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The highly destructive mechanisms by which the immune system faces microbial
infections is under the control of a series of inhibitory receptors. While most of these
receptors prevent unwanted/excessive responses of individual effector cells, others
play a more general role in immunity, acting as true inhibitory checkpoints controlling
both innate and adaptive immunity. Regarding human NK cells, their function is
finely regulated by HLA-class I-specific inhibitory receptors which allow discrimination
between HLA-I+, healthy cells and tumor or virus-infected cells displaying loss or
substantial alterations of HLA-I molecules, including allelic losses that are sensed by
KIRs. A number of non-HLA-specific receptors have been identified which recognize
cell surface or extracellular matrix ligands and may contribute to the physiologic control
of immune responses and tolerance. Among these receptors, Siglec 7 (p75/AIRM-1),
LAIR-1 and IRp60, recognize ligands including sialic acids, extracellular matrix/collagen
or aminophospholipids, respectively. These ligands may be expressed at the surface
of tumor cells, thus inhibiting NK cell function. Expression of the PD-1 checkpoint
by NK cells requires particular cytokines (IL-15, IL-12, IL-18) together with cortisol,
a combination that may occur in the microenvironment of different tumors. Blocking
of single or combinations of inhibitory receptors unleashes NK cells and restore their
anti-tumor activity, with obvious implications for tumor immunotherapy.

Keywords: natural killer cells, inhibitory NK receptors, immune checkpoints, tumor immunotherapy, tumor
escape

INTRODUCTION

To combat infections, the immune system exploits highly destructive mechanisms. These
mechanisms are triggered by an array of receptors that evolved during phylogenesis from structures
ensuring phagocytosis and killing of invading pathogens toward highly sophisticated, clonally
distributed, receptors encoded by rearranging genes. Remarkably, most of the “primitive” receptors
did not disappear during evolution but rather co-evolved with adaptive immunity and are playing,
in contemporary vertebrates, a synergistic role, contributing to improved anti-microbial responses.
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A good example is provided by the Fc-gamma receptors, evolved
from a primitive surface protein into receptors recognizing IgG
antibodies (Abs), allowing greater killing or phagocytosis of
Ab-coated bacteria or target cells (1). In particular, NK cells,
expressing the FcγRIIIa (also known as CD16), are considered the
most important effectors of antibody-dependent cell-mediated
cytotoxicity (ADCC) in humans.

The exploitation of highly destructive mechanisms to control
infections would require means to avoid damages to healthy
cells and, in general, to the whole organism. Thus, efficient
mechanisms have been acquired to prevent damages to self by
downmodulating immune responses and inflammation at the
termination of infection. A major role in ensuring this crucial
activity is played by an array of inhibitory receptors which
may control the function of individual cells of both innate and
adaptive immunity and, in some instances, may function as
true checkpoints, ensuring a wide control of immune response
and inflammation.

Focusing on human NK cells, they express different HLA class
I–specific receptors that allow discrimination between healthy
and virus-infected or tumor cells (2), while other receptors such
as TIGIT and CD96, although controlling NK cell function, play a
role also in the regulation of cell adhesion and migration/homing
(3). In this context, studies of tissue distribution of their ligands,
such as PVR (CD155) and Nectin-2 (CD112), may provide
useful information on the possible migration/homing of cells
expressing the corresponding receptor. Other receptors, such as
CD69 and CD103, represent tissue retention receptors and may
provide important markers to identify NK and T cells capable of
infiltrating and staying in normal peripheral tissues or tumors (4).

In this contribution, we will delineate some of the main
inhibitory receptors expressed by human NK cells. Remarkably,
Killer Ig-like Receptors (KIR), discovered by Moretta et al.
in 1990 (5, 6) are the prototype of the inhibitory receptors
controlling cells of the immune system. These and other HLA
class I-specific receptors provided the molecular basis of the
“missing-self hypothesis” and explained how NK cells may
discriminate between healthy and tumor or virus-infected cells
(7). Moreover, NK cells can express several non-HLA-specific
inhibitory receptors that contribute in regulating immune
responses. Some inhibitory receptors are constitutively expressed
by NK cells (such as KIR and NKG2A) and are involved in
the regulation of NK cell tolerance against healthy tissues, while
others (such as PD-1) are expressed at very low level in NK cells
from healthy donors, but increase in pathological conditions. All
these inhibitory receptors act as immune checkpoints regulating
anti-tumor NK cell function by the recognition of specific
ligands on tumor cells thus favoring tumor escape from NK
cell cytotoxicity.

