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Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in
humans. Hypoxia-related genes are now recognized as a reflection of poor prognosis in
cancer patients with cancer. Meanwhile, immune-related genes play an important role in
the occurrence and progression of ccRCC. Nevertheless, reliable prognostic indicators
based on hypoxia and immune status have not been well established in ccRCC. The aims
of this study were to develop a new gene signature model using bioinformatics and open
databases and to validate its prognostic value in ccRCC. The data used for the model
structure can be accessed from The Cancer Genome Atlas database. Univariate, least
absolute shrinkage and selection operator (LASSO), and multivariate Cox regression
analyses were used to identify the hypoxia- and immune-related genes associated with
prognostic risk, which were used to develop a characteristic model of prognostic risk.
Kaplan-Meier and receiver-operating characteristic curve analyses were performed as well
as independent prognostic factor analyses and correlation analyses of clinical
characteristics in both the training and validation cohorts. In addition, differences in
tumor immune cell infiltrates were compared between the high and low risk groups.
Overall, 30 hypoxia- and immune-related genes were identified, and five hypoxia- and
immune-related genes (EPO, PLAUR, TEK, TGFA, TGFB1) were ultimately selected.
Survival analysis showed that the high-risk score on the hypoxia- and immune-related
gene signature was significantly associated with adverse survival outcomes. Furthermore,
clinical ccRCC samples from our medical center were used to validate the differential
expression of the five genes in tumor tissue compared to normal tissue through
quantitative real-time polymerase chain reaction (qRT-PCR). However, more clinical
trials are needed to confirm these results, and future experimental studies must verify
the potential mechanism behind the predictive value of the hypoxia- and immune-related
gene signature.
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INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
malignant tumors of the urinary system, approximately 4%
(73,750 new cases) of newly diagnosed carcinomas in
United States (Siegel et al., 2020). In 2020, the global
incidence of RCC was 431,000 patient cases, and the death toll
was 179,000 people, which represented 1.8% of the global death
toll from cancer; morbidity and mortality rates are still increasing
(Padala et al., 2020). Clear cell RCC (ccRCC) accounts for
approximately 75–80% of the pathological types of RCC
(Ricketts et al., 2018; Vuong et al., 2019). Because it is
insensitive to radiotherapy and chemotherapy, treatment of
metastatic RCC remains poorly effective (Pal and Agarwal,
2016; Lieder et al., 2017; Lara and Evans, 2019). The primary
treatment for early ccRCC is surgery, whereas chemotherapy,
targeted therapy (tyrosine kinase inhibitors and mTOR
inhibitors), and immunotherapy are the preferred treatments
for advanced ccRCC (Vermassen et al., 2017; Atkins and
Tannir, 2018; Chen et al., 2019). However, drug resistance
after targeted therapy and limitations of immunotherapy
impair patients’ long-term outcomes (Duensing and
Hohenfellner, 2016; Xu et al., 2020).

Hypoxia-related mechanisms have long been considered
markers of cancer signaling pathways (Jing et al., 2019). The
hypoxic tumor microenvironment is closely associated with poor
prognosis and poor survival (Gilkes et al., 2014). The fast
propagation of tumor cells and the lack of blood supply lead to
low oxygen levels within the tumor, which can lead to an anoxic
focus. The genes with expression changes triggered under this
condition are called hypoxia-related genes (HRGs). In solid
tumors, tumor cells express hypoxia-inducible factor 1 (HIF-1),
which persuades the expression of factors involved in
tumorigenesis, including extracellular matrix remodeling,
angiogenesis, cell migration, drug resistance, and tumor stem
cell maintenance (Hajizadeh et al., 2019). A few studies have
shown that hypoxia in tumor cells can promote angiogenesis,
glycolysis, cell invasion, cell survival, and immune escape and
eventually can lead to tumorigenesis and metastasis (Lee et al.,
2019; Luo and Wang, 2019). The predictive power of HRGs in the
prognosis ofmajormalignancies (lung cancer or gastric cancer) has
been well demonstrated (de Heer et al., 2020; Wang et al., 2021).

