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Abstract
The study of the COVID-19 pandemic is of pivotal importance due to its tremendous global impacts. This paper aims to 
control this disease using an optimal strategy comprising two methods: isolation and vaccination. In this regard, an optimized 
Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed using the Genetic Algorithm (GA) to control the dynamic 
model of the COVID-19 termed SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, and 
Extinct). The number of diagnosed and recognized people is reduced by isolation, and the number of susceptible people is 
reduced by vaccination. The GA generates optimal control efforts related to the random initial number of each chosen group 
as the input data for ANFIS to train Takagi–Sugeno (T–S) fuzzy structure coefficients. Also, three theorems are presented to 
indicate the positivity, boundedness, and existence of the solutions in the presence of the controller. The performance of the 
proposed system is evaluated through the mean squared error (MSE) and the root-mean-square error (RMSE). The simula-
tion results show a significant decrease in the number of diagnosed, recognized, and susceptible individuals by employing 
the proposed controller, even with a 70% increase in transmissibility caused by various variants.

Keywords ANFIS · COVID-19 · Genetic algorithm · Neural networks · Optimization

1 Introduction

The novel coronavirus disease (COVID-19) was first identi-
fied in Wuhan, China, and spread to many other countries 
(Velavan and Meyer 2020). The COVID-19 prevalence has 
affected all aspects of humans' lives, from mental health 
to economic issues. Recent findings indicate that the new 
strains may be more contagious and spread more read-
ily between people (World Health Organization (WHO) 
2021). Therefore, mathematical modelling can be advanta-
geous for investigating the pandemic's nature, predicting 
future trends, and evaluating strategies for control pur-
poses (Diekmann and Heesterbeek 2000; Hethcote 2000; 
Brauer et al. 2012). Several epidemic models exist, from 

basic to developed ones with application to Ebola, Influ-
enza (Amiri Mehra et al. 2019), HIV, and other epidemic 
diseases. These epidemic models can be stochastic, deter-
ministic, discrete (Boutayeb et al. 2020), or continuous 
(Amiri Mehra et al. 2019), used for the COVID-19 pan-
demic by changing the parameters and adding or subtract-
ing some states. There are also several epidemiological 
models (e.g., within-host type (Abbasi et al. 2022), SIR 
(Cooper et al. 2020), SEIAR (Chen et al. 2020), SQAIR 
(Amiri Mehra et al. 2020), SQEIAR (Abbasi et al. 2020), 
SIQHRE (Badfar et al. 2022), SEIAQRDT (Kumari et al. 
2020), and SIDARTHE (Giordano et al. 2020)) being used 
to control and predict the evolution of COVID-19 in differ-
ent countries across the world. In the present work, a com-
prehensive epidemic model, termed SIDARTHE (Giordano 
et al. 2020), is used as the study model, considering the 
discrimination between infected individuals depending on 
whether they have been diagnosed and on the severity of 
their symptoms, which is an important issue to prevent the 
COVID-19 pandemic from spreading.
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The motivation of the present study arises from the neces-
sity of controlling the dynamic model of COVID-19 strains 
with a high affinity to spread. Hence, this study focuses on 
an optimized ANFIS based controller design to prevent and 
control the ongoing COVID-19 outbreak. ANFIS is a kind 
of adaptive network functionally equal to fuzzy inference 
systems (Mamdani and Assilian 1975; Kasabov and Song 
2002; Abbasi et al. 2021a) based on a T–S fuzzy inference 
system. ANFIS uses fuzzy logic and neural network in a 
single framework, taking advantage of the fuzzy system in 
an adaptive network structure (Jang 1993). It can also con-
trol and predict biological phenomena like epidemic models, 
especially the COVID-19 pandemic (Al-Qaness et al. 2021, 
2020a). In this regard, in Ly (2021), an ANFIS structure is 
employed to estimate the number of COVID-19 cases in the 
United Kingdom, using data from Spain and Italy. Also, in 
Behnood et al. (2020); Chowdhury et al. (2021), the authors 
use ANFIS to forecast COVID-19. Moreover, (Deif et al. 
2021) proposes the ANFIS approach to detect COVID-19 
cases using available laboratory blood tests. Meanwhile, 
(Denai et al. 2004) shows the application of the neuro-fuzzy 
method for the modelling of nonlinear systems.

Reviewing studies shows an increment in the use of dif-
ferent artificial intelligence techniques. A marine predators 
algorithm (MPA) is employed in Al-Qaness et al. 2020b as 
an optimizer of ANFIS to forecast the number of infected 
people in four countries, including Iran, Korea, Italy, and 
the USA. Moreover, authors in Saif et al. (2021) have used 
Mutation-Based Bees Algorithms to optimize the perfor-
mance of ANFIS, making a hybrid model. In (Paterlini and 
Krink 2006), the aim is to calibrate ANFIS parameters using 
PSO to forecast the trend of COVID-19. Thus, it is neces-
sary to develop an optimized ANFIS to have better control 
efforts applied to society. The GA is one of the evolutionary 
algorithms with many scientific application fields, derived 
from Darwin's theory of evolution, based on the survival 
of the fittest or natural selection. Optimized ANFIS with 
GA has been extensively researched over the past few years 
(Harandizadeh and Armaghani 2021; Zhang et al. 2021). 
In this regard, a new ANFIS-polynomial neural network 
(PNN) optimized by the GA is introduced in Harandiza-
deh and Armaghani (2021) to predict air overpressure. The 
performance of the proposed system is evaluated through 
the correlation coefficient (R) and the mean squared error 
(MSE). The proposed algorithm is also used in Zhang et al. 
(2021) for a three-dimensional pulse image of the normal 
and string-like pulse. However, few ANFIS-GA algorithms 
were devoted to epidemic disease (Salgotra et al. 2020; 
Miralles-Pechuán et al. 2020; Yousefpour et al. 2020; Kho-
shbin et al. 2016; Azimi et al. 2017). Authors in Yousefpour 
et al. (2020) use a multi-objective GA to investigate the eco-
nomic consequences of COVID-19. In order to use GA in 
ANFIS optimization, the authors in Khoshbin et al. (2016) 

optimized the ANFIS using the GA and the singular value 
decomposition (SVD) method. Also, the authors in Azimi 
et al. (2017) used the GA to optimize the membership func-
tion of ANFIS.

There are also different studies on the optimal control 
design for the COVID-19 pandemic (Cooper et al. 2020; 
Abbasi et al. 2020; Azar and Hassanien 2022). Authors 
in Abbasi et al. (2020) have presented an optimal control 
theory to prevent the spread of the COVID-19 pandemic 
using Pontryagin’s Maximum Principle, considering the 
control inputs for the whole duration of the treatment pro-
cess. While in the present study, daily control efforts are 
based on the initial number of states at the beginning of 
each day (Khodaei-Mehr et al. 2018), which is more effica-
cious due to the significant daily growth of infected people. 
In addition, the GA has been used to train the ANFIS with 
different random values of states, and the optimal values of 
control inputs are collected to be used as the input data set 
for the ANFIS.

An optimized ANFIS-based controller is applied to the 
dynamic of the COVID-19 pandemic in two different situa-
tions: before and after vaccine development. The first strat-
egy aims to isolate only detected infected people (asymp-
tomatic and symptomatic) in the absence of the vaccine. 
The second strategy, however, seeks to continue the previ-
ous strategy in the presence of the vaccine. In this strategy, 
the susceptible people will get immune to the infectious by 
vaccination, and the diagnosed and recognized people will 
be isolated. It should be noted that the selected epidemic 
model (SIDARTHE) is a comprehensive model considering 
the acute infected needed ICU admission and all infected-
type people groups categorized based on the possibility of 
recognition and appearance of symptoms.