HLA-SPECIFIC INHIBITORY NK
RECEPTORS

In humans, the molecular basis for NK cell tolerance toward
healthy autologous cells is provided by HLA-specific inhibitory
receptors (iNKR), that are mainly represented by KIR,

CD94:NKG2A, and LILRB1 (2, 6, 8–10). Inhibitory KIRs
(iKIR), characterized by 2 or 3 Ig-like extracellular domains and
a long cytoplasmic tail (KIR2DL, KIR3DL), recognize allotypic
determinants shared by distinct groups of HLA class I molecules
(KIR-ligands, KIR-L), as recently reviewed (11). CD94:NKG2A
heterodimer, composed by C-type lectin-like proteins, is specific
for the non-classical HLA-E molecules, that are stabilized by
peptides mainly derived from the leader sequences of HLA-A,
-B, or –C (12, 13). LILRB1 displays a broad specificity for HLA
(14, 15). Upon receptor engagement, the immunoreceptor
tyrosine-based inhibitory motifs (ITIM) become phosphorylated
and recruit tyrosine phosphatases, thus delivering an inhibitory
signaling cascade (16–18). Table 1 and Figure 1 summarize these
receptor/ligand interactions.

During NK cell development, immature stages primarily
express CD94:NKG2A, while KIRs are acquired upon
maturation. NK cells go through a process termed “education,”
involving the iNKR/self-HLA interaction, whose strength
positively influences the functional potential of NK cells (19).
Extremely diversified self-tolerant iNKR phenotypic repertoires
can be observed on peripheral blood NK cell pool among
the various individuals (17). This heterogeneity is primarily
determined by the high polymorphism of the independently
co-inherited KIR and HLA class I genotypes, and by the
stochastic KIR expression pattern on NK cells (20). NK cells
can be efficient even when expressing single-iKIR, provided
that it strongly interacts with self-HLA. This NK cell can kill
the pathological cell that has lost even a single-HLA allotype
through the mechanism of “missing-self recognition.” Regarding
CD94:NKG2A/HLA-E interaction, a dimorphism in HLA-B
leader sequence at residue − 21 encoding either a good binding
methionine (− 21 M) or a low binding threonine (− 21 T)
determines the variability in HLA-E expression; NKG2A+ cells
from individuals carrying at least one − 21 M HLA-B alleles
are more educated (21). Consistent with this finding, in acute
myeloid leukemia (AML) patients treated with immunotherapy,
a better leukemia-free survival (LFS) was observed in patients
with− 21 M/x than− 21 T/T HLA-B alleles (22).

In addition to genetics, environmental factors can impact
on the receptor repertoire. The most remarkable example is
represented by cytomegalovirus (CMV) infection, that promotes
the expansion of functionally and phenotypically skewed NK
cells with adaptive features through epigenetic alterations
(23, 24). These cells are characterized by the expression of
the activating CD94:NKG2C, mainly co-expressing KIR2DL
specific for self-HLA-C allotypes, CD57 (a marker of terminally
differentiation stage), and by the lack of NKG2A (25–27).
Notably, in view of their long term persistence (28–30), expansion
capabilities (31) and high ADCC abilities (32, 33), CMV-
driven adaptive NK cells also represent a suitable target for
anti-leukemia immunotherapeutic strategies (e.g., CD16-based
immune engagers, adoptive cell transfer, CAR-engineering) (34).

KIRs have been shown to be clinically relevant in allogeneic
hematopoietic stem cell transplantation (HSCT) to cure acute
leukemia, in particular from HLA-haploidentical donors whose
repertoire presents educated iKIR(s) that do not recognize the
cognate KIR-L(s) in the recipient. When KIR/KIR-L mismatches
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TABLE 1 | HLA-I specific and non-HLA-I specific inhibitory receptors, their distribution and ligands.

Molecule CD Cell distribution Ligand

HLA specific
inhibitory receptors

KIR2DL1 CD158a NK cells, T cells HLA-CK80 allotypes (HLA-C2 epitope)

KIR2DL2/3 CD158b1/b2 NK cells, T cells HLA-CN80 allotypes (HLA-C1 epitope)
HLA-B*46:01 and -B*73:01

KIR2DL5 CD158f NK cells, T cells ?

