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S u m m a r y  

Human cord blood (CB) contains large numbers of both committed and primitive hematopoietic 
progenitor cells and has been shown to have the capacity to reconstitute the lympho-hematopoietic 
system in transplant protocols. To investigate the potential usefulness of CB stem and progenitor 
cell populations to deliver new genetic material into the blood and immune systems, we have 
transduced these cells using retroviral technology and compared the efficiency of gene transfer 
into CB cells with normal adult human bone marrow cells using a variety of infection protocols. 
Using two retroviral vectors which differ significantly in both recombinant viral titers and vector 
design, low density CB or adult bone marrow (/iBM) cells were infected, and committed progenitor 
and more primitive hematopoietic cells were analyzed for gene expression by G418 drug resistance 
(G418 r) of neophosphotransferase and protein analysis for murine adenosine deaminase (mADA). 
Standard methylcellulose progenitor assays were used to quantitate transduction efficiency of 
committed progenitor cells, and the long term culture-initiating cell (LTC-IC) assay was used 
to quantitate transduction efficiency of more primitive cells. Our results indicate that CB cells 
were more efficiently transduced via retroviral-mediated gene transfer as compared with ABM- 
derived cells. In addition, stable expression of the introduced gene sequences, including the ADA 
cDNA, was demonstrated in the progeny of infected LTC-ICs after 5 wk in long-term marrow 
cultures. Expression of the introduced ADA cDNA was higher than the endogenous human 
ADA gene in the LTC-IC-derived colonies examined. These studies demonstrate that CB progenitor 
and stem cells can be efficiently infected using retroviral vectors and suggest that CB cells may 
provide a suitable target population in gene transfer protocols for some genetic diseases. 

l~ cent advances in the understanding of human diseases 
at the molecular level has led to the routine use of 

prenatal diagnosis in several severe genetic conditions. In ad- 
dition, the increasingly successful application of gene transfer 
technology, particularly the use of recombinant retroviral 
vectors, holds the promise of a lifelong cure of some of these 
diseases by somatic gene therapy (1, 2). Although reproduc- 
ible and efficient gene delivery to bone marrow stem cells 
has been achieved by a number of investigators in murine 
studies (3-8), the successful extension of this technology to 
larger animals (canines and primates) has been problematic 
(9-12). Gene transfer into the most primitive hematopoietic 
stem cell responsible for long-term reconstitution has been 
very inefficient in canine and primate studies. In spite of the 
relatively high transduction efficiency of more differentiated 
progenitor cells, high-level expression of introduced genetic 
sequences has not been routinely seen in large animal experi- 
ments (10, 11). These limitations of current gene transfer tech- 

nology are further complicated when applied to human pro- 
tocols by the low numbers of stem cells present in adult bone 
marrow (ABM) 1, lack of suitable methods to purify these 
cells, and the high fraction of such primitive cells that are 
not in cell cycle (for a review see reference 13). 

Human cord blood (CB) has previously been demonstrated 
to contain a large number of primitive progenitor cells (14, 
15). Although no direct in vitro assay is available to deter- 
mine the content of reconstituting hematopoietic stem cells 
among human cells, multiple investigators have now demon- 
strated the capacity of single CB collections to reconstitute 

1 Abbreviations used in this paper: ABM, adult bone marrow; mADA, 
murine adenosine deaminase; BFU-E, burst forming unit-erythroid; BMF, 
bone marrow fibroblast; CB, cord blood; CDB, cell dissociation buffer; 
LTC-IC, long term culture-initiating cell; LTMC, long term bone marrow 
culture; NEO, neophosphotransferase; PGKpr, phosphoglycerate kinase 
promoter; P/S, penicillin/streptomycin; SCF, stem cell factor. 
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the lympho-hematopoietic system of infants and children fol- 
lowing transplantation in vivo after myeloabtative therapy 
(16, 17). Recent in vitro data suggest that single CB samples 
may also be sufficient to reconstitute hematopoiesis in adult 
recipients (18, 19). In addition, analysis of cycling rates of 
CB CFU-GM cells demonstrate that substantial numbers of 
these cells are in cell cycle (20, 21). 