Currently, it is believed that the loss of immune cell function in
the tumor microenvironment is one of the important
mechanisms for malignant tumors to escape from the human
immune system (Lawson et al., 2020). Current studies have
shown that immune-related genes (IRGs) play an vital role in
the development of RCC (Xu et al., 2019; Lawson et al., 2020).
There is evidence that high levels of activated CD8+ T cells are
associated with better prognosis in many cancers, including
kidney cancer (Youngblood et al., 2017; Yao et al., 2018). In a
retrospective analysis of the S-Trac trial using adjuvant sunitinib
in high-risk patients with renal cancer, the number of CD8+

T-cell infiltrates in tumor samples highly correlated with survival
prognosis in the sunitinib group (George et al., 2018).
Interestingly, direct and indirect interactions between hypoxia
and immune status have been found in the RCC

microenvironment (Samanta and Semenza, 2018). In RCC, the
EGLN/HIF signaling axis promotes tumorigenesis by altering the
function of various components of the tumor microenvironment,
including cancer-associated fibroblasts, endothelial cells, and
immune cells (Huang et al., 2017).

So far, the relationship between the expression of hypoxia- and
immune-related genes and ccRCC has not been studied in detail.
In this study, a risk scoring model based on five hypoxia- and
immune-related genes was constructed and validated using a
public database to individualize prognosis in patients with
ccRCC. In addition, the model was combined with clinical
features to improve the accuracy of overall survival prediction.
Differences in tumor immune cell infiltration between the high
and low risk groups were also analyzed.

MATERIALS AND METHODS

Data Acquisition and Analysis
The flow chart of this study is shown in Figure 1. We collected the
gene expression data in the database of The Cancer Genome Atlas
Program (TCGA-KIRC, https://portal.gdc.cancer.gov) (Liu et al.,
2018). The research included the data of all 539 ccRCC tumor
samples and 72 normal kidney samples. Clinical information of
ccRCC patients was downloaded from TCGA-KIRC dataset,
including age, gender, survival status, follow-up time, tumor
grade, tumor stage, TNM stage. Then, patients with follow-up
time less than 30 days and incomplete information were excluded,
and 507 ccRCC patients were included in the model construction
and survival analysis. 254 hypoxia-related genes were collected
from HARRIS_HYPOXIA.gmt and WINTER_HYPOXIA_
METAGENE.gmt by gene aggregation analysis (GSEA, http://
www.gsea-msigdb.org/gsea) (Harris 2002; Subramanian et al.,
2005; Winter et al., 2007). In addition, 1,318 IRGs were
derived from IMMPORT database (Tian et al., 2020) (https://
www.immport.org/home).

Dentifying Differentially Expressed HRGs
and IRGs in Clear Cell Renal Cell Carcinoma
To identify the differentially expressed genes (DEGs) between
tumor and normal samples, the “limma” package in R was used to
process the mRNA sequencing data (Ritchie et al., 2015) and
visualized by “pheatmap” and “vioplot”packages in R (Cheng
et al., 2021). The original data were preprocessed and
standardized, and then 539 tumor samples were compared
with 72 normal samples. The screening criteria for differential
genes was false discovery rate (FDR) < 0.05, p value < 0.05 and |
logFC| > 1. Venn diagrams (Jia et al., 2021) are used for graphical
depiction of the unions, intersections and distinctions among
DEGs, HRGs and IRGs.

Pathway Enrichment Analysis to Identify
Molecular Functions
To better understand the function of all hypoxia- and immune-
related genes, we performed pathway enrichment analysis on
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these genes. We used the “clusterProfiler” package in R (Yu et al.,
2012) to analyze the signaling path–related genes through the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000) database and to analyze their biologic processes,
molecular functions, and cellular components through the R
Gene Ontology (GO) database program (Gene Ontology
Consortium, 2015). The aim was to determine whether the
genes screened were indeed involved in hypoxia and immunity.

Hypoxia- and Immune-Related Gene
Prognosis Model Construction
We used a univariate Cox model to analyze the relationship
between the expression levels of HRGs and IRGs and the overall
survival of patients with ccRCC. Univariate Cox regression
analyses were used to calculate the hazard ratio (HR) and 95%

confidence intervals (CI) to identify genes associated with over-all
survival (van Dijk et al., 2008). Using p value < 0.01 as the cutoff
for identifying relevant genes, we selected survival-related genes.
To avoid gene abundance fitting, we used the “glmnet” package to
perform LASSO regression to screen for genes with higher
correlation (Friedman et al., 2010). Finally, we used
multivariate Cox regression analysis to determine the optimal
prognostic indicators of the model (Li et al., 2020). The
prognostic risk score model was established as follows:

Risk score � ∑
n

i�1
βiGi

(βi is the coefficient of the gene i in multivariate Cox analysis; Gi

represents the expression value of gene i; n is the number of genes
in the signature) (Cai et al., 2020).