KIR3DL1 CD158e1 NK cells, T cells HLA-A Bw4, HLA-B Bw4

KIR3DL2 CD158k NK cells, T cells HLA-A*03 and -A*11, HLA-F

KIR3DL3 CD158z NK cells, T cells ?

LILRB1/LIR-1/ILT2 CD85j NK cells, T cells, B cells, monocytes, DCs HLA-G, various HLA-I allotypes

NKG2A CD159a NK and T cells HLA-E

LAG-3 CD223 Activated NK cells, activated T cells, B cells, pDCs HLA-II

Non-HLA specific
inhibitory receptors

PD-1 CD279 NK cells, T cells, B cells, myeloid cells PD-L1, PD-L2

TIM-3 CD366 NK cells, T cells, DCs, monocytes, macrophages, mast
cells

Gal-9, PS, HMGB1, CEACAM1

TIGIT NA NK cells, T cells CD155, CD112, CD113

Tactile CD96 NK cells, T cells CD155, CD111

Siglec-7/p75/AIRM-1 CD328 NK cells, T cells, granulocytes, monocytes, Sialic acid

Siglec-9 CD329 NK cells, T cells, B cells, granulocytes, monocytes Sialic acid

KLRG1 NA NK cells, T cells cadherins

IRp60 CD300a NK cells, T cells, B cells, neutrophils, eosinophils, mast
cells, pDC

phosphatidylserine (PS),
phoshatidylethanolamine (PE)

LAIR-1/p40 CD305 NK cells, T cells, B cells, monocytes, granulocytes,
DCs, mast cells, macrophages, CD34+ hematopoietic
progenitor cells, thymocytes

Collagen, C1q, surfactant protein D

CEACAM-1 CD66a epithelial cells, various leukocytes CEACAM-1, CEACAM-5

NKRP1A CD161 NK cells, T cells LLT1

IAP CD47 NK cells, T cells, B cells, monocytes, macrophages,
DCs, neutrophils

SIRP1a, TSP-1

in graft-versus-host (GvH) direction occur, alloreactive NK cells
can be generated in the transplanted patient, with efficient
anti-leukemia activity (35). This has been proven especially
beneficial in acute myeloid leukemia (AML) adult patients (36),
and in acute lymphoblastic leukemia (ALL) pediatric patients
(37). Algorithms for donor selection criteria have been created,
considering NK alloreactivity and KIR gene profiles, to improve
the clinical outcome in HSCT (38–41).

A great improvement in cancer immunotherapy has been
achieved with immune checkpoint inhibitors (ICI), by the use
of therapeutic antibodies blocking inhibitory checkpoints. With
the aim to potentiate/unleash the anti-tumor NK cell function,
clinical grade monoclonal antibodies (mAbs) targeting KIR and
NKG2A have been produced. Lirilumab (1-7F9, IPH2101), a
first-in-class fully human IgG4 mAb targeting KIR2D, has been
employed in phase I trials to treat hematological malignancies
or solid tumors, also in association with Lenalidomide (as
NK cell stimulant) in multiple myeloma, resulting to be safe
but with low anti-tumor efficacy (42–44). More promising
clinical results have been obtained with IPH4102 targeting
KIR3DL2 on cutaneous T cell lymphoma, particularly in Sèzary
syndrome (45). Of extreme interest for the clinical potential
is monalizumab, a humanized IgG4-blocking anti-NKG2A
mAb, that can unleash both NK and T-cell responses (46).

Indeed, NKG2A/HLA-E interaction can downregulate anti-
tumor immune responses. Clinical trials using monalizumab in
combination with durvalumab (anti-PD-L1) for the treatment
of solid tumors, and, especially, in combination with cetuximab
(anti-EGFR) for the treatment of head and neck cancers, show
clear signs of efficacy (46).