The main aims, objectives, and goals of the present work 
are numbered as follows:

• Because of the social, mental, and economic problems of 
imposing the quarantine, this paper aims to control the 
COVID-19 pandemic without quarantine.

• The objective is to employ an optimal strategy that takes 
advantage of the fuzzy system in an adaptive network 
structure leading to optimized ANFIS with GA.

• The first goal is to apply an isolation strategy before vac-
cine development to reduce the number of diagnosed and 
recognized people and move them into isolated groups 
using the optimal isolation rate calculated by ANFIS 
optimized with the GA. After vaccine development, the 
second goal is to apply the vaccination in addition to the 
isolation strategy, which converts the susceptible people 
into vaccinated groups using the optimal vaccination rate 
calculated by ANFIS optimized with the GA along with 
isolating diagnosed and recognized people.
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Furthermore, in the following, the principal contributions 
of this paper are summarized as:

• Dividing the main strategy into two parts: before and 
after vaccine development in the absence of quarantine.

• Using a dataset containing the random number of states 
from a statistical population to optimize control efforts 
with the aid of GA.

• Training the ANFIS using optimized values of control 
efforts.

• Validating the proposed model with the real dataset of 
South Korea, taken from the Korea Disease Control and 
Prevention Agency (KDCA).

• Controlling the different strains of the COVID-19 pan-
demic with the optimized ANFIS.

• Evaluating the performance of the proposed system 
through MSE and RMSE.

The rest of this paper is organized as follows. In Sect. 2, 
the mathematical model of the COVID-19 is presented, and 
all parameters and variables are described. Section 3 intro-
duces the GA, and the optimal data selection, followed by 
the ANFIS structure and the learning methods described in 
Sect. 4. The controller design is obtained in Sect. 5, includ-
ing two subsections; the first strategy is given in 5.1 and the 
second one in 5.2. The basic properties of the model in the 
presence of the controller, like positivity, boundedness, and 
existence, are discussed in Sect. 6. Numerical results are pro-
vided in Sect. 7. Finally, the discussion, threats to validity, 
and conclusion sections are stated in Sects. 8–10, respectively.

2  Mathematical model

The SIDARTHE epidemic model taken from Giordano et al. 
(2020) is presented in this section. The model has used eight 
groups of people involved in COVID-19 in society (see 
Fig. 1). The groups are introduced as follows:

• S(t) : Uninfected (susceptible), the class of healthy indi-
viduals who can contract the disease.

• I(t) : Undetected infected without symptoms (infected), 
the class of individuals who have contracted the disease 
asymptomatically but are not detected yet.

• D(t) ∶ Detected infected without symptoms (diagnosed), 
the class of individuals who have contracted the disease 
asymptomatically, detected and labeled as diagnosed.

• A(t) : Symptomatic undetected infected (ailing), the class 
of individuals who get infectious and have symptoms but 
are not detected yet.

• R(t) : Symptomatic detected infected (recognized), the 
class of individuals who get infectious and have symp-
toms and are also detected.

• T(t) ∶ Detected acutely symptomatic infected (threat-
ened), the class of individuals infected with life-threat-
ening symptoms.

• H(t) : Recovered people (healed), the class of individuals 
treated in proper ICUs.

• E(t) : Extinct (dead) people, the class of individuals who 
are died of the disease.

The dynamical system is concertedly termed SIDARTHE 
and is mathematically described as:

where N(t) = S(t) + I(t) + D(t) + A(t) + R(t) + T(t) + H(t) + E(t) . 
The non-negative initial conditions are (S(0), I(0),D(0),A(0),

(1–a)Ṡ(t) = −S(t)(𝛼I(t) + 𝛽D(t) + 𝛾A(t) + 𝛿R(t)),

(1–b)
İ(t) = S(t)(𝛼I(t) + 𝛽D(t) + 𝛾A(t) + 𝛿R(t)) − (𝜀 + 𝜁 + 𝜆)I(t),

(1–c)Ḋ(t) = 𝜀I(t) − (𝜂 + 𝜌)D(t),

(1–d)Ȧ(t) = 𝜁I(t) − (𝜃 + 𝜇 + 𝜅)A(t),

(1–e)Ṙ(t) = 𝜂D(t) + 𝜃A(t) − (𝜐 + 𝜉)R(t),

(1–f)Ṫ(t) = 𝜇A(t) + 𝜐R(t) − (𝜎 + 𝜏)T(t),

(1–g)Ḣ(t) = 𝜆I(t) + 𝜌D(t) + 𝜅A(t) + 𝜉R(t) + 𝜎T(t),

(1–h)Ė(t) = 𝜏T(t),

, , ,

Fig. 1  Conceptual flow diagram of the SIDARTHE dynamical model 
(Giordano et al. 2020)
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R(0), T(0),H(0),E(0)) =
(

S0, I0,D0,A0
,R0, T0,H0,E0

)

 and 
the state variables and parameters are also positive values 
(Giordano et al. 2020). In addition, � , � , � and � denote the 
transmission rates due to the contact between a susceptible 
and an infected, a diagnosed, an ailing, or a recognized indi-
vidual, respectively. Supposed that people tend to eschew 
contacts with undetected symptomatic people; therefore, α is 
larger than � and, in the same way, larger than � and �. There 
is no contact between susceptible and threatened individu-
als that require ICU admission. � and � are the detection 
rate of asymptomatic and symptomatic individuals, respec-
tively. Since the symptomatic individuals are more likely to 
be tested, � is larger than ε. Also, � and � represent the rate 
of developing relevant symptoms in the detected and unde-
tected asymptomatic infected individuals, respectively. The 
undetected and detected infected individuals develop life-
threatening symptoms at rates � and � , respectively. Threat-
ened individuals die at a mortality rate � . The five infected 
groups will be recovered at rates � , � , � , � and �.

3  Genetic algorithm and optimal selection 
of the data set

Optimization is one of the basic tools to find the best pos-
sible solution to any objective function of a given problem. 
An optimization problem can be employed to minimize 
the objective function with an optimal solution. The GA, 
inspired by Darwinian evolutionary theory (survival of the 
fittest) to describe the way of natural selection (Mitchell 
1998), was invented by John Holland in the 1960s and 1970s 
(Holland 1992; Yang 2020). Natural selection is a difference 
in reproductive output among replicating organisms created 
because of the differences in survival in a specific environ-
ment, increasing the ratio of advantageous characteristics, 
which can be passed down within a population from one 
generation to the next. The main idea of a nature-inspired 
GA is to find the best solution in the population of candidate 
solutions (called individuals) to a given optimization prob-
lem using selection and genetic variation operators induced 
by nature. Each possible solution has a set of features (its 
chromosomes or genotype) that can be mutated and altered 
(Jafari et al. 2018). The GA starts with an initial popula-
tion of randomly generated individuals that happened over 
generations. All individuals merged, and every individual 
is validated using the cost function, then sorted from the 
smallest to the highest costs in each generation. Individuals 
with a lower cost are selected from the current population 
and modified to make a new generation, and the other will be 
truncated. This process will be continued in each generation 
until the algorithm terminates. The stop criterion is either 
a maximum number of generations produced or the desired 

fitness level reached for the population (Mitchell 1998). The 
flowchart of applied GA is presented in Fig. 2.

GA defines a function as an objective function (fitness 
function) that expresses the individual ability to select in 
the current population. The control objective is to mini-
mize the number of diagnosed and recognized people 
and susceptible individuals using minimum control effort 
UI(t)(0 ≤ UI(t) ≤ 1) and UV (t)(0 ≤ UV (t) ≤ 1) , respectively. 
UI is the control rate to isolate the diagnosed and recog-
nized people, and UV is the susceptible vaccination rate. The 
control design is considered two strategies before and after 
vaccine development. In the first strategy, before developing 
an appropriate vaccine, recognized infected people (whether 
symptoms or asymptomatic) are isolated in dedicated quar-
antine centers, as was done partly in Italy (Giordano et al. 
2020), confining infected people in individual hotel rooms 
to get them away from the other people to ensure they can-
not transmit the virus. In the next strategy, the vaccine is 
developed. Therefore, susceptible people are vaccinated, 
and the isolation of the diagnosed and recognized ones is 
continued simultaneously. In this regard, two cost functions 
are introduced as follows.

