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Abstract: Malaria is a constant reminder of the climate change impacts on health. Many studies
have investigated the influence of climatic parameters on aspects of malaria transmission. Climate
conditions can modulate malaria transmission through increased temperature, which reduces the
duration of the parasite’s reproductive cycle inside the mosquito. The rainfall intensity and frequency
modulate the mosquito population’s development intensity. In this study, the Liverpool Malaria
Model (LMM) was used to simulate the spatiotemporal variation of malaria incidence in Senegal. The
simulations were based on the WATCH Forcing Data applied to ERA-Interim data (WFDEI) used as a
point of reference, and the biased-corrected CMIP6 model data, separating historical simulations and
future projections for three Shared Socio-economic Pathways scenarios (SSP126, SSP245, and SSP585).
Our results highlight a strong increase in temperatures, especially within eastern Senegal under the
SSP245 but more notably for the SSP585 scenario. The ability of the LMM model to simulate the
seasonality of malaria incidence was assessed for the historical simulations. The model revealed a
period of high malaria transmission between September and November with a maximum reached
in October, and malaria results for historical and future trends revealed how malaria transmission
will change. Results indicate a decrease in malaria incidence in certain regions of the country for
the far future and the extreme scenario. This study is important for the planning, prioritization, and
implementation of malaria control activities in Senegal.
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1. Introduction

The threat of climate change is well known, and it has a huge impact on the emer-
gence and re-emergence of certain vector-borne infectious diseases such as malaria. This
disease continues to evolve in a changing world, and its geographical distributions are
due to changes in vector transmission, which is influenced by rising temperature, moisture
availability, and rainfall [1,2]. The climate change impact on health will not be evenly
distributed, and some health burdens will be opposite to the global distribution of green-
house gas emissions [3]. The Intergovernmental Panel on Climate Change (IPCC) has
concluded that to avert catastrophic health impacts and reduce the projected millions upon
millions of climate change-related deaths, the world must avoid or even limit the increase
in temperature and other inevitable changes. Even at 1.5 ◦C, global warming is not to
be considered insignificant because every tenth of a degree in additional warming will
impact the lives and health of populations [4]. Developing effective and sustainable human
health services, associated surveillance and emergency preparedness systems, and disease
control and prevention can help mitigate climate change’s effects on human health. The
WHO Global Technical Strategy (GTS) for malaria sets a goal to reduce case incidence and
malaria deaths by 90% by the year 2030 relative to 2015 levels [5]. These targets have been
missed by 37% and 22%, respectively, because malaria-determining factors such as climate
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information, land use/cover change, resistance (parasite, insecticide), accurate diagnosis,
socioeconomic status, and other related environmental factors are not operationally used in
health decision-making processes. Malaria is now well documented by scientific work, not
only in the context of diseases, but above all, by work related to variability and/or climate
change. Our study in this paper focuses on evaluating the past and current impact of sea-
sonal and interannual climate variability on malaria in Senegal. Malaria is a vector-borne
disease whose existence and transmission depend on three main factors: the Plasmodium
spp. parasite, the Anopheles vector, and the human host. Beyond these essential factors,
the risk of malaria transmission can be affected by environmental conditions or climatic
conditions, as well as socio-economic factors. In particular, the transmission of malaria is
very sensitive to climate and atmospheric conditions. When these are unusual, for example,
during heavy rainfall, mosquito populations can multiply and trigger epidemics. We have
previously studied the climate–malaria relationship [6] as well as the predictability of high
malaria occurrences in Senegal and West Africa in general [7]. These studies have already
noted a causal relationship between El Niño and malaria parameters. These results were
endorsed by Diouf et al. [8] by coupling the Liverpool Malaria Model (LMM) of Hoshen
and Morse [9] and the SST-based statistical ForeCAST (S4CAST) of Suárez-Moreno and
Rodríguez-Fonseca et al. [10]. In these previous studies, firstly, using daily rainfall and daily
2 m temperature of available reanalysis datasets, we applied the Liverpool Malaria Model
(LMM) to simulate malaria indices and validated our simulations with malaria surveillance
data from the National Malaria Control Programme (Programme National de Lutte contre
le Paludisme, PNLP) in Senegal. Secondly, we focused on the predictability of malaria
outbreaks in our area of study. Indeed, climate forecasts at a sufficient lead time are needed
to allow response planning from users in several sectors including health, and sea surface
temperatures (SSTs) are the main variables that can be used for this aim. Temperature
almost instantaneously affects malaria outbreaks, while the impact of rainfall on malaria
transmission is usually noted with a 1-month to 2-month lead time [6,11]. SST is a variable
that reflects the anomalous energy storage in the ocean, due to the thermal inertia of the
ocean. This anomalous energy is released in the forthcoming months, altering atmospheric
variability, and impacting climate-dependent vector-borne diseases such as malaria. The
justification for how this present analysis differs from previous studies in Senegal rests
on the climate change impacts on malaria using bias-corrected reanalysis data such as the
WFDEI data as a point of reference and bias-corrected CMP6 simulations and the use of the
latest scenarios, so-called Shared Socioeconomic Pathways scenarios (SSPs). In addition,
the novelty of this study includes the investigation of the long-term changes and reliability
of projections as driving conditions for the malaria model, separating historical data and
projections for three SSPs (SSP126, SSP245, and SSP585) and using pieces of evidence from
the published literature.