To determine if CB cells might be successfully transduced 
using retroviral vectors, we compared infection efficiencies 
of CB progenitor and stem cells with that of normal ABM 
using the neophosphotransferase (NEO) gene in identical 
vectors and infection protocols. In addition, expression of a 
clinically relevant gene sequence, adenosine deaminase (ADA) 
cDNA, the deficiency of which causes SCID, was examined. 
We report that committed and primitive hematopoietic cells 
from human CB are efficiently infected using retroviral vectors, 
and that the introduced sequences are expressed at high levels 
in progeny of transduced stem calls. 

Materials and Methods 
Retroviral Vectors, Producer Cell Lines, and Stromal Cells. The 

N2/ZipTKNEO (TKNEO) vector is identical to the previously 
reported N2/ZipPGK-ADATKNEO (22) vector except the phos- 
phoglycerate kinase promoter (PGKpr)-hADA expression cassette 
has been removed (see Fig. 1 A). NEO sequences are expressed 
in the sense orientation (relative to the 5' LTK) via the thymidine 
kinase promoter. The ZipPGK-mADA (PGK-mADA) vector is iden- 
tical to the ZipPGK-hADA vector (23) except the human ADA 
cDNA has been replaced with the murine ADA cDNA (see Fig. 
1 B). The mADA cDNA is expressed in the sense orientation rela- 
tive to the 5'LTR via the human PGK promoter. GP+EnvAm 12 
(24) producer ceils containing either retroviral plasmid (TKNEO 
or PGKmADA) were cultured in IMDM (GIBCO BRL, Gaithers- 
burg, MD) containing 10% FCS (Hyclone Laboratories, Logan, 
UT) and 100 U/ml penicillin and 100 #g/ml streptomycin (P/S, 
both from GIBCO BRL). Virus-containing supernatant was col- 
lected by adding 10 ml of IMDM containing 20% FCS to confluent 
plates overnight. Harvested medium was filtered through 0.45-#m 
filters (Gelman Sciences, Inc., Ann Arbor, MI) and stored at -80~ 
until used. For coculture experiments, producer ceils were treated 
with 10 #g/rnl mitomycin C (Sigma Chemical Co., St. Louis, MO) 
for 2 h at 37~ washed three times with PBS, trypsinized, and 
plated at confluence on the day before infection. 

Stromal Cells. S14-h220 cells (25), a murine-derived and genet- 
ically modified stromal cell line that expresses high levels of mem- 
brane-bound human Steel factor (or stem cell factor [SCF]) were 
maintained in DME (GIBCO BILL) supplemented with 10% calf 
serum (CS, Sigma Chemical Co.), and P/S. The day before use in 
the infection protocol, the cells were treated with 5 #g/ml 
mitomycin C for 2 h, prepared as above, and plated at confluence 
on tissue culture plates (Coming Inc., Coming, NY) precoated 
with 0.1% gelatin (Sigma Chemical Co.). Human allogeneic bone 
marrow fibroblasts (BMF) were grown in DME supplemented with 
10% FCS and P/S. BMF were irradiated at confluence with 15 Gy 
using a gamma cell 40 cesium source. 