NON-HLA-SPECIFIC INHIBITORY NK
RECEPTORS

In addition to the HLA class I-specific receptors, NK cells
express several other ITIM-containing receptors importantly
contributing to regulate immune responses (Table 1) (47–
60). We focus here on the critical immune checkpoint PD-1
and on Siglec-7/p75/AIRM1/CD328, LAIR-1/p40/CD305, and
IRp60/CD300a, originally identified in our labs, representing
additional immune checkpoints possibly dampening anti-tumor
NK cell responses in given pathological settings (Figure 1).
Siglec-7, IRp60 and LAIR-1 are rarely discussed in most
reviews on immune checkpoints in NK cell context, however,
they represent relevant receptors to target in anti-tumor
immunotherapies. Indeed, their ligands are expressed or even
upregulated on several tumors.
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FIGURE 1 | This figure summarizes some ITIM-bearing molecules expressed by human NK cells that could act as checkpoints in cancer immunotherapy. KIRs,
CD94/NKG2A and LILRB1 are HLA-specific inhibitory receptors whereas PD-1, IRp60, Siglec-7 and LAIR-1 are non-HLA-specific inhibitory receptors (their ligands
are indicated in the figure). All these molecules possess variable numbers and different types of ITIMs. In particular, PD-1 express one ITIM; KIRs, CD94/NKG2A and
LAIR-1 have two ITIMs (among KIRs, only KIR3DL3 and KIR2DL4 express one ITIM); IRp60 has three ITIMs; LILRB1 has four ITIMs (indicated in red in the figure). In
addition, PD-1 carries also an ITSM motif (gray) whereas IRp60 and LAIR-1 an ITIM-like motif (orange). PS, phosphatidylserine; PE, phoshatidylethanolamine.

PD-1

PD-1 is a type I transmembrane glycoprotein belonging to
the CD28/CTLA4 subfamily of the Ig superfamily, containing
an IgV-type extracellular domain (61). Its cytoplasmic domain
contains an ITIM and an immunoreceptor tyrosine-based switch
motif (ITSM) and, interestingly, the tyrosine residue in the ITSM,
but not in the ITIM, is required for the inhibitory cascade (62).
PD-1 expression was initially described on T, B, myeloid cells and,
more recently, on NK cells (47). PD-1 ligands (PD-Ls, namely
PD-L1 and PD-L2) are expressed by hematopoietic and non-
hematopoietic cells and, importantly, they are often expressed
by tumor cells. Indeed, while in normal conditions PD-1/PD-
L axis regulates peripheral tolerance, in the context of cancer
it represents a mechanism of “escape” from immune system
and in particular from PD-1-expressing cytotoxic lymphocytes
(63). In addition to PD-1-expressing CD8+ T cells, also PD-
1+ NK cells have been identified in several tumors, including
multiple myeloma, Kaposi sarcoma, ovarian carcinoma, digestive
and lung cancer (31, 47, 64–66). Differently from T cells, which
are induced to upregulate PD-1 expression upon activation,
NK cells from the peripheral blood of healthy donors do not
express PD-1 on their surface, with the exception of a minor
fraction of CMV seropositive individuals (47). Human NK cells

have been shown to display an intra-cytoplasmatic pool of PD-
1 mRNA and protein localized in the Golgi (67). An analysis of
pleural effusion contents from primary and metastatic tumors
identified glucocorticoids as key components of the tumor
microenvironment indispensable for PD-1 induction on NK cells
surface, in combination with the signals from the cytokines
IL-12, IL-15 and IL-18 (68). Glucocorticoids were shown to
increase PD-1 expression at the transcriptional level in both
human and murine NK cells (68, 69). In addition, in human
CD56bright NK cells, these hormones activate a transcriptional
program responsible for enhanced translation and translocation
of proteins to the plasma membrane, which indirectly contributes
to increase PD-1 surface expression. Notably, PD-1+ NK cells are
not exhausted, but show an impaired response specifically against
PD-L1-expressing target cells (68).

Blockade of the PD-1/PD-L1 axis through monoclonal
antibodies represents a major breakthrough in oncology, showing
significant clinical success in the treatment of several types of
cancers (70, 71). This blockade allows unleashing not only T
cell-, but also NK cell-mediated anti-tumor response. This is
relevant especially in the treatment of tumors that have lost
HLA-I expression and are thus “invisible” to T cells. Despite
its success, only one third of patients is responsive to anti-
PD-1 immunotherapy (72). One important factor that may
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be responsible for this lack of response is represented by the
misclassification of tumors in terms of PD-L1 expression. The
immunohistochemical detection of this biomarker in tumor
samples usually guides the decision of the appropriate therapeutic
strategy, together with other parameters. PD-L1 expression
heterogeneity, interclone differences among antibodies used
for immunohistochemistry and inter/intra observer variability
may explain why the rates of clinical response to treatment
with PD-1/PD-L1 inhibitors do not always correlate with
PD-L1 detected expression (73–76). Moreover, the recent
identification of the molecular mechanisms driving PD-1
expression on NK cells suggests that including synthetic
corticosteroids in the therapeutic regimen for cancer patients
may be counterproductive in combination with the blockade of
this checkpoint.