This work is organized as follows. Section 2 presents the different types of data used
and the methods applied. Section 3 studies the spatiotemporal variability of the health and
climatic data (rainfall and temperature) over Senegal, and the malaria simulation variable
with the LMM model forced by the previously presented data. Finally, a summary and
discussion of the main results are provided in Section 4.

2. Materials and Methods
2.1. Study Area

Senegal is located at the westernmost tip of West Africa and lies within 12–17◦ N
latitude and 18–12◦ W longitude (Figure 1). The description based on the practices of
African meteorologists who meet the Köppens classification [12] indicates that climate
characteristics are very diverse across different ecoregions of West Africa, ranging from a
Sahelian to a Sudano-Sahelian and a Sudano-Guinean climate. Toward the north of West
Africa, including Senegal, the climate is Sahelian, with moderate rainfall occurring during
a short rainy season (August–September). Senegalese climate is strongly modulated by
the West African monsoon. The temperature in Senegal presents a bimodal evolution
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with two peaks in May and October, on either side of the rains. The climate of Senegal is
characterized by great spatiotemporal variability, and its dynamics are generally dominated
by a northeast wind regime (Harmattan) during the dry season and southwest regime
during the rainy season (West African Monsoon). The period from December to February
is the coldest, but the continental influence is more clearly visible in the east on the diurnal
thermal difference. May and October are generally the hottest months for most of the
country. For the rainfall, a latitudinal gradient is generally observed; the amount of rainfall
decreases along the south–north direction due to the arrival of the West African Monsoon
(WAM), which moves into the country through the southern part of Senegal. The first
significant rains begin between June–July and are given by squall lines whose effectiveness
decreases towards the west [13]. The rains continue until October. Cumulative rainfall
varies from 300 mm to 1000 mm [14].

Regarding climate change, like many Sahelian countries, Senegal faces many natural
hazards such as floods, droughts, and heat waves. The latter are extreme weather events
generally characterized by the persistence of high temperature for several days. With the
progression of climate change, these heat waves are expected to increase in number and
intensity and everywhere in the world [15].
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Figure 1. Location of the study area: Senegal (12 to 17 N and 18 to 11 W) is colored in yellow, located
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2.2. Data Used
2.2.1. Malaria Data Surveillance

Regarding observation, we acquired malaria data from health districts, from MSAS
(Ministère de la Santé et de l’Action Sociale; Ministry of Health and Social Action/MHSA)
sentinel sites. The health data obtained so far contain the number of disease cases recorded
on an annual scale and by region. The clinical data corresponding to the number of
observed malaria cases were obtained from the PNLP (Programme National de Lutte
contre le Paludisme au Senegal; NMCP/National Malaria Control Programme in Senegal
in English). The PNLP records malaria cases in the framework field surveys in Senegal.
The observed numbers of malaria cases used in this study were collected from various
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health districts in Senegal for the period 2011–2021. These malaria data were recorded
for all health districts and hospitals to derive a monthly time series for 14 administrative
regions (Dakar, Diourbel, Fatick, Kaffrine, Kaolack, Kedougou, Kolda, Louga, Matam,
Saint-Louis, Sedhiou, Tambacounda, Thies, and Ziguinchor). These sentinel sites provide a
good representation of malaria transmission in the different climatic zones of Senegal.