Retroviral Infection Protocol. CB samples from normal, full-term, 
newborn infants and bone marrow samples from healthy adult 
donors were collected in tubes containing heparin according to pro- 
tocols approved by the Institutional Review Board of Indiana Univer- 
sity School of Medicine. Low density mononuclear cells from each 

sample were prepared by centrifugation on Ficoll-Hypaque (den- 
sity 1.077 g/ml; Pharmacia, Piscataway, NJ) for 45 min at 25~ 
Plastic adherent cells were removed from low density bone marrow 
cells by an additional incubation on tissue culture plates for 4-16 h 
at 37~ in 5% CO2 in IMDM with 10% FCS. Adherent-negative 
low density mononuclear cells and low density CB cells were pre- 
stimulated before retroviral infection as described previously (5) for 
48 h at 37~ and 5% CO2 in IMDM containing 20% FCS, 100 
U/ml rhlL-6, 100 ng/ml rhSCF (both from Amgen Biologicals, 
Thousand Oaks, CA), and P/S at a cell density of 104 cells/ml in 
petri dishes (Falcon, Lincoln Park, NJ). Prestimulated cells were 
harvested by vigorous pipetting (to remove cells loosely adherent 
to the plastic) and then exposed to virus using four different infec- 
tion protocols: (a) coculture: prestimulated cells were overlaid on 
mitomycin C-treated (see above) retroviral producex lines (GP+ envAm 
12-TKNEO or GP+envAm 12-PGK-mADA); (b) supernatant in- 
fection on genetically modified stromal cells: prestimulated cells 
were plated and infected on mitomycin C-treated S14-h220 cells; 
(c) supematant infection on allogeneic BMF: prestimulated cells 
were plated and infected on confluent and irradiated BMF; and (d) 
supernatant infection: prestimulated cells were exposed to virus in 
tissue culture plates without producer or stromal cells present. All 
infections were performed on 10-cm tissue culture plates in 10 ml 
of media with 5 x 10S/ml prestimulated cells and 5 #g/ml poly- 
brene (Aldrich Chemical Co., Milwaukee, WI), rhlLr, rhSCF (con- 
centrations as above) for 48 h. For supernatant protocols, 10 ml 
of virus-containing medium supplemented with fresh growth factors 
and polybrene was replaced every 12 h for a total of four medium 
changes (nonadherent cells were re-added with each medium 
change). After the infection protocol, nonadherent and adherent 
hematopoietic cells were collected from the cultures using cell dis- 
sociation buffer (CDB) (enzyme free/PBS based; GIBCO BILL) 
according to the manufacturer's instructions, washed twice, and 
counted. These cells were either plated in clonogenic methylcellu- 
lose assays or long-term bone marrow cultures (LTMC) (see below). 
In some experiments, an additional incubation on tissue culture 
plates to remove plastic adherent cells was performed after the in- 
fection protocol. 

Bone Marrow Cultures. LTC-IC assays were performed according 
to previously described methods (26) with modifications. Briefly, 
0.5-1.0 x 104 infected cells were seeded in LTMC on confluent, 
preirradiated (as above) allogeneic human BMF in 5 ml IMDM 
containing 10% FCS, 10% horse serum (Sigma Chemical Co.), 
P/S, 1 #M hydrocortisone (Upjohn, Kalamazoo, MI), and 320 milli- 
osmole sodium chloride in 6-weU tissue culture plates (Costar Corp., 
Cambridge, MA). LTMC were incubated at 33~ in 5% CO2 and 
fed weekly by removal of 50% of the media and nonadherent cells. 
After 5 wk in culture, LTC-IC cultures were killed by using CDB 
to dissociate adherent hematopoietic cells from BMFs. Both nonad- 
herent and adherent hematopoietic cells were combined and plated 
in methylcellulose to obtain colonies derived from LTC-IC. In ad- 
dition, nonadherent cells from long-term cultures were harvested 
and plated at week 3 of culture to determine the efficiency of gene 
transfer into less primitive colony-forming cells. In some experi- 
ments, a 4-8 h incubation period on tissue culture plates was used 
to remove remaining plastic adherent cells before initiating methyl- 
cellulose assays. 