FIGURE 1 | Flow chart.
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Survival Analysis and ROC Curve
We used univariate Cox regression analysis to verify the influence
of individual clinicopathologic factors on prognosis (van Dijk
et al., 2008). In this study, all samples were reclassified into
appropriate subgroups based on age, sex, and stage. We then
collected mean risk scores for different subgroups and performed
survival analyses to verify the validity of the predictive prognostic
model. We used Kaplan-Meier survival analysis to compare
prognostic power between subgroups using the “survival” and
the “survminer” packages in R (Heagerty et al., 2000). The
Receiver Operating Characteristic Curve (ROC) curves were
compared to investigate the accuracy, sensitivity, and
specificity of the model (Heagerty et al., 2000).

Validation Cohort Analysis
The ccRCC samples obtained from TCGA were randomly
divided into two groups, the training cohort (n = 354) and the
validation cohort (n = 153) (Supplementary Table S1). We used
the same method described in section 2.5 for validation in the
validation group.

Immune Microenvironment Analysis
We downloaded immune cell infiltration tables for TCGA-listed
tumors from TIMER (http://timer.comp-genomics.org) (Li et al.,
2017)and CIBERSORT (https://cibersort.stanford.edu) (Newman
et al., 2015). We analyzed the correlation between risk score and
immune cells using “limma” and “ggpubr” packages (Cheng et al.,
2021). Immunization differences between high and low risk
groups were compared.

Nomogram Construction and Validation
To develop a more convenient and qualitative predictive tool for
ccRCC patients, we used the “rms” package and “survival” package
in R (Liu et al., 2021) to establish a nomogram based on the factors
that were determined to have independent predictive ability by the
entire TCGA cohort after multivariate Cox analysis, and
calibration curves were plotted for 2, 4, and 6 years to judge the
precision of the nomogram (Iasonos et al., 2008).

The Expression of Genes Was Verified by
qRT-PCR
Six ccRCC tissues and normal kidney tissues were collected from
the First Affiliated Hospital of Wenzhou Medical University.
Total RNA was extracted from ccRCC samples and normal renal
tissue samples using TRIzol reagent (Thermo Fisher Scientific,
Waltham, MA, United States). Single-stranded cDNA was
synthesized from 1 µg of total RNA using the PrimeScript RT
Reagent Kit with gDNA Eraser (Takara Biotechnology Co. Ltd.,
Dalian, China). Reverse transcription quantitative PCR was
applied to explore the mRNA expression of the hub genes
using a 7500 PCR system (Thermo Fisher Scientific) (Zhou
et al., 2021). The following cycling conditions were adopted:
95°C for 2 min, followed by 40 cycles of 95°C for 10 s and 60°C for
30 s. The qPCR assays were performed for each sample in a
reaction volume of 10 μL. The 2−ΔΔCt method was used to
determine relative gene expression levels, and β-Actin was used

as an internal control to normalize the data (Sun et al., 2021). The
primers used in this study were provided by Sangon Biotech
(Shanghai) Company and are shown in Supplementary Table
S2. Data were analyzed using GraphPad Prism 8.0 Software
(GraphPad Software Inc., La Jolla, CA, United States) (Huang
et al., 2020), and t-test was used to test the differences between
tumor and normal samples (p value < 0.05) (Katzendorn et al., 2021).

Statistical Analyses
All analyses were performed using R version 4.0.5. Unless
otherwise noted, p value < 0.05 was significant.

RESULTS

Identification of Differentially Expressed
Hypoxia-Related Genes and
Immune-Related Genes in Clear Cell Renal
Cell Carcinoma
The database from TCGA included 539 tumor samples and 72
normal kidney samples. By comparing tumour and normal tissue
samples, we finally screened 7,369 DEGs (Figure 2A, FDR value <
0.05, p value < 0.05 and |logFC| > 1). Compared with normal
samples, 5,467 genes were upregulated and 1,903 genes were
downregulated in tumor samples (Figure 2B). We collected data
from HARRIS_HYPOXIA.gmt and
WINTER_HYPOXIA_METAGENE.gmt to obtain a total of
254 HRGs. A total of 1,318 IRGs were derived from the
IMMPORT database. Then, the intersection part of Venn
diagram showed 30 common genes from the 7,369 DEGs, 254
HRGs and 1,318 IRGs (Figure 2C, Supplementary Table S3),
which called the differentially expressed hypoxia- and immune-
related genes were used for subsequent analysis.