(2)J1 =

N
∑

i=1
∫

ti

ti−1

[

H1D(t)
2 + H2R(t)

2 + G1UI(t)
2
]

dt,

Fig. 2  GA flowchart
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In the above formulas, J1 and J2 are regarded as cost func-
tions of the first and second strategies, respectively. Also, 
H1,H2,H3,H4,H5,G1,G2 and B3 are weighting coefficients 
determining the relative importance of each term and N rep-
resents the number of days. The length of each integration 
interval (ti-ti−1) is equal to one day. The control input for 
each day is different from other days based on the initial 
numbers of each R(t) , D(t) , and S(t) states at the beginning 
of that day. In order to produce the optimal data set to train 
the ANFIS (described in Sect. 4), the GA is employed. Two 
control efforts are defined as the GA variables and obtained 
such that the cost functions are minimized. In the isolation 
strategy (before vaccination), for each random number of 
diagnosed and recognized people ( R(t) and D(t) ), each ele-
ment of the optimal control input vector UI(t) is calculated 
by GA at the beginning of each day. It assumes 20 days for 
this process to generate a data set, as shown in Table 1. Simi-
larly, for the second strategy, 20 random numbers of S(t) , 
R(t) , and D(t) are selected to generate optimized UI(t) and 
UV (t) using GA, which is presented in Table 2.  

In addition, Table 3 presents the GA controlling param-
eters used in solving optimization problems.

(3)J2 =

N
∑

i=1
∫

ti

ti−1

[

H3S(t)
2 + H4R(t)

2 + H5D(t)
2 + G2UI(t)

2 + G
3
UV (t)

2
]

dt,

4  Adaptive neuro fuzzy inference system 
(ANFIS)

ANFIS is a kind of artificial neural network developed in 
the 1990s. The technique is based on the T–S fuzzy infer-
ence system (Jang 1993; Takagi and Sugeno 1985; Jang and 
Sun 1995; Jang et al. 1997; Zamani and Zarif 2011). Due 
to the capability of fuzzy logic in approximating nonlinear 
functions and the learning ability of the neural networks, 
combining these instruments in a single framework approxi-
mates a nonlinear function by learning from the input data. 
The considered system has two inputs and one output for 

Table 1  The optimal data set for 
first strategy

D(t) R(t) U
I

93 54 0.17747
279 172 0.17907
621 223 0.18110
1187 235 0.18152
1310 444 0.18183
1838 517 0.18942
1978 525 0.19441
2295 525 0.19635
2444 594 0.20113
2568 638 0.20812
2606 818 0.21038
2735 849 0.21173
2893 878 0.21261
3121 1016 0.21286
3496 1190 0.21452
3981 1206 0.21978
4226 1423 0.22074
4567 1461 0.22206
4816 1603 0.22869
4940 1858 0.22944

Table 2  The optimal data set for second strategy

S(t) D(t) R(t) Mean (D(t),R(t)) U
I

U
V

88 93 54 73.5 0.05746 0.09845
383 279 172 225.5 0.06892 0.10459
1131 621 223 422 0.07109 0.10579
1959 1187 235 711 0.07159 0.10983
2018 1310 444 877 0.07946 0.11402
2421 1838 517 1177.5 0.08132 0.11728
2780 1978 525 1251.5 0.08441 0.12287
3404 2295 525 1410 0.08975 0.12912
3721 2444 594 1519 0.09163 0.12963
4297 2568 638 1603 0.09647 0.13169
5614 2606 818 1712 0.10113 0.13207
6057 2735 849 1792 0.10182 0.13256
6244 2893 878 1885.5 0.10269 0.13389
6339 3121 1016 2068.5 0.10743 0.13632
6535 3496 1190 2343 0.11058 0.13769
6566 3981 1206 2593.5 0.11402 0.13886
6939 4226 1423 2824.5 0.11975 0.14007
7046 4567 1461 3014 0.12323 0.14391
7589 4816 1603 3209.5 0.12882 0.14463
8301 4940 1858 3399 0.12967 0.14802

Table 3  GA parameters

Parameter Two Strategies

Initial population 20
Selection type Roulette wheel
Mutation type Uniform
Mutation rate 0.02
Crossover type Single point
Crossover ratio 0.8
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simplicity. The rule base contains the fuzzy if–then rules 
of Takagi and Sugeno’s type (Takagi and Sugeno 1983) as 
follows:

Rule 1: If x is A1 and y is B1 then f1 = p1x + q1y + r1

Rule 2: If x is A2 and y is B2 then f2 = p2x + q2y + r2where 
A1 , A2 , B1 and B2 are membership values of input variables 
x and y , respectively. The parameters of the output functions 
f1 , and f2 are p1 , q1 , r1 , p2 , q2 and r2 , respectively. A basic 
T-S fuzzy inference system with triangular membership 
functions is illustrated schematically in Fig. 3.

Then, the output of the fuzzy inference system is defined 
as:

where Eq. (4) is linear with respect to the consequent param-
eters (p1, q1, r1, p2, q2, r2) . As illustrated in Fig. 4, there are 
five different layers in the ANFIS network. These five layers 
of this structure is explained as follows.

(4)

f =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

= w1f1 + w2f2 =
(

w1x
)

p1 +
(

w1y
)

q1

+
(

w1

)

r1 +
(

w2x
)

p2 +
(

w2y
)

q2 +
(

w2r2
)

,

Layer 1 (L1): Every node i in this layer is adaptive with a 
node function and generates the membership grades of a 
linguistic label.

in which, x is the input to node i,Ai is the linguistic variable 
and �Ai

 is the membership function of Ai that typically cho-

sen as �Ai
(x) =

1

1+

[

(

x−ci

ai

)2
]bi

 or �Ai
(x) = exp

{

−
(

x−ci

ai

)2
}

 , 

where {ai, bi, ci} is the membership parameter set. As the 
values of the parameters change, the shape of the member-
ship function varies, called premise parameters. Premise 
parameters are the coefficients of membership functions and 
their number varies based on the considered type and num-
ber of membership functions.

Layer 2 (L2): Each node in this layer is a fixed node which 
calculates the firing strength wi of each rule using the min or 
prod operator. Therefore, the production of all the incoming 
signals is used as the output of each node.

Layer 3 
(

L3

)

: The fixed nodes calculate the ratio of the i th 
rule’s firing strength to the sum of firing strengths of all the 
rules. The result is a normalized firing strength given by,

Layer 4 (L4): The adaptive nodes compute a parameter func-
tion on the output of the layer 3.

(5)O1

i
= �Ai

(x),

(6)O2

i
= wi = �Ai

(x) × �Bi
(y),

(7)O3

i
= wi =

wi

w1 + w2

,

Fig. 3  Takagi–Sugeno fuzzy inference system

Fig. 4  ANFIS model with two 
input variables and two rules
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,

,
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+
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where wi is the output of Layer 3 and {pi, qi, ri} is the con-
sequent parameter set.

Layer 5 (L5): This layer includes only one single fixed node 
that aggregates the overall outputs the summation of all 
incoming signals

When the premise parameters are fixed, the overall out-
put is a linear combination of the consequent parameters. 
A hybrid learning algorithm adjusts the consequent param-
eters in a forward pass and the premise parameters in a 
backward pass (Jantzen 1998). In the forward pass of the 
learning algorithm, the network inputs propagate forward 
until layer 4, where the least-squares method identifies the 
consequent parameters. In the backward pass, the error 
signals, the squared error derivatives for each node output, 
propagate backward from the output layer to the input one. 
The premise parameters are updated by the gradient descent 
algorithm (Haykin and Network 2004; Zurada 1992; Hagan 
et al. 1997). In addition, Table 4 highlights the information 
regarding the ANFIS structure. The available data is divided 
into training and testing, with 70% for training and 30% for 
testing purposes. 