Clonogenic methylcellulose assays were performed as previously 
described (25) with minor modifications. Briefly, 1-2 x 104 in- 
fected CB cells or 5 x 104 infected ABM cells were plated with 
5 U/m/erythropoietin (Epo; Amgen Biologicals), 100 ng/ml rhSCF, 
10 ng/ml rhlL-3 (Genzyme Corp., Cambridge, MA) in 1 ml of 
IMDM methylcellulose (Fluka Chemical Corp., Ronkonkoma, NY) 
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containing 25% FCS, 10% human plasma, 10 -s M B-ME (Sigma 
Chemical Co.), and P/S. Cultures were incubated at 37~ in 5% 
CO2/95% air, and colonies (>50 cells) were scored by viewing on 
an inverted microscope on day 13 as CFU-GM (containing granu- 
locytes and macrophages), CFU-Mix (containing myeloid and 
erythroid elements), or burst forming unit-erythroid (BFU-E) (con- 
raining only erythroid elements). 

Analysis of Retroviral Infection. Efficiency of infection using the 
TKNEO virus was analyzed by determining the percentage of 
methylcellulose colonies resistant to G418. Infected hematopoietic 
cells were plated in the presence or absence of 1.5 mg/ml (dry 
powder) G418 (GIBCO BRL) and surviving colonies (>50 cells) 
scored on day 13. Control cultures were performed with each ex- 
periment by incubating bone marrow on the GP+ EnvAM 12 pack- 
aging line (24) making no recombinant virus. Culture of these mock 
infected cells with 1.5 mg/ml G418 consistently demonstrated <1% 
background colonies. Efficiency of infection using the PGK-mADA 
vector was determined by protein analysis using ADA isoenzyme 
electrophoresis in individual progenitor colonies as previously de- 
scribed (23, 27). 

Cell-cycle Analysis of Hematolvoietic Progenitor Cells. Tritiated 
thymidine suicide studies were performed according to the method 
described by Byron (28). Aliquots of 10 x 106 low density 
mononuclear cells were incubated in IMDM/20% FCS either con- 
taining "cold" (nonradioactive) thymidine, or 0.1 mCi/ml high sp 
act (,080 Ci/mM) [methyl-3H]thymidine (New England Nuclear, 
Boston, MA). After a 20-min incubation, with agitation every 5 
min, the reaction was stopped by adding ice-cold IMDM/20% FCS 
with excess cold thymidine (100/zg/ml). Cells were washed three 
times and placed into clonogenic methylcellulose assays as described 
above. 

Statistical Analysis. Student's t test was used to compare gene 
transfer efficiency between CB and ABM samples and between 
Mix/BFU-E and CFU-GM progenitors. P values of <0.05 and 
<0.01 were considered to show significant differences in infection 
efficiency between these groups. 

Results 
Infection of Committed Progenitor Cells with TKNEO Vector. 

Gene transfer efficiency into CB-derived committed progen- 
itor cells was initially analyzed using the TKNEO virus 
(Fig. 1 A) which has a titer of 10 s G418-resistant (G418 r) 
CFU/ml on NIH/3T3 calls. Six individual CB samples were 
analyzed for the generation of G418-resistant progenitor colo- 
nies and compared with six ABM samples obtained from 
healthy adults. 

After the infection protocol (which included 4 d of in vitro 
exposure to SCF and IL-6 in each protocol) most CB-derived 
red colonies observed in methylcellulose had a large, spread- 
out morphology and contained >1,000 cells with obvious 
focal areas containing white cells. Colonies resembling typ- 
ical burst, derived from BFU-E, were rare and usually con- 
tained some white elements when analyzed microscopically 
after Wright-Giemsa staining, as reported by other investi- 
gators (18). Therefore, we included all red colonies into a 
single CFU-Mix plus BFU-E (Mix/BFU-E) category. 