Functional Analysis of Hypoxia-Related
Genes and Immune-Related Genes
Pathways in Clear Cell Renal Cell
Carcinoma
GO function analysis of these 30 genes showed that they were
involved in hypoxia, bacterial origin molecules,
lipopolysaccharides, regulation of vascular development,
endothelial cell migration, angiogenesis, and vascular
development (Figures 3A,B). KEGG pathway analysis showed
that they were involved in rheumatoid arthritis–related pathways,
the RAP1 signaling pathway, the PI3K/Akt signaling pathway, the
calcium signaling pathway, the RAS signaling pathway, the
MAPK signaling pathway, and the HIF-1 signaling pathway
(Figures 3C,D). Based on these results, it has been shown that
the genes we selected are indeed related to hypoxia and immunity.

Construction and Verification of the Survival
Model
To search for new genetic biomarkers associated with prognosis
in patients with ccRCC, we first performed univariate Cox
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analysis, in which 11 genes were significantly associated with
overall survival (p value < 0.01, Supplementary Table S4). In
addition, to screen for genes with higher correlation and to
prevent overfitting of the model, we used LASSO regression
analysis to reduce the number of candidate genes to six (p
value < 0.05, Figures 4A,B, Supplementary Table S5). Five
genes (EPO, TGFB1, TGFA, TEK, and PLAUR) independently
related to overall survival were obtained by multivariate Cox

analysis (p value < 0.05). Subsequently, we divided patients with
ccRCC into low and high risk groups and examined the prognostic
predictive performance of the new survival model consisting of five
genetic risk characteristics. The hypoxia- and immune-related risk
signature was constructed as follow: Risk score = 0.006828553 ×
Expression of EPO + 0.006828553 × Expression of
TGFB1—0.011708366 Expression of TGFA—0.094278339 ×
Expression of TEK+ 0.044483942 × Expression of PLAUR. We

FIGURE 2 | Screening of different expressed genes. (A) Heatmap of significantly different expressed genes. (B) Volcano map; green represents downregulated
genes, and red represents upregulated of genes. (C) Venn plot of different expressed genes, hypoxia-related genes (HRGs), and immune-related genes (IRGs).

FIGURE 3 | Functional pathway analysis. (A, B) Gene oncology (GO) pathway analyses. (C, D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. BP: biologic process; CC: cellular component; MF: molecular function.
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evaluated the distribution of risk scores, survival information in the
training cohort. As showcased in Figure 4C, with the gradual increase
of the risk scores, the survival time of patients in high- and low-risk
group gradually decreased, while the mortality rate gradually
increased. As the risk score gradually increased, the expression
levels of HRGs and IRGs in the samples gradually increased, and
the overall survival rate showed a significant downward trend
(Figure 5A). Principal components analysis (PCA) was also
performed for all genes and for HRGs, HRGs and IRGs, and risk
genes (Figure 5B). PCA showed that patients from different groups
could be clearly grouped on the basis of signatures selected in all data
sets. Analysis of the five hypoxia- and immune-related genes also
showed high expression of EPO,TGFB1, TGFA, and PLAUR, but low
expression of TEK in tumor samples (Table 1).

Testing in the Validation Cohort
Consistent with the results of the training cohort, the low-risk
group in the validation cohort had a better prognosis than the
high-risk group did (Figure 6A). The area under the curve (AUC)

(95% CI) values of the model based on the five selected genes at 2,
4, 5, and 6 years were 0.644, 0.666, 0.711, and 0.714, respectively
(Figure 6B), indicating that the model achieved good sensitivity
and specificity for survival prediction.

Internal Validation With the Clinical Survival
Prediction Model
The clinicopathologic characteristics of patients are listed in
Table 2. We performed survival analyses on the subtype
clinicopathologic parameters for patients in both groups. The
overall survival of the high-risk group was significantly lower
than that of the low-risk group (p value < 0.05) (Figure 4C).
Kaplan-Meier plots were generated in digital form, highlighting
the prognostic value of various clinical variables, and
demonstrating that the data proved to be reasonable and valid.
The prognostic performance of the five genes was closely related
to prognosis and an AUC value of 0.719 in the model indicated a
good prognostic prediction effect (Figure 7C).