5  Controller design

This section presents the control strategy employed to curb 
the COVID-19 pandemic. The premise and consequent 
parameters used to build the T–S fuzzy system are obtained 
from the ANFIS training process. The ANFIS utilizes the 
optimal dataset generated in Sect. 3 (Tables 1 and 2) for the 
training process. The combination of GA and ANFIS builds 

(8)O4

i
= wifi = wi

(

pix + qiy + ri
)

,

(9)O5

i
=
�

i

wifi =

∑

i wifi
∑

i wi

.(9)

the controller of the present study shown in Fig. 5 using a 
block diagram.

In order to explain the structure of the proposed control-
lers applied to Eq. 1, the dynamical system is mathemati-
cally described in Eqs. 10 and 11 for the first and second 
strategies, respectively. The process of vaccination and isola-
tion is also illustrated in Fig. 6. 

5.1  First strategy (isolation)

As mentioned, this strategy is only based on the isolation of 
the detected infected people described as follows:

in which U
I
fit
((R(t),D(t))) = A + Bcos(R(t)D(t)�) + Csin(DR(t)D(t)�) , 

where UIfit
((R(t),D(t))) is the mathematical function fitted to 

(10a)Ḋ(t) = 𝜀I(t) − (𝜂 + 𝜌)D(t) − D(t)UIfit
(R(t),D(t)),

(10b)
Ṙ(t) = 𝜂D(t) + 𝜃A(t) − (𝜐 + 𝜉)R(t) − R(t)UIfit

(R(t),D(t)),

Table 4  Parameters setting for the selected ANFIS structure

Parameter First strategy 
(isolation)

Second strategy 
(isolation and vac-
cination)

Input layer 4 4
Output layer 1 1
Input membership number 6 6
Input membership shape Gaussian Gaussian
Output membership shape Constant Constant
Training epochs 200 200
Rules 5 5

Initial Condition of 
States Values

SIDARTHE Epidemic 
Model

Proposed Controller

ANFIS

GA
Optimal Control Inputs

Fig. 5  Schematic diagram of the control strategy

, , ,
Is

ol
at

ed

Vaccinated

Fig. 6  Conceptual flow diagram of the COVID-19 SIDARTHE 
dynamics with the proposed controllers (Giordano et al. 2020)
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the output data set of ANFIS used to isolate detected infected 
p e o p l e  (  R  a n d  D  ) ,  i n  w h i c h 
A = −0.6821,B = 0.8659, C = −2.291,D = −0.123.

Remark 1 According to Eq. (10 − a) and the struc-
ture of the dynamic, it is assumed that I(t) = Z(t)D(t) , 
where |Z(t)| ≤ 1 and Z(t) > 0 . Then it can be con-
cluded that Ḋ(t) ≤ (

𝜀 − (𝜂 + 𝜌) − UI(R(t),D(t))
)

D(t) . 
By solving the ordinary differential equation: 
D(t) ≤ D0e

−
t∫
0

(�+�+UI−�)dt
= D0e

(−(�+�+UI )+�)t  .  S i n c e 
𝜂 + 𝜌 + UI > 𝜀 , D(t) converges to zero as t → ∞ . As a result, Eq. 
(10b) is written as Ṙ(t) = 𝜃A(t) − (𝜐 + 𝜉 + UI(R(t),D(t))R(t). 
Similarly, it can be proved that R(t) converges to zero. As a result, 
Eq. (1a) is written as Ṡ(t) = −S(t)(𝛼I(t) + 𝛾A(t)) . By solving 

the ordinary differential equation: S(t) = S0e
−�

t∫
0

I(t)dt

e
−�

t∫
0

A(t)dt

. 
The maximum value of the two groups A(t) and I(t) is equal to 
1, therefore, S(t) ≤ S0e

−�te−�t. Hence, S(t) → 0 as t → ∞ and 

S(t)(�I(t) + �D(t) + �A(t) + �R(t)) → 0 . Therefore, Equation 

(1b) can be written as İ(t) = −(𝜀 + 𝜁 + 𝜆)I(t) . In a similar way, 
solving the mentioned ordinary differential equation, I(t) finally 
converges to zero. A(t) and T(t) converge to zero similarly. Finally, 
it can be concluded that two states, E(t) and H(t) , reach their max-
imum values and remain stationary.

5.2  Second strategy (isolation and vaccination)

Similarly, in this strategy, both isolation and vaccination are 
applied to detected infected and susceptible people, respec-
tively, to overcome the outbreak. The dynamic equations 
are presented as:

in which,

and,
U

Ifit
(mean(R(t),D(t)), S(t)) = I + Jcos(mean(R(t),D(t))S(t)�)

+Ksin(mean(R(t),D(t))S(t)�).

(11a)
Ṡ(t) = −S(t)(𝛼I(t) + 𝛽D(t) + 𝛾A(t) + 𝛿R(t))

− S(t)U
V
fit
(mean(R(t),D(t)), S(t)),

(11b)
Ḋ(t) = 𝜀I(t) − (𝜂 + 𝜌)D(t) − D(t)UIfit

(mean(R(t),D(t)), S(t)),

(11c)
Ṙ(t) = 𝜂D(t) + 𝜃A(t) − (𝜐 + 𝜉)R(t) − R(t)UIfit

(mean(R(t),D(t)), S(t)),

U
V
fit
(mean(R(t),D(t)), S(t))

= E + Fcos(mean(R(t),D(t))S(t)�)

+ Gsin(mean(R(t),D(t))S(t)�) + e(Hmean(R(t),D(t))S(t))

Similarly, UVfit
 and UIfit

 are control efforts to vaccinate the 
susceptible people and isolate diagnosed and recognized 
people, respectively, in which E = −1.3 , F = 0.5921 , 
G = −0.3037 , H = 1.408 , I = 0.02754 , J = 0.04352 , and 
K = 0.08908.

Remark 2 Similar to the proof of Remark 1, if t → ∞ , states 
S(t), I(t),D(t),A(t),R(t) and T(t) converge to zero. Also, E(t) 
and H(t) reach and remain at their maximum value.

6  Model basic properties in the presence 
of the controller

This section systematically discusses the basic properties of 
the model in the presence of the controller, like positivity, 
boundedness, and existence in 3 subsections, respectively 
(Kada et al. 2020; Birkhoff and Rota 1962).

6.1  Positivity of solutions

In the following, the positivity of solutions is investigated 
with Theorem 1.

Theorem 1 If S0 ≥ 0, I0 ≥ 0,D0 ≥ 0,R0 ≥ 0, T0 ≥ 0,H0 ≥ 0 , 
and E0 ≥ 0 , then solutions to the system in the presence of 
the controller are positive for all t ≥ 0.