As shown in Fig. 2, gene transfer efficiency into CB cells 
was consistently two- to threefold higher than into ABM. 
Coculture of CB yielded an average of 53 _+ 12% G418 r 
Mix/BFU-E colonies compared with 24 + 11 G418 r colo- 

A 
LTR TKpr NEO LTR 

B 
LTR PGKpr mADA LTR 

Figure 1. Structure of recombinant retroviral vectors. (,4) TKNEO virus. 
(LTR) long terminal repeat; (TKpr) herpes simplex virus thymidine ki- 
nase promoter; (NEO) neophosphotransferase sequence. (B) PGK mADA 
virus. (PGKpr) Human phosphoglycerate promoter (X-chromosome); 
(mADA) murine adenosine deaminase cDNA. 

hies derived from infected ABM. Similarly, coculture of CB 
yielded an average of 36 _+ 17% G418 r CFU-GM colonies 
compared with 18 _+ 7% of progenitors from ABM. For 
these and all subsequent experiments, we were unable to dem- 
onstrate significant differences in the efficiency of infection 
of Mix/BFU-E and CFU-GM progenitors. Similar differences 
in the infection efficiencies between CB and ABM committed 
progenitor cells were noted when these cells were infected 
without prestimulation (data not shown). 

Influence of Infection Protocols on Gene Transfer E.~ciency into 
CB Cells. To determine optimal infection conditions for CB, 
four different infection protocols were performed. After pre- 
stimulation, CB was: (a) cocultured with retrovirus producer 
cells; (b) repeatedly infected using supernatant only; (c) in- 
fected with supernatant while cultured on irradiated allogeneic 
stromal cells; or (d) infected with supernatant while cultured 
on a genetically modified stromal cell line. Table I compares 
the infection efficiency achieved with the different protocols 
using the TKNEO vector. In contrast to the high efficiency 
of gene transfer seen with coculture infection, supernatant 
infection was generally inefficient. In three of four experi- 
ments, supernatant infection generated <5% G418 r colonies. 
In the fourth experiment, 20-30% of CB progenitors were 
G418 r, indicating significant heterogeneity between in- 
dividual CB samples with respect to infection efficiency. Corn- 

Figure 2. Infection efficiency of CB and ABM-derived committed pro- 
genitor cells by cocultivation. Mean _+ SD of six independent experiments 
using TKNEO virus. (* *) Significant differences (p <0.01) between CB 
and ABM. Background G418-resistant colonies were <1% in all experi- 
ments (see text for details). 
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Table 1. Infection Efficiency of CB Progenitor Cells Using 
Various Infection Protocols and TKNEO Vector 

Protocol Mix/BFU-E CFU-GM Total 

Coculture 53 +- 12" (6)* 36 + 17 (6) 45 _+ 12 (6) 
Supernatant 

onfibroblasts 36 _+ 18 (3) 18 _+ 1(3) 32 _+ 13 (3) 
Supernatant 

on S14-h220 23 _+ 11 (4) 11 +_ 7 (4) 19 + 12 (4) 
Supernatant 12 _+ 18 (4) 8 + 10 (4) 11 _+ 15 (4) 

3 _+ 2(3) 3 + 2(3) 3 _+ 2(3) 

* Percent G418 resistant colonies (mean _+ SD), background G418 r colo- 
nies <1%, see text. 
* Number of experiments performed. 

bining results from all four experiments, supernatant infection 
of CB produced 11 + 15% G418 r progenitors compared 
with the generation of 45 _+ 12% G418 r colonies by six 
consecutive CB samples using the cocultivation protocol for 
infection. 

In contrast, supernatant infection protocols that included 
stromal elements demonstrated improved gene transfer effi- 
ciency. As seen in Table 1, supernatant infection on irradi- 
ated allogeneic fibroblasts was two to three times more efficient 
than supernatant infection in the absence of stromal cells, 
with 32 + 13% of infected progenitors growing in the pres- 
ence of G418. Supernatant infection efficiency on the stromal 
cell line, S14-h220, was intermediate between supernatant in- 
fection without stromal cells and the coculture method and 
was similar to infection on allogeneic fibroblasts. 