SIGLEC-7/p75/AIRM1/CD328

Siglec-7 is a surface inhibitory receptor belonging to a
family of Sialic acid recognizing Immunoglobulin-like Lectins
(Siglecs) that is mostly confined to NK cells, but is expressed
also on monocytes, a minor fraction of CD8+ T cells and
granulocytes (48, 77). Siglec-7 was originally identified as a 75-
kD glycoprotein, encoded by a gene located on chromosome
19 where most inhibitory receptors regulating NK-mediated
cytotoxicity are found (i.e., KIRs, LILRB1, and LAIR-1) (48).
In line with most inhibitory receptors, Siglec-7 is characterized
by Ig-like domains in the extracellular portion and a classical
ITIM, together with an ITIM-like domain, in its cytoplasmic
tail, capable of switching off activating signals on NK cells (48).
Siglec-7 preferentially binds to α2-6-linked sialic acids and to
α2,8-disialic acid that is found on GD3 ganglioside (78).

Siglec-7, along with other Siglecs, can regulate immune
responses contributing to immune tolerance, however, it can
also decrease anti-tumor immunity on account of the aberrant
expression of sialylated glycans on the surface of malignant
cells of different histotypes [e.g., AML, CLL, melanoma, renal
cell carcinoma, colon adenocarcinoma (79, 80)]. Indeed, hyper-
sialylation represents a relevant tumor escape mechanism
that can directly affect NK cell-mediated tumor killing, as
demonstrated by reduced NK cell-cytotoxicity against tumors
expressing Siglec-7 ligands. Remarkably, the employ of antibodies
blocking Siglec-7 engagement could restore tumor lysis (80–82).
Interestingly, Siglec-7 reduced expression represents a hallmark
of CMV-driven adaptive NK cell subsets (32, 33) and could favor
their cytotoxicity against HLA-Ilow/neg tumors.

Based on the above observations, Siglec-7 represents an
attractive immune checkpoint that can be targeted to enhance
anti-tumor responses (83). In this context, besides anti-Siglec-
7 blocking antibodies, different approaches have been proposed,
including the employ of small soluble Siglec-7 ligands, designed
to display high avidity for the receptor based on its crystal
structure (84, 85). These molecules can increase NK-cell
mediated tumor lysis although less efficiently than specific anti-
Siglec-7 antibodies (86). Interestingly, a recent study showed that
cells engineered with a Siglec-7-based CAR construct can display

efficient anti-tumor activity both in vitro against several tumor
cell lines expressing Siglec-7 ligands and in vivo in xenograft
murine models (87).

LAIR-1/p40/CD305

Another non-HLA-specific inhibitory NK receptor is represented
by the Leukocyte-Associated Immunoglobulin-like Receptor-1
(LAIR-1) (88, 89), which is a type I transmembrane glycoprotein
characterized by an extracellular C2-type Ig-like domain and two
ITIMs in the cytoplasmic tail (90, 91).

LAIR-1 is one of the most widely distributed inhibitory
receptors and could play a role in controlling various phases
of the immune response. Indeed, it is expressed not only
on NK cells but also on other cells of innate immunity
(such as monocytes, granulocytes, dendritic cells, mast cells,
macrophages) (90, 92–94), on T and B lymphocytes (49, 95,
96), on CD34+ hematopoietic progenitor cells (97) and on the
majority of thymocytes (90). Interestingly, during the process of
cell maturation and activation LAIR-1 expression is decreased on
various immune cells (i.e., CD4+ T cells, neutrophils, B cells) (93,
96, 98).

The interaction between LAIR-1 and its several ligands, such
as extracellular matrix collagens (99), the C1q complement
component (100), and the surfactant protein D (101), induces
phosphorylation of both ITIMs and inhibition of the immune
cell activation or differentiation. In particular, the LAIR-1
cross-linking with monoclonal antibodies, or with its ligands,
inhibits the NK and CTL cytotoxicity (102). LAIR-1-mediated
inhibition occurs through SHP-1 and SHP-2, but also through the
recruitment of Csk (103) that inactivates Src family kinases.

Remarkably, the upregulation of collagen expression
by tumor cells and/or tumor stroma could lead to the
downregulation of anti-tumor responses mediated by the
inhibitory collagen receptor LAIR-1 expressed on NK cells and
other effector immune cells.