Proof Since al l  the parameters of the model 
and control rates (UI ,Uv) are positive, Eq. (11a) 
c a n  b e  w r i t t e n  a s  Ṡ(t) = −M1(t)S(t)  ,  w h e r e 
M1(t) = �I(t) + �D(t) + �A(t) + �R(t) + UV  .  Therefore, 
S(t) = S0e

−∫ t

0
M1(r)dr , as a result, S(t) ≥ 0 regardless of the 

sign of M1(t) . In addition, Eq. (1b) can be written as 

in which M2 = M1(t) − UV and M3 = � + � + � ≥ 0 . On 
the one hand, if M2 ≥ 0 , Eq. (12) changed to be as

According to Remarks 1 and 2, we have S(t) −M3 ≤ 0 , 
as a result we get

where M4 =
|

|

S(t) −M3
|

|

 . Then, left and right multiplying of 
Eq. (14) by e∫ t

0
M4dr leads to İ(t)e∫ t

0
M4dr +M4e

∫ t

0
M4drI(t) ≥ 0 

which equals d
dt

(

e∫ t

0
M4drI(t)

) ≥ 0 , and integrating this ine-

quality from 0 to t gives I(t) ≥ I0e
−∫ t

0
M4dr ≥ 0 . On the other 

hand, if M2 < 0 , we have

(12)İ(t) = −M2S(t) +
(

S(t) −M3

)

I(t),

(13)İ(t) ≥ (

S(t) −M3

)

I(t).

(14)İ(t) ≥ −M4I(t),
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According to Remarks 1 and 2. The solution to this equa-
tion converges to zero and never becomes negative. There-
fore I(t) is positive (I(t) ≥ 0) . Similarly, the other states 
(D(t),A(t),R(t), T(t)) are positive too.

Since I(t),D(t),A(t) and R(t) are positive. According to 
Eq. (1 − g) and considering (I(t),D(t),A(t),R(t), T(t)) ≥ 0 , 
the following equation is concluded,

Integrating Eq. (17) from 0 to t  gives H(t) ≥ H0 , hence 
H(t) ≥ 0 and similarly E(t) ≥ 0.

6.2  Boundedness of solutions

In the following, the boundedness of solutions is investigated 
with Theorem 2.

T h e o r e m   2  T h e  s e t 

Ω =

{

(S(t), I(t),D(t),A(t),R(t), T(t),H(t),E(t)) ∈ ℝ
8

+
;0 ≤ S(t)

+I(t) + D(t) + A(t) + R(t) + T(t) + H(t) + E(t) ≤ N0 + N2(0)

}

 

is positive invariants.

Proof Since Ṅ(t) = Ṡ(t) + İ(t) + Ḋ(t) + Ȧ(t) + Ṙ(t) + Ṫ(t)

+Ḣ(t) + Ė(t) , therefore Ṅ(t) = −UVS(t) − UI(D(t) + R(t)) . 
Also, S(t) = N(t) − (I(t) + D(t) + A(t) + R(t) + T(t) + H(t) + E(t)) 
and D(t) + R(t) = N(t) − (S(t) + I(t) + A(t) + T(t) + H(t) + E(t)) 
then, Ṅ(t) = −N1N(t) + N2(t) , where, N1 = UV + UI ≥ 0 and 
according to Theorem  1, N2(t) = U

V
(I(t) + D(t) + A(t)+

R(t) + T(t) + H(t) + E(t)) + U
I
(S(t) + I(t) + A(t) + T(t)+

H(t) + E(t)) ≥ 0 . The both sides in Ṅ(t) = −N1N(t) + N2(t) 
are multiplied by e∫ t

0
N1dr gives Ṅ(t)e∫ t

0
N1dr = −N1e

∫ t

0
N1drN(t)

+N2(t)e
∫ t

0
N1dr . Then, d

dt

(

N(t)e∫ t

0
N1dr

)

= N2(t)e
∫ t

0
N1dr , inte-

grating this inequality from 0 to t  gives N(t) = N0e
−∫ t

0
N1dr

+N2(t) , where N0 = S0 + I0+D0 + A
0
+ R0 + T0 + H0 + E0 , 

therefore 0 ≤ N(t) ≤ N0 + N2(0). Then all possible solutions 
enter the set Ω . It implies that Ω is a positively invariant set 
for the controller-based model.

(15)İ(t) =
(

S(t) −M3 +M2S(t)
)

I(t).

(16a)D(t) ≥ D0e
−∫ t

0
M5dr ≥ 0,M5 = � + � + UI ≥ 0,

(16b)A(t) ≥ A0e
−∫ t

0
M6dr ≥ 0,M6 = � + � + � ≥ 0,

(16c)R(t) ≥ R0e
−∫ t

0
M7dr ≥ 0,M7 = � + � + UI ≥ 0,

(16d)T(t) ≥ T0e
−∫ t

0
M8dr ≥ 0,M8 = � + � ≥ 0,

(17)
d

dt
(H(t)) ≥ 0,

6.3  Existence of solutions

In the following, the existence of solutions is investigated 
with Theorem 3.

Theorem 3 The system with the initial conditions S(0) ≥ 0,

I(0) ≥ 0,D(0) ≥ 0,A(0) ≥ 0,R(0) ≥ 0, T(0) ≥ 0,H(0) ≥ 0, 
and E(0) ≥ 0 has a unique solution.

Proof Let X = [ S(t) I(t) D(t) A(t) R(t) T(t)H(t) E(t) ]
T  . 

So, the model in the presence of the controller is rewritten 
as f (X) = AX + f1(X) where A = diag [ −U

V
, −(� + � + �),

−
(

� + � + U
I

)

, −(� + � + �), −
(

� + � + U
I

)

, −(� + �) , 0, 0 ] 
and, f1(X) = [ −Λ(t)S(t) Λ(t)S(t) �I(t) �I(t) �D(t) + �A(t)

�A(t) + �R(t) �I(t) + �D(t) + �A(t) + �R(t) + �T(t) �T(t) ]
T 

in which Λ(t) = �I(t) + �D(t) + �A(t) + �R(t) . The function 
f1(X) satisfies:

Assumed that all parameters have their maximum value 
and |

|

y1 + y2
|

|

≤ |

|

y1
|

|

+ |

|

y2
|

|

 then,

The |
|

Λ1(t)S1(t) − Λ2(t)S2(t)
|

|

 can be rewritten as the 
follows

(18)

|

|

|

f1

(

X1

)

− f1

(

X2

)

|

|

|

=
|

|

|

2
(

Λ1(t)S1(t) − Λ2(t)S2(t)
)

+�
(

I1(t) − I2(t)
)

+ �
(

D1(t)

−D2(t)
)

+ �
(

A1(t) − A2(t)
)

+�
(

A1(t) − A2(t)
)

+ �
(

R1(t)

−R2(t)
)

+ �
(

I1(t) − I2(t)
)

+�
(

D1(t) − D2(t)
)

+ �
(

A1(t)

−A2(t)
)

+ �
(

R1(t) − R2(t)
)

+�
(

T1(t) − T2(t)
)

+ �
(

T1(t) − T2(t)
)

|

|

|

,

(19)

|

|

|

f1

(

X1

)

− f1

(

X2

)

|

|

|

≤2|
|

Λ1(t)S1(t) − Λ2(t)S2(t)
|

|

+ 3|
|

I1(t)

−I2(t)
|

|

+ 2|
|

D1(t) − D2(t)
|

|

+ 3|
|

A1(t)

−A2(t)
|

|

+ 2|
|

R1(t) − R2(t)
|

|

+ 2|
|

T1(t) − T2(t)
|

|

,
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The maximum value of normalized states is equal to 1 
and |

|

y1 + y2
|

|

≤ |

|

y1
|

|

+ |

|

y2
|

|

 , therefore,

Substitution Eq. 21 in Eq. 19 gives

Then, ||
|

f1
(

X1

)

− f1
(

X2

)

|

|

|

≤ 8|
|

X1 − X2
|

|

 . It can be concluded 

t h a t  ‖f1
�

X1

�

− f1
�

X2

�

‖ ≤ 8‖X1 − X2‖ .  T h e r e fo r e , 

(20)

|

|

Λ1(t)S1(t) − Λ2(t)S2(t)
|

|

= |

|

Λ1(t)S1(t) − Λ2(t)S1(t)

+Λ2(t)S1(t) − Λ2(t)S2(t)
|

|

=
|

|

|

S1(t)
(

I1(t) − I2(t)
)