Infection of Progenitor Cells with PGK-mADA Vector. The 
expression of murine ADA from the PGK-mADA virus can 
be detected by electrophoretic separation of human and 
murine isozymes and in situ gel analysis. Such analysis is pos- 
sible on large, single progenitor colonies grown in methyl- 
cellulose. Previous work has demonstrated that murine hema- 
topoietic cells infected with PGK-hADA (human) retrovirus 
express high levels of the transferred ADA cDNA in vivo 
in transplant recipients (5, 22, 23, 27). Similarly, initial ex- 
periments using human ABM cells during this study showed 
that individual PGK-mADA virus infected progenitor colo- 
nies expressed murine ADA at levels up to 10-fold higher 
than the endogenous human ADA protein (data not shown). 
Therefore, to stringently analyze transfer efficiency, we con- 
sidered progenitor colonies transduced only if expression of 
the transferred mADA was equal to or greater than endoge- 
nous human ADA levels (see Fig. 4). As expected, the efficiency 
of gene transfer into CFU-Mix progenitors using the high 
titer PGK-mADA virus was substantially better than with 
the TKNEO vector, irrespective of the infection protocol used 
(Table 2). Supernatant infection with PGK-mADA virus 
yielded ~25% mADA expressing committed progenitors 
(Table 2, expts. 2, 4, and 5) compared to 11% with TKNEO 

Table 2. Infection Efficiency of CB CFU-Mix Cells Using 
PGK-mADA Vector 

Protocol Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 

Coculture 10/10" 10/10 - - 12/12 
Supernatant 

on fibroblasts - - 11/12 10/10 12/16 
Supernatant 

on S14-h220 - - 16/17 10/10 14/16 
Supernatant - 4/11 - 4/12 3/15 

* Number of mADA expressing colonies/total colonies analyzed. 

virus. In contrast, all infection protocols including stromal 
cells (expts. 3-5) and cocultivations (expts. 1, 2, and 5) yielded 
nearly 100% mADA expressing progenitor colonies. 

Infection of CB and Bone Marrow LTC-IC. Primitive he- 
matopoietic cells capable of initiating sustained growth in 
in vitro cultures (LTC-IC) have been suggested to be a more 
primitive progenitor or stem cell phenotype in human bone 
marrow (29). We have utilized this culture method to com- 
pare the efficiency of retroviral transduction between more 
primitive ABM and CB cell populations. CB LTC-IC-de- 
rived colonies were seen at a frequency of 140-480/106 input 
cells. CB LTC-IC-derived colonies were frequently very large 
(>1,000 cells), in contrast to ABM LTC-IC colonies, which 
were mostly small CFU-GM-like colonies. Analysis of gene 
transfer into LTC-ICs using the low titer TKNEO virus with 
cocultivation (Fig. 3) demonstrated significantly higher 
numbers of G418 r CB versus ABM-derived colonies from 
3-wk-old long-term cultures and from CB versus ABM LTC- 
IC-derived colonies at 5 wk. Whereas supernatant infection 

Figure 3. Infection efficiency of CB and ABM primitive cells, including 
LTC-IC, using TKNEO virus by cocultivation. Mean + SD of G418 r 
colonies for committed progenitor cells (week 0, six experiments), for colo- 
nies derived from long-term cultures at week 3 (three experiments), and 
from LTC-IC (week 5, four experiments). (*) Significant difference 

<0.05) between CB and ABM. 
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Table 3. Infection Efficiency of CB Primitive Cells, Including 
L TC-IC, Using Various Infection Protocols and TKNEO Vector 

Time in LTMC 

Protocol Day0 Week 3 Week 5 

Coculture 45 + 12" (6)* 34 _+ 6 (3) 24 _+ 7 (4) 
Supematant 

on fibroblasts 32 _+ 13 (3) 8 _+ 8 (3) 10 _+ 7 (3) 
Supernatant 

on SP-h220 23 _+ 11 (4) 9 _+ 8 (3) 2 _+ 3 (3) 
Supernatant 11 _+ 15 (4) 4 _+ 3 (4) 5 _+ 4 (4) 