FIGURE 4 | Prognostic risk model was constructed from the prognostic prediction in clear cell renal cell carcinoma (ccRCC). (A) Plots of the cross-validation error
rates. (B) LASSO coefficient profiles of the prognostic risk model. (C) Survival curve for low- and high-risk subgroups.
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FIGURE 5 | Risk score analysis of disease-specific survival–related prognostic models. (A) Risk score distribution, survival status, and expression heat map. (B)
Principal components analysis (PCA)maps show the distribution of patients according to all genes (n = 56,753), differentially expressed HRGs (n = 98), differentially
expressed HRGs and IRGs (n = 30), and risk genes (n = 5).

TABLE 1 | Five hypoxia- and immune-related genes expressions in low and high risk groups.

Name Coefficient Type Regulation HR 95%CI p value

EPO 0.00952 Protective Up 1.010 1.002–1.017 0.0164402
TGFB1 0.00682 Protective Up 1.007 0.999–1.015 0.0787113
TGFA −0.01171 Risky Up 0.988 0.979–0.998 0.0208366
TEK −0.09428 Risky Down 0.910 0.871–0.950 0.0000199
PLAUR 0.04448 Protective Up 1.045 1.023–1.069 0.0000706

FIGURE 6 | Validation cohort. (A) Survival curve for low-risk and high-risk subgroups in the validation cohort. (B) Time-dependent receiver operating characteristic
curve comparison of the validation cohort. Areas under the curve (AUCs) at 2, 4, 5, and 6 years were calculated.
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The model of hypoxia- and immune-related genes was
significantly superior to traditional clinical factors, such as age,
gender, and tumor grade (AUC values of 0.658, 0.665, 0.508, and
0.718), in the ability to predict prognosis (Figure 7C). Univariate
Cox regression analysis confirmed these observations
(Figure 7A). Analysis showed that age, tumor grade, tumor
stage, and corresponding risk score were clinicopathologic
characteristics associated with overall survival. In addition,
multivariate Cox regression analysis (Figure 7B) confirmed
that age, tumor grade, tumor stage, and risk score were
four independent prognostic factors associated with poor
overall survival (Figures 8A,B). These results confirmed
that the findings of this study are based on an actual signal in
the data with HRGs and IRGs and are not driven by clinical bias.

Stratified analysis was then performed in different subgroups
to re-confirm the prognostic characteristics. Prognostic markers
differed significantly in most subgroups (Figures 8C-K,M, p

value < 0.05), but the results were less satisfactory in the N1
and M1 subgroups (Figures 8L,N). The results showed that the
five characteristic models of hypoxia- and immune-related genes
had a good predictive effect for the prognosis of ccRCC.

Compositions of Tumor-Infiltrating Immune
Cells in Patients With Clear Cell Renal Cell
Carcinoma
We compared the proportions of tumor-infiltrating immune cells
between ccRCC and normal samples (Supplementary Figure S1).
The results showed a significant difference in ccRCC and normal
samples (Supplementary Figure S2). Furthermore, we investigated
the level of infiltration of seven immune cell types to explore the
relationship between risk score and infiltrating immune cell
subtypes. The results showed a positive correlation between the
high-risk group and the infiltrating immune cells at the tumor site,
specifically memory B cells (Figure 9H). However, the high-risk
group negatively correlated with CD4+ T cells, B cells, neutrophils,
macrophages, CD8+ T cells, naive B cells, and plasma B cells, and the
low-risk score was likely to be accompanied by many immune cell
infiltrations (Figures 9A–G). These results suggest that prognostic
characteristics may affect the prognosis of patients with ccRCC by
regulating the tumor immune microenvironment.

Establishment of a Nomogram Based on
Risk Score and Clinicopathological Factors
Based on the outcomes of multivariate analysis of entire TCGA
cohort, we constructed a prognostic nomogram to develop amore
convenient and qualitative predictive tool that can predict the
survival risk of individual patients (Figure 10A). In addition, the
2-, 4- and 6-year calibration curves were plotted, respectively
(Figure 10B), which showed a good consistency between the
predicted and actual survival rates of patients with ccRCC in the
entire TCGA cohort.