+S1(t)
(

D1(t) − D2(t)
)

+S1(t)
(

A1(t) − A2(t)
)

+S1(t)
(

R1(t) − R2(t)
)

+I2(t)
(

S1(t) − S2(t)
)

+D2(t)
(

S1(t) − S2(t)
)

+A2(t)
(

S1(t) − S2(t)
)

+R2(t)
(

S1(t) − S2(t)
)

|

|

|

,

(21)
|

|

Λ1(t)S1(t) − Λ2(t)S2(t)
|

|

≤ |

|

I1(t) − I2(t)
|

|

+ |

|

D1(t) − D2(t)
|

|

+ |

|

A1(t) − A2(t)
|

|

+ |

|

R1(t) − R2(t)
|

|

+ 4|
|

S1(t) − S2(t)
|

|

,

(22)|

|

|

f1

(

X1

)

− f1

(

X2

)

|

|

|

≤ 8|
|

S1(t) − S2(t)
|

|

+ 5|
|

I1(t) − I2(t)
|

|

+ 4|
|

D1(t) − D2(t)
|

|

+ 5|
|

A1(t) − A2(t)
|

|

+ 4|
|

R1(t) − R2(t)
|

|

+ 2|
|

T1(t) − T2(t)
|

|

,

‖f
�

X1

�

− f
�

X2

�

‖ ≤ L‖X1 − X2‖ where L = max(8, ‖A‖) . 
Thus, f  is uniformly Lipschitz continuous, and the solutions 
exist.

Table 5  The values of parameters in the SIDARTHE epidemic model

Parameter Description Values

� The transmission rate (the probability of disease transmission in a single contact multiplied by the average number of con-
tacts per person) due to contact between a susceptible subject and an infected subject

1

� The transmission rate (the probability of disease transmission in a single contact multiplied by the average number of con-
tacts per person) due to contact between a susceptible subject and a diagnosed subject

0.8

� The transmission rate (the probability of disease transmission in a single contact multiplied by the average number of con-
tacts per person) due to contact between a susceptible subject and an ailing subject

0.8

� The transmission rate (the probability of disease transmission in a single contact multiplied by the average number of con-
tacts per person) due to contact between a susceptible subject and a recognized subject

0.8

� The probability rate of detection, relative to the asymptomatic case 0.2
� The rate of recovery for the infected subjects 0.08
� The rate of developing relevant symptoms in detected asymptomatic infected individuals 0.025
� The rate of developing relevant symptoms in undetected asymptomatic infected individuals 0.025
� The probability rate of detection relative to symptomatic case 0.37
� The rate of developing the life-threatening symptoms in detected infected individuals 0.015
� The rate of developing the life-threatening symptoms in undetected infected individuals 0.008
� The rate of recovery for the threatened subjects 0.01
� The mortality rate of threatened individuals 0.01
� The rate of recovery for the recognized subjects 0.02
� The rate of recovery for the diagnosed subjects 0.02
� The rate of recovery for the ailing subjects 0.02

Table 6  Initial values of the 
states in the SIDARTHE 
epidemic model

State variable Initial value

S0 9000
I0 250
D0 250
A0 250
R0 250
T0 0
H0 0
E0 0
N0 10,000
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7  Simulation results

In this section, the performance of the proposed optimal 
ANFIS-based controller is evaluated using MATLAB soft-
ware. The realistic model parameters were extracted from 
Giordano et al. (2020), as listed in Table 5. The simula-
tions are performed for two situations: before and after vac-
cine development. The initial values of states are selected 
arbitrarily (Table 6). The population size (N) in society is 
assumed to be 10,000.  

The results of applying the controller are divided into 
two subsections: the first strategy (Isolation) and the second 

one (Isolation and Vaccination), which are illustrated in the 
following.

7.1  First strategy (isolation)

This section investigates the isolation strategy's impact 
before developing an effective vaccine, and the theoretical 
results are compared. The evolution of all groups involved 
with COVID-19 is compared in two cases: with and with-
out isolation. Before vaccine development, recognized and 
diagnosed people are isolated in places with zero contact 
probability with susceptible ones, which means there is no 
infectious transmission.

( ) ( )

Fig. 7  The comparison of the number of the Susceptible and Infected individuals with and without the proposed controller

Fig. 8  The comparison of the number of the diagnosed and ailing individuals with and without the proposed controller
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Figure 7a depicts the number of susceptible people with 
and without an isolation strategy. It should be noted that in 
the present study, the quarantine of susceptible people is 
ignored; therefore, there is no direct control to reduce their 
number. As is observed, after isolating recognized and diag-
nosed people, the reduction rate of the susceptible people is 
slightly decreased. Thus, it can be concluded that the con-
tact of recognized and diagnosed people with the rest of the 
people in other groups will be dropped after isolation, and 
therefore, fewer susceptible people will be infected.

Figure 7b compares the number of infected people in 
the presence and absence of the employed controller. As an 
overall trend, isolation of recognized and diagnosed people 
indirectly reduces undetected ones. When recognized and 
diagnosed people get isolated, their contact with susceptible 

Fig. 9  The comparison of the number of the recognized and threatened individuals with and without the proposed controller

Fig. 10  The comparison of the number of the Extinct and Healed individuals with and without the proposed controller

Fig. 11  The relationship between the isolation-based controller and 
the recognized and diagnosed individuals
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people decreases, and consequently, fewer susceptible peo-
ple get infectious and move to the infected people groups.

Figure 8a shows a significant fall in the number of diag-
nosed people. Before applying the isolation strategy, their 
maximum number is approximately 4400. Whereas, after 
isolation, in the outbreak peak, their number drops by 2000 
and reaches almost 2200. This fall starts at 2200 on the tenth 
day to reach zero in less than 40 days. In addition, the results 
illustrate that the proposed method could be effective in a 
real situation.

Figure 8b compares the number of ailing people in the 
presence and lack of the proposed controller. It can be seen 
that isolating recognized and diagnosed people leads to 
fewer people infected, the number of susceptible people 
grows, and fewer people show the disease symptoms and 
move to the ailing people group.

Figure 9a demonstrates a significant difference between 
the number of recognized people after and before isolation. 
If the recognized people go freely among the other people at 
the peak days of the outbreak, their number reaches 2000 in 
almost 25 days. In contrast, their peak number falls dramati-
cally after applying the isolation and reaches about 420. This 
fall occurs in less than 50 days. As shown in Fig. 9b , due to 
the decrement in the number of diagnosed and recognized 
people, the number of threatened people diminishes rapidly 
compared to pre-isolation. The maximum number of threat-
ened people from just above 800 declines to 100 and reduces 
from 100 on the 25th day to zero on the 170th day, whereas 
without isolation, the threatened people have not been zero 
even until the 250th day.

Figure 10a shows the differences between the number of 
extinct (dead) people after and before the isolation. Before 
isolation, 80 people are extinct in only 25 days. In contrast, 
after isolation, the number of threatened people decreases; 
consequently, the number of extinct people falls. Therefore, 
only 80 people die in a population of 10,000 after 150 days 
and remain unchanged until the 250th day, demonstrat-
ing the efficiency of the proposed control. Also, isolation 
decreases the number of five groups involved with infectious 
( I(t) , A(t) , D(t) , R(t) , and T(t) ); therefore, the number of 
recovered people reduces (Fig. 10b ). As shown, 3000 people 
get healed in less than 20 days, and this number remains 
steady until the 200th day. Whereas, without isolation, 9000 
infected people, who are infected recover from the infection 
in 200 days.