* percent G418-resistant colonies (mean _+ SD), background G418 r colo- 
riles <1%, see text. 
* Number of experiments performed. 

was generally ineffective in transducing LTC-ICs, superna- 
tant infection in the presence of stromal cells, especially al- 
logeneic fibroblasts, was associated with larger numbers of 
resistant LTC-IC-derived colonies assayed at 5 wk (Table 3). 
Analysis of LTC-IC infected with the PGK-mADA virus again 
clearly demonstrates increased efficiency of infection of these 
primitive cells using coculture (Table 4). In addition, expres- 
sion analysis demonstrated high levels of routine ADA pro- 
tein in the colonies obtained from 5-wk-old LTMC. Fig. 4 
shows the level of mADA expression in five representative 
colonies derived from CB LTC-IC. In each colony, murine 
and human ADA are easily distinguished and the level ofmu- 
fine ADA expressed from the transferred ADA cDNA ex- 
ceeds human endogenous ADA. The level of expression of 
mADA in LTC-IC-derived colonies was similar to that shown 
in Fig. 4 in a second independent experiment (using two sep- 
arate CB samples). 

Comparison of Cell Cycle Activity in CB and Bone Marrow 
Committed Progenitors. Integration of the retroviral genome 
into chromosomal DNA occurs in actively dividing cells (30). 
Since previous investigators have noted that a large fraction 

Figure 4. Expression of murine ADA in CB LTC-IC-derived colonies 
by in situ enzyme analysis. Location of hemoglobin (Hb), human ADA, 
and murine ADA are noted. (Left lane) Peripheral blood from a mouse 
transplanted with bone marrow infected with PGK-hADA vector (23) to 
show location of both isozymes. 

of myeloid progenitors (CFU-GM) derived from CB are in 
active cell cycle (20, 21), we directly compared the cell cycle 
activity of CB progenitors with ABM before and after in 
vitro exposure to growth factors used in prestimulation (Fig. 
5). The data demonstrate that the prestimulation effectively 
increases the number of all progenitors in cycle. However, 
we were unable to demonstrate any clear differences in the 
number of progenitors in cycle from CB compared to ABM 
either before or after in vitro cultivation. 

Discussion 

The availability of prenatal diagnosis for a variety of severe 
genetic diseases, such as SCIDs due to ADA deficiency, and 

Table 4. Infection Efficiency of CB Primitive Cells, Including L TC-IC, Using PGK.mADA Vector 

Time in LTMC 

Expt. Protocol Day 0 Week 3 Week 5 

1 Coculture 10/10" ND 7/11 
Supematant 4/11 ND 0/6 

2 Coculture 12/12 14/14 11/11 
Supernatant 3/15 0/8 1/9 

* Number of mADA expressing colonies/total colonies analyzed. 
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Figure 5. Percentage of cells in S-phase by 3[H]thymidine suicide 
method. Values represent mean -+ SD of six independent experiments de- 
termined before (Day 0) and after (Day 2) prestimulation in growth factors 
(see text for details). 

the increasing success in gene transfer protocols may allow 
future attempts at early intervention of devastating illnesses 
by somatic gene therapy. Transplantable CB cells, which are 
available at the time of delivery from every child, are a poten- 
tial important resource for hematopoietic stem cells, and the 
feasibility of large scale collection and storage of these cells 
is currently being evaluated (Emanuel, D., personal commu- 
nication). We have examined the potential use of these CB 
primitive hematopoietic cells as targets for the introduction 
of new genetic material via recombinant retroviral vectors. 
Using two vectors differing in titer, design, and expressible 
sequences, we demonstrate that gene transfer efficiency is 
significantly higher into CB committed progenitors and primi- 
tive LTC-IC compared with ABM cells. 