LAIR-1 can be also detected in the supernatant of stimulated
human lymphocytes, suggesting its shedding upon cellular
activation (104). In the soluble form, LAIR-1 could interfere
with the interaction between the transmembrane receptor and its
ligands, thus restoring functions of immune cells.

A similar result could also occur with the LAIR-2 protein that
is 84% homologous to LAIR-1 but lacks the transmembrane and
intracellular domain. Indeed, the binding of LAIR-2 to collagens
could efficiently block LAIR-1–collagen interaction (105). On
this basis, an interesting approach has been developed to block
immune suppression mediated by LAIR-1. It is based on the
use of NC410, a novel reagent capable of mimicking the natural
decoy effects of LAIR-2. The blockade of the LAIR-1-mediated
inhibition by NC410 can restore the normal functionality of T
and dendritic cells as well as the anti-tumor response1. In this
context, it could be interesting to evaluate whether the increment
of anti-tumor response mediated by NC410 can depend also on
restoring of the NK cell function.

1www.nextcure.com/pipeline
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IRp60/CD300a

IRp60/CD300a is an inhibitory receptor belonging to CD300
family, a set of genes clustered on chromosome 17 coding
for receptors, predominantly expressed on leukocytes, able to
generate inhibitory and activating signals regulating different
immune processes, such as phagocytosis, cytokine release,
proliferation and diseases (80, 106–112). In addition to NK cells,
IRp60 is broadly expressed in cells of myeloid or lymphoid origin
such as neutrophils (113), eosinophils (106), mast cells (114),
pDC (113), B and T cells (115). IRp60 is expressed by the majority
of blood NK cells but at higher level in CD56bright subset (50).
Curiously it has been observed an age-dependent increase of
IRp60 expression on NK cells that, in CMV seropositive donors,
is associated with increase of CD56dim NK cells co-expressing
CD57 (116).

IRp60 is a type I transmembrane protein with a single
extracellular Ig V-like domain and a long cytoplasmic tail with
three canonical ITIMs whose phosphorylation is required for the
transmission of the inhibitory signal (50, 117). This inhibitory
signal is able to strongly reduce NK cell cytotoxicity induced
via different non-HLA-specific or HLA-specific activating
receptors (50). IRp60 recognizes phosphatidylserine (PS)
and phosphatidylethanolamine (PE), two aminophospholipids
exposed on plasma membrane of activated, infected, transformed
or apoptotic cells (107, 118–121). Expression of PS on tumor cells
has been demonstrated to protect different tumor cell lines from
NK cell mediated cytotoxicity (119). Moreover, IRp60 also binds
non-lipid molecules such as the human adenovirus-D47 E3/49K
protein (122).

To date, a clear role in the control of NK functions in
hematological or solid tumors has not been described. However,
IRp60 mRNA is highly expressed and associated with poor
prognosis in AML (123) and in diffuse large B-cell lymphoma
(124), it is hypoxia-inducible in primary human monocytes
and macrophages (125) and is up-regulated in tumor-associated
macrophages in ovarian carcinoma (126).

CONCLUDING REMARKS

The groundbreaking discoveries of an array of inhibitory
receptors controlling the function of individual cells or even of

the entire immune response provided tools for unprecedented
progress in the therapy of cancer. Thus, KIRs recognizing
allotypic determinants on cells offered the means to successfully
treat patients with high-risk leukemias by the haplo-HSCT,
mostly exploiting alloreactivity of donor-derived NK cells.
Perhaps more importantly, the use of checkpoint inhibitors
revolutioned the clinical outcome of different lethal-cancers,
by reactivating “dormant” effectors potentially capable of
destroying tumor cells. Other important receptors controlling
cell adhesion/migration, tissue retention or blocking effector cell
function at the tumor site, are being investigated in preclinical
and clinical settings. It is conceivable that a deeper knowledge of
inhibitory receptors useful in the control of excessive immune
responses or inflammation, but playing a detrimental role in
tumors, will offer important clues for identifying the prevalent
mechanism of immunosuppression in a given tumor and to apply
specific, evidence-based, approaches for cancer immunotherapy.
This is particularly relevant if we consider that some inhibitory
receptors are characterized by a broad expression, non-restricted
only to NK cells. Thus, immunotherapeutic approaches blocking
these inhibitory pathways could act on different types of immune
cells, allowing to re-establish a correct cross-talk between the cells
of the immune system, an event which is the basis of an optimal
antitumor response.
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