Validation of Candidate Genes by qRT-PCR
We further examined the differential expression of EPO, TEK,
TGFA, TGFB1 and PLAUR genes between ccRCC tissue and
normal renal tissue samples. The qRT-PCR results showed that
compared with the normal renal tissues, the expression level of
EPO, PLAUR, TGFA and TGFB1were higher in the ccRCC tissue,
while the expression level of TEK were lower, trends in the
expression levels of these genes were consistent with our
findings (Figure 11).

DISCUSSION

Thus far, most research on RCC has focused on the ccRCC
subtype. More than 90% of chronic RCC diagnoses are
characterized by loss of heterozygosity on the short arm of
chromosome 3 (Gnarra et al., 1994). Approximately 50% of
the cases have gene mutations (Schraml et al., 2002), whereas
5–10% of cases have promoter hypermethylation, leading to

TABLE 2 | The clinical characteristic information of all patients with clear cell renal
cell carcinoma (ccRCC) in The Cancer Genome Atlas database.

Variables TCGA Training group Validation group

Number of Patients 507 354 153

Age
<65 323 222 101
≥65 184 132 52

Gender
Female 174 115 59
Male 333 239 94

Survival Status
Alive 345 239 106
Dead 162 115 47

Grade
G1 12 8 4
G2 215 144 71
G3 199 148 51
G4 73 48 25
GX 5 5 0
Unknow 3 1 2

Stage
I 253 169 84
II 53 35 18
III 116 88 28
IV 82 59 23
Unknow 3 3 0

T classification
T1 259 173 86
T2 65 44 21
T3 172 128 44
T4 11 9 2

M classification
M0 401 278 123
M1 78 56 22
MX 26 18 8
Unknow 2 2 0

N classification
N0 225 152 73
N1 16 13 7
NX 266 189 77
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FIGURE 7 | Confirmation of prognostic value and independent predictive power in patients with clear cell renal cell carcinoma (ccRCC). (A) Multivariate Cox
analysis. (B) Univariate Cox analysis. (C) Comparison of receiver operating characteristic curves with other common clinical characteristics shows the superiority of the
risk score. (D) Overall survival analysis based on clinicopathologic parameters.
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FIGURE 8 | Kaplan-Meier curves showing the prognostic prediction performance in subgroups of (A, B) age, (C, D) gender, (E, F) grade, (G, H) tumor stage, (I, J)
T stage, (K, L) N stage, and (M, N) M stage.
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accumulation of HIF and overexpression of many genes,
including those that promote angiogenesis and metabolic
reprogramming (Godlewski et al., 2017).

In this study, we conducted a bioinformatics analysis based on a
public database and found 30 differentially expressed hypoxia- and
immune-related genes in patients with ccRCC. After conducting
multiple Cox regression analyses, we identified five independent
prognostic genes: EPO, TEK, TGFA, TGFB1, PLAUR. Based on these
results, we developed a new prognostic model for predicting the
overall survival of ccRCC patients. In addition, we validated the
model and obtained consistent results, suggesting that this hypoxia-
and immune-related gene signature can be used as a prognostic
marker for ccRCC.

Among the five genes we obtained, the EPO gene is involved in
the regulation of human classical physiologic response to
hypoxia, and the study of its regulation led to the discovery of
a human oxygen sensing mechanism (Schodel and Ratcliffe,

2019). It has been reported that EPO is highly expressed in
RCC and is directly controlled by hypoxia via HIF-1. HIF-1
DNA is a trans acting factor and binds to the cis-hypoxia response
element of the EPO gene promoter (Semenza 1998; Papworth
et al., 2009; Masson and Ratcliffe, 2014). The erythropoietin it
encodes is an erythropoietic growth factor, which can not only
stimulate angiogenesis (Hardee et al., 2006) but also stimulate the
proliferation of tumor cells (Hardee et al., 2006). In addition,
studies have shown that human renal cancer cells express the
EPO receptor, which, when activated, can stimulate the
proliferation of cultured renal cancer cells in vitro (Hardee
et al., 2006).