Several factors are known to increase the efficiency of gene 
transfer into primitive hematopoietic cells via retroviral vectors 
(31). As previously reported, using ABM cells (32, 33), this 
study found that higher recombinant viral titer was associated 
with higher gene transfer efficiency into CB cells, albeit in 
our study, the comparison is made with different vectors. 
As first demonstrated by our laboratory (27) and Bodine et 
al. (34) using adult routine bone marrow cells, prestimula- 
tion of CB cells with cytokines before infection was associated 
with high transduction efficiency. In this report, we demon- 
strate that high frequency of gene transfer after preincuba- 
tion of CB cells was associated with a significant increase 
in the number of committed progenitors that are in active 
cell cycle after thi.~ in vitro exposure to growth factors. The 
increase in cell cycle status may be important in gene trans- 
duction, since retroviral-mediated genome integration is be- 
lieved to be dependent on cell cycle status (30). However, 
unlike previous reports of CB CFU-GM colonies, we found 
no higher frequency of cycling committed progenitor cells 
in CB versus ABM. Our data are in agreement with a more 

recent analysis of CB cycling rates (35). We have also demon- 
strated that infection efficiency of CB cells is optimized by 
using cocultivation, but significant improvement over super- 
natant infection can be seen when allogeneic stroma is in- 
cluded in the infection protocol. These data are similar to 
data reported previously by other investigators (12, 36) using 
ABM. 

We are currently unable to explain the differences in gene 
transfer effidency into CB versus ABM, although this differ- 
ence may be related to other differences in the biology of 
CB versus ABM hematopoietic cells. CB cells can be amplified 
in vitro in response to cytokines to a greater extent than ABM 
progenitor cells (18, 37). In addition, CB-derived multilineage 
progenitor cells (CFU-Mix) have been shown to generate sec- 
ondary colonies upon replating at significantly higher fre- 
quencies than ABM CFU-Mix (38). Similarly, a distinct CB 
CD343 + (bright)-derived colony type has been shown to be 
capable of multiple replatings in vitro (39). No similar cell 
has been described from ABM marrow. Hows et al. (19) have 
demonstrated that CB contains larger numbers of LTC-IC 
with higher proliferative capacity than comparable numbers 
of adult nucleated bone marrow cells. These data suggest that 
primitive CB cells may have higher proliferative and self- 
renewal potential than primitive cells in ABM. However, as 
with ABM, it remains unclear what effect ex vivo expansion 
of CB progenitor cells will have on the ultimate ability of 
such cells to achieve long-term reconstitution. 

Previously, our laboratory (5, 22) has demonstrated long- 
term and stable expression of introduced human ADA in mice 
receiving transplants of bone marrow stem cells transduced 
with the PGK-hADA retroviral vector. The present study 
demonstrates high-level mADA expression in human com- 
mitted progenitors and in colonies derived from the more 
primitive LTC-IC cell after infection with a similar virus. 
Although the relationship of the LTC-IC and the recon- 
stituting stem cell has not been established, these data are 
consistent with studies in primates receiving CD34 + bone 
marrow cells transduced with this same retroviral vector in 
which high levels of murine ADA expression have been demon- 
strated in vivo after hematopoietic reconstitution (40). It is 
interesting to note that this work in primates had failed to 
transduce reconstituting stem cells by coculture methods, 
whereas infection on genetically modified stromal cells led 
to long-term expression in transplanted monkeys (Bodine, 
D., and D. A. Williams, manuscript in preparation). Taken 
together, these data suggest that the PGK-ADA vector, which 
contains only one expressible genetic sequence and lacks a 
dominant selectable marker, may be useful for transduction 
of human bone marrow in gene therapy protocols. CB pro- 
genitor and stem cells may provide a unique target cell popu- 
lation for transduction using this and other retroviral vectors 
in attempts at curative somatic gene therapy. 
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