPR method that uses an advanced mechanical CPR

platform with SNP—a potent vasodilator—to improve vital

organ flow. SNPeCPR causes peripheral systemic vasodilation

and, as our study shows, a significant and profound pulmonary

circulation vasodilation. SNPeCPR has been shown to increase

ROSC rates and short-term neurologically intact survival rates

in multiple studies and is ready for a phase 1 clinical trial.

TRANSLATIONAL OUTLOOK: The current study identifies

hypoxemia as a potential safety issue during ventilation with

room air and suggests that SNPeCPR should be tested in

humans with an FiO2 >0.5. Despite relative hypoxemia with

lower FiO2 ventilation, SNPeCPR oxygen delivery to the tissues

is increased due to higher blood flow generation.
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