TEK was originally thought to be a specific receptor for
endothelial cells, which plays an important role in the regulation
of angiogenesis and remodeling and influences the formation of the
tumor microenvironment (Chen et al., 2021). Alterations in TEK
expression have been observed in many cancers, such as oral

FIGURE 9 | Comparison of the proportions of tumor-infiltrating immune cells between low and high risk groups. The green boxplots represent the low-risk group,
and the red boxplots represent the high-risk group. (A)CD4+ T cell, (B)B cell, (C)Neutrophil, (D)Macrophage, (E)CD8+ T cell, (F)Naive B cell, (G) Plasma B cell, and (H)
Memory B cell.
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squamous cell carcinoma; leukemia; and breast, gastric, and thyroid
cancers (Mitsutake et al., 2002; He et al., 2015; Chen et al., 2016;
Cortes-Santiago et al., 2016; Kitajima et al., 2016). Recent studies have
reported that high TEK expression be related to poor prognosis in
patients with ccRCC, and these reports conform with the results of
our study (Ha et al., 2019).

Transforming growth factor-α (TGFA), as a member of the
epidermal growth factor receptor family, is believed to be an
important mediator in tumorigenesis and malignant progression
(Holbro et al., 2003; Hynes and Lane, 2005; Asami and Atagi,
2014). Transforming growth factor-α/epidermal growth factor
receptor signaling promotes the occurrence and progression of
cancer cells and generates a tumor microenvironment
advantageous to metastasis (Sasaki et al., 2013). The regulation
of autocrine signaling by transforming growth factor-α ligand
through the epidermal growth factor receptor is also involved in
the development and progression of epithelial tumors (Sporn and
Todaro, 1980; Sporn and Roberts, 1985).

The transforming growth factor-β superfamily is a group of
multifunctional cytokines involved in cell proliferation and

differentiation, angiogenesis, immunosuppression, cell
motility, apoptosis, wound healing, and embryonic
development (Katz et al., 2013). Of the three TGFB
isoforms that exist in humans, TGFB1 is the most abundant
(Zu et al., 2012). It is encoded by the TGFB1 gene on
chromosome 19q13.2 and is associated with susceptibility to
cancer. TGFB was confirmed as a promoter of the invasion and
metastasis of tumor cells by regulating the immune system and
the tumor microenvironment (Mishra et al., 2005; Massague
2008). TGFB1 has enhanced the proliferation and metastatic
potential of renal carcinoma by upregulating lymphoid
enhancer-binding factor 1/integrin αMβ2 (Liu and Shang,
2020).

The protein encoded by the PLAUR gene is the receptor of
PLAU (plasminogen activator, urokinase), which plays a
momentous role in the migration and proliferation of tumor
cells through remodeling of the extracellular matrix and the
tumor microenvironment (Grismayer et al., 2012; Hakelius
et al., 2013; Narayanaswamy et al., 2016). In addition, PLAUR-
mediated PLAU signal transduction activation effects are

FIGURE 10 | Nomogram and calibration plots for prediction of patients’ survival in the entire TCGA set. (A) Nomogram combining the five hypoxia- and immune-
related genes risk signature with clinical factors for prediction of 2-year, 4-year, and 6-year survival rates. (B) Calibration plots showing high predictive accuracy of the
nomogram.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 71114212

Wang et al. Hypoxia-Immune Index in ccRCC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


independent of proteolysis through ITGB1 and vascular
endothelial growth factor receptor 2 (Larusch et al., 2013) and
modulate single-chain PLAU–mediated angiogenesis.

In conclusion, we used public databases to develop a risk
scoring model based on five hypoxia- and immune-related
genes as potential features reflecting the prognosis of ccRCC.
Compared to several researchers already established and
validated signatures (Ghatalia et al., 2019; Hua et al., 2020),
our model contains not only immune-related genes, but also
hypoxia-related genes. Current evidence suggests that show
that hypoxia and hypoxia-related pathways play critical roles
in the occurrence and progress of renal cancer (Gossage et al.,
2015; Choueiri and Kaelin, 2020). Most ccRCC are associated
with loss of von Hippel-Lindau tumor suppressor (pVHL)
function and deregulation of hypoxia pathways (Schodel et al.,
2016). Targeting the HIF2-Vascular endothelial growth factor
(VEGF) axis, multiple VEGF inhibitors are approved for the
treatment of ccRCC, and a HIF2α inhibitor has advanced to
phase 3 development for this disease (Choueiri and Kaelin,
2020). Therefore, our results are more closely related to the
mechanisms of ccRCC development and clinical treatment
applications, and can provide a better perspective for ccRCC
research and personalized prediction. However, more clinical
trials are needed to verify our observations, and additional
experimental studies must verify the potential mechanism
behind the predictive value of this hypoxia- and immune-
related gene signature in ccRCC.
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