As illustrated in Fig.  11, the control effort value is 
between 0 and 0.23, satisfying 0 ≤ UI(t) ≤ 1 . The number of 
diagnosed and recognized people in the absence of the con-
troller is shown in Figs. 8a and 9a , respectively. The number 
of R(t) and D(t) reaches 2000 and just under 4500 in their Fig. 12  The control effort for isolation-based strategy

Fig. 13  The comparison of the number of the Susceptible and Infected individuals with and without the proposed controller
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maximum value, respectively. It is evident that the value of 
the control effort depends on the recognized and diagnosed 
people; as their number increases, the control effort grows 
to overcome their rise.

Figure 12 shows that the number of detected infected 
people increases in the early days of the peak; therefore, the 
controller applies more control effort to overcome this incre-
ment. After that, the value of effort decreases and remains 
stationary by reducing the number of detected infected 
people.

7.2  Second strategy (isolation and vaccination)

The population change depends on the presence and the 
absence of vaccination and isolation strategies. In this 

section, the impact of applying the isolation and vaccination 
is investigated simultaneously. After vaccine development, 
the susceptible people get immune against the infectious. An 
isolation strategy is also used to isolate the detected infected 
people. As shown in Fig. 13a , after the vaccination cam-
paign, the number of susceptible people converges to zero 
sooner because they get immune and move to the vaccinated 
group. Studies include (Ng and Gui 2020) reveal that the 
recovered people in the COVID-19 pandemic can get sus-
ceptible again, whereas the vaccinated people are immune 
against the virus; hence, the vaccinated people do not go to 
the healed people group with a possibility of resusceptibil-
ity or, in other words, ability to reinfect. Figure 13b shows 
that the number of infected people before using any control-
ler is 4000. As seen in Fig. 7b , their number decreases to 

Fig. 14  The comparison of the number of the Diagnosed and Ailing individuals with and without the proposed controller

Fig. 15  The comparison of the number of the Recognized and Threatened individuals with and without the proposed controller
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approximately 3650 after the isolation strategy, whereas in 
the presence of vaccination and isolation, their number drops 
to 1500. Vaccination reduces the number of susceptible peo-
ple; therefore, fewer ones get infected, and then there is a 
reduction of 2500 people in the peak time of the infectious.

As shown in Fig. 8a , the number of diagnosed people 
reaches 2200 after applying only the isolation strategy. Fig-
ure 14a indicates that the proposed controller reduces the 
number of diagnosed people at the peak of the outbreak from 
just less than 4500 to about 1200 people. The number of 
diagnosed people converges to zero in almost 50 days in the 
presence of the controller, while without it, their number 
does not reach zero even until the 100th day. The number of 
ailing people controlled with the isolation strategy (Fig. 8b ) 
converges to zero in 30 days. While in the second strategy, 
their number reaches zero in 25 days without any peak. 
Figures 15a and b show that the number of recognized and 
threatened people decreases compared to the control-free 
case.

There is a reduction of about 900 people in mortality 
after applying the isolation-vaccination strategy com-
pared to the control-free case (Fig. 16a). By comparing 
Figs. 10b and 16b, it is evident that combining vaccina-
tion and isolation reduces the number of healed people 
because susceptible people get vaccinated (moving to 
the vaccinated group). Thus, fewer get infected; as a 
result, fewer get to recover and move to the healed peo-
ple group.

In Figs. 17 and 18, the relation between the control rate 
and groups R(t) , D(t) , and S(t) is presented. The more sus-
ceptible people are, the more effort is needed to vaccinate 
them. Also, the more susceptible people exist, the more they 
get infected; therefore, a higher isolation rate is required in 
order to isolate them.

Fig. 16  The comparison of the number of the Extinct and Healed individuals with and without the proposed controller

Fig. 17  The relationship between the controller (vaccination) and the 
mean of recognized and diagnosed and susceptible individuals

Fig. 18  The relationship between the controller (isolation) and the 
mean of recognized and diagnosed and susceptible individuals
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It can be concluded from Fig. 19 that in the early days of the 
outbreak, the number of susceptible people is large, then a con-
siderable control effort is needed, which decreases over time.

7.3  Evaluation of the controller for new SARS‑Cov‑2 
variants

In this section, the parameters of the SIDARTHE epidemic 
model (�, �, � , and �) are changed to match the new transmis-
sibility rate, which faced an estimated increase between 40 
and 70%, as the preliminary reports show. All figures show 
the comparison between applying the controller (both strat-
egies) on the original SIDARTHE Epidemic and the new 
SIDARTHE Epidemic with a 70% increase in transmissibil-
ity rate (the most transmissions) (World Health Organization 
(WHO) 2021).

7.3.1  Comparison first strategy for the original and new 
SIDARTHE epidemic model

Given that the current vaccines for the SARS-Cov-2 variants 
have not been accessible to everyone yet and the transferring 
of a safe and effective vaccine worldwide takes time, it can 
be assumed that there is no vaccination and the only control 
effort is isolation. Figures 20, 21, 22 and 23 show that since 
the transmission rate has dramatically increased, the con-
troller can control the outbreak only by applying isolation.

As shown in Fig. 20, with a 70% increase in transmissibility 
rate, in the absence of an effective vaccine, more susceptible 
people get infected; therefore, their number decrease sooner in 
less than ten days. Also, although the transmissibility increases, 
the number of healed people in each situation is equal.

Figure 21 shows that the number of infected people increases 
with an increment in the transmissibility rate in the early days. 

Fig. 19  The control efforts for isolation and vaccination-based strategy

Fig. 20  The comparison between the number of S(t) and H(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model
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Therefore, the control input applies more effort to decrease this 
growth; hence, their number drops sooner and converges to zero 
in less than 25 days. Similarly, an increase in the transmissibility 
rate leads to a peak in the number of ailing people in the early 
days of the outbreak. After that, the controller can reduce this 
increment. In Figs. 22 and 23, the controller controls the preva-
lence of pandemics and drives the number of detected infected 
people to converge to zero. Although the rapid-spreading corona-
virus is developing quickly, there is no increment in the mortality 
rate by applying only the isolation strategy.

7.3.2  The impact of second strategy on the new model

In this section, the impact of the proposed controller (sec-
ond strategy) on the original SIDARTHE epidemic model 
and the new one with a 70% increase in transmissibility 

are investigated and compared. Although the transmis-
sion rate is increased up to 70%, the controller can con-
trol the outbreak with very little difference and accept-
able performance. Regardless of the disease peak in the 
infected group, the controller has increased in the out-
break’s early days and can still control and converge it 
to zero. As shown in Fig. 24, the number of susceptible 
people diminishes because of the vaccination strategy. 
Also, by comparing the number of healed people (70% 
increase in transmissibility) with their number in the case 
of with-controller in Fig. 20, it can be concluded that 
their number with a 70% increase reaches just less than 
2500. In contrast, their number is more than 300 when 
the transmissibility rate is not so large. Similarly, in the 
other Figs. 25, 26 and 27, it is clear that the controller 

Fig. 21  The comparison between the number of I(t) and A(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model

Fig. 22  The comparison between the number of D(t) and R(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model
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can control the effect of increment in the transmissibility 
rate well.

8  Discussion

The containment measures related to the COVID-19 pan-
demic, mainly physical distancing and quarantine applied 
to society in the early days of the outbreak, had damag-
ing consequences on the economic and mental health of the 
general population worldwide in the long term. According 
to the vaccine design and development through to clinical 
applications, it can be emphasized that vaccination should 
be used as a control effort to control the outbreak. Also, 
in the absence of curative treatment, non-pharmaceutical 

interventions, such as infected isolation can be used to curb 
the pandemic. Therefore, this paper is focused only on vac-
cination and isolation without dealing with quarantine and 
its limitation that society faces. The vaccination strategy 
indirectly reduces the number of infected people; that is, a 
decrease in the number of susceptible people by vaccination 
leads to eradicating the pandemic. Also, infected isolation 
has fewer limitations than quarantine and is easier to apply. 
The prevalence of new COVID-19 caused by the variants 
with an increase in transmissibility is examined in this paper. 
The mentioned strategies are evaluated with a 70% increase 
and have overcome the pandemic.

In the present study, the simulation results show that, 
without vaccination, the susceptible people move to the 
infected people group; therefore, decrement in their number 

Fig. 23  The comparison between the number of T(t) and E(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model

Fig. 24  The comparison between the number of S(t) and H(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model
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Fig. 25  The comparison between the number of I(t) and A(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model

Fig. 26  The comparison between the number of D(t) and R(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model

Fig. 27  The comparison between the number of T(t) and E(t) in the presence of proposed controllers applied on original and new SIDARTHE 
epidemic model
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is more, and they reach zero in a shorter period compared 
to the free-control case. Besides, as the number of diag-
nosed, ailing, recognized, and acutely infected people grows, 
more people will die of the disease. Whereas vaccinating 
susceptible people with a vaccine reduces their number and 
moves them to the vaccinated group. Hence, fewer people 
get infected, and the mortality rate will be diminished. More-
over, Moreover, by isolating the infected people, the contact 
with the susceptible people will be reduced, preventing the 
cycle of transmission in society, and fewer people will die.

ANFIS usage in various research fields has been exten-
sively researched over the past few years, but few were 
devoted to the COVID-19 pandemic (Moayedi et  al. 
2020; Alawad et al. 2020; Shokouhifar and Pilevari 2021; 
Mohadesi and Aghel 2020; Alameer et al. 2019; Abd Elaziz 
et al. 2020; Husein et al. 2019; Turabieh and Muhanna 
2016). Authors in Moayedi et  al. (2020) optimized the 
ANFIS with two optimization algorithms: first, Genetic 
Algorithm (GA) and, second, Particle Swarm Optimization 
(PSO) for the calculation of friction capacity ratio (α) in 
driven shafts in the area of pile engineering. Risk assess-
ment of overcrowding levels in railway stations is also 
investigated using ANFIS (Alawad et al. 2020). In addition, 
(Shokouhifar and Pilevari 2021) assessed the resilience of 
e-learning in education systems using the combined model 
of GA-ANFIS. The GA-ANFIS strategy is also used for the 
prediction purposes such as inorganic indicators of water 
quality (Mohadesi and Aghel 2020), copper prices (Alameer 
et al. 2019), crude oil prices (Abd Elaziz et al. 2020), need 
for drugs based on disease population (Husein et al. 2019), 
the existence of breast cancer or not (Turabieh and Muhanna 
2016). Furthermore, regarding COVID-19, ANFIS is used 
to predict epidemic peak and infected cases for COVID-19 
in India (Kumar et al. 2021; Ly 2021). Authors in Eshaghi 
Chaleshtori and Aghaie (2021) proposed a novel prediction 
model (i.e., PSO-GA-ANFIS) to estimate and predict the 
total confirmed cases of COVID-19 assessed by Iran’s data 
to forecast the COVID-19 epidemic prevalence trend in Iran.

In the following, the present study is compared to some 
studies specifically to show the capability of the given con-
troller. Authors in Cooper et al. (2020); Abbasi et al. 2021b) 
introduced an optimal technique to control the SEIR model 
for Influenza and COVID-19, respectively. Those papers 
aimed to reduce the number of susceptible and infected indi-
viduals and increase the number of recovered individuals 
using minimum vaccination and antiviral treatment rates. 
Several new groups should be added to the model intro-
duced in Cooper et al. (2020) to make it more beneficial to 
investigate the COVID-19 features. Due to the rapid changes 
in the outbreak rate of the disease, another control effort 
can be applied in addition to vaccination. Therefore, as 
mentioned in the introduction, the authors in Abbasi et al. 
(2020) applied an optimal control strategy to the SQEIAR Ta
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epidemic model with application to COVID-19. They con-
trolled the outbreak using susceptible people quarantine and 
infected people treatment. A successful vaccine is devel-
oped to defeat the pandemic, and society faces economic 
and social constraints concerning quarantine. Therefore, 
it has become clear that we must go beyond and use new 
strategies to face the disease according to vaccine develop-
ment. In this regard, the authors in Higazy (2020) used an 
optimal control strategy to control the SIDARTHE model 
using susceptible vaccination and infected treatment with 
four control efforts. They obtained the control efforts for 
the whole duration of the outbreak. However, as stated by 
the daily trend in the size of the COVID-19 infected popula-
tion globally, it is necessary to control the pandemic on a 
daily basis. Hence, the present study uses the SIDARTHE 
model with a more detailed description of infection stages. 
The advantage of this work is using the daily control effort 
instead of the optimal control duration with only two control 
efforts. It is motivated by the daily changes in the number of 
people involved with the disease. The optimal ANFIS-based 
control is also applied to the SIDARTHE model, which has 
not been addressed in the literature before. Also, the impact 
of the proposed controller with a 70% increase in transmissi-
bility is investigated, showing the capability of the presented 
controller to overcome the variants.

In following, Table 7 represents the performance of the 
proposed strategies using MSE and RMSE criteria. The 
available random dataset is divided into two subsets: train-
ing, and testing, with 70% for training and 30% for testing 
purposes (Tables 1 and 2), while the validation is done using 
the real data of South Korea, taken from the Korea Disease 
Control and Prevention Agency (KDCA), given in Amiri 
Mehra et al. (2020). According to the comparison results 
between the GA-ANFIS and ANFIS, it can be concluded that 
the proposed model (GA-ANFIS) had a better performance 
than the conventional ANFIS model, and the results ignore 
the limitations of the ANFIS model.

9  Threats to validity

In this section, the threats related to the validation in Table 8 
clarify the proposed research.

10  Conclusion

In this work, a comprehensive SIDARTHE epidemic model 
was considered to investigate the trend of the COVID-19 
outbreak. The objective of this study was: first, infected-iso-
lation with the aid of minimum control effort in the lack of 
the vaccination campaign; second, susceptible-vaccination 
and infected-isolation simultaneously using minimum con-
trol efforts without difficulties in dealing with susceptible-
quarantine. To this end, an ANFIS was optimized based on 
GA to be used as a controller to draw the states to reach the 
objective. In this regard, an optimized data set was obtained 
using two fitness functions to train the ANFIS. Hence, the 
proposed ANFIS-based optimal control was employed to 
reduce the number of diagnosed and recognized people via 
isolation and susceptible people via vaccination. Meanwhile, 
the basic properties of the model, such as positivity, bound-
edness, and existence, were discussed in the presence of the 
controller. Finally, numerical results showed that the con-
troller had overcome the outbreak despite the new strains 
spreading rapidly in several countries.

Following are the potential directions that can be explored 
for future research:

• Since the COVID-19 pandemic spreading is on the rise 
and some new rapid-spread strains have been identified 
recently, the need to control the prevalence trend is the 
main concern for researchers. Therefore, it could be an 
excellent opportunity to develop a new controller accord-
ing to the new features of the mutated coronavirus in 
future studies.

Table 8  The validity threats to the proposed method

Threat Brief description

Improper isolation Breaking the isolation laws or/and improper isolation of infected groups leads to infecting sus-
ceptible people and widespread infection

Unusual commuting Replacing telecommuting and online shopping, which are becoming a new normal, by commut-
ing to the workplace and in-store shopping in the aftermath of people's tiredness of being at 
home without assessing the consequences brings about an infection spread explosion

Lack of the correct value of the parameters Incorrect value of the parameters causes the controller's improper design and inaccurate results
Low Statistical Power Too few participants make it difficult/impossible to distinguish between different groups involved
Ineffectiveness of the Vaccine Low immunization rate and coverage levels of the vaccine
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• Exploring the possibility of optimizing the ANFIS model 
with other evolutionary algorithms and comparing the 
results.

• Investigating other properties of the model, such as sen-
sitivity and accuracy in the presence of the controller.
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