2.2.2. Climate Data and Methods

In this study, we used climate data from the WATCH Forcing Data applied to ERA-
Interim data (WFDEI) as reference data [16]. The multi-model ensemble mean of fifteen
(15) global circulation models included, for instance, the Coupled Model Intercomparison
Project, version 6, where a bias correction technique for the climate variables includ-
ing rainfall and temperature, the CDF-t (Cumulative Distribution Function transform)
method [17], was applied. The WATCH Forcing Data methodology applied to ERA-Interim
data (WFDEI) [18] is produced from Watch Forcing Data (WFD) and ERA-Interim re-
analyses via sequential interpolation at 0.5◦ resolution, an altitude correction and monthly
scale adjustments based on monthly observational data from CRU (Climate Research Unit)
TS3.1/TS3.21 and GPCCv5/v6. Details of the three products can be found in Dee et al. [16]
for ERA-Interim and Weedon et al. [18] for WFDEI. The variables have a daily time step
with a spatial resolution of 0.75◦ (~80 km) and 0.50◦ (~55 km), respectively, for ERA-Interim
and WFDEI, being qualified as low resolution and medium resolution.

Regarding the CMIP6, these simulations are available on a daily time scale for the
period 1850–2014 (historical) and 2015–2100 (projections). The available models are shown
in Table 1. They are available at different spatial resolutions (Table 1), which, for example,
range from 50 km (CNRM-CM6_HR) to more than ~300 km (CanESM5). The period 1985
to 2014 was chosen as the reference period.

Table 1. List of the global circulation models (GCMs), i.e., biased CMIP6 models used in the study.

Model Name Institution and Country Resolution

BCC-CSM2-MR Beijing Climate Centre (BCC) and China Meteorological
Administration (CMA), China 1.1◦ × 1.1◦

CanESM5 Canadian Earth System Model, Canada 2.81◦ × 2.81◦

CESM2 National Centre for Atmospheric Research, Climate and Global
Dynamics Laboratory, USA 1.25◦ × 0.94◦

CMCC-CM2-SR5 The Euro-Mediterranean Centre on Climate Change, Italia 2.8◦ × 1.9◦

CNRM-CM6_HR Centre National de Recherches Météorologiques-Centre Européen de
Recherches et de Formation Avancée en Calcul Scientifique, France 0.5◦ × 0.5◦

FGOALS-g3 Flexible Global Ocean-Atmosphere-Land System model Grid-point
version 3 2◦ × 2.3◦

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, USA 1.25◦ × 1.00◦

IITM-ESM Indian Institute of Tropical Meteorology, India 1.9◦ × 1.9◦

INM-CM5-0 Numerical Mathematics, Russian Academy of Science, Moscow
119991, Russia 2◦ × 1.5◦

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 2.5◦ × 1.3◦

MIROC6 Japan Agency for Marine-Earth Science and Technology, Kanagawa
236–0001, Japan 1.4◦ × 1.4◦

MIROC-ES2L Japan Agency for Marine-Earth Science and Technology, Kanagawa
236–0001, Japan 2.8◦ × 2.8◦

MPI-ESM1-2-HR Max Planck Institute for Meteorology, High Resolution, Germany 0.9◦ × 0.9◦

NESM3 Nanjing University of Information Science and Technology,
Nanjing, China 1.9◦ × 1.9◦

TaiESM Research Centre for Environmental Changes, Taiwan 1.3◦ × 1◦

To study possible future impacts, the Intergovernmental Panel on Climate Change
(IPCC) in its sixth report [19] relies on five scenarios called Shared Socio-economic Pathways
(SSP). Economists and sociologists assess the costs of adaptation and mitigation related
to climate change according to different socio-economic scenarios compatible with the
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Representative Concentration Pathway (RCP) scenarios. The RCPs are four trajectory
scenarios of radiative forcing up to 2100. These scenarios were used in the IPCC Fifth
Assessment Report (AR5). In the fifth assessment report of the IPCC (AR5, published in
2013) and based on four different hypotheses concerning the quantity of greenhouse gases
that will be emitted in the years to come (period 2000–2100), each RCP scenario gives a
variant deemed probable for the climate that will result from the level of emission chosen as
working hypothesis. The four scenarios are named after the range of radiative forcing thus
obtained for the year 2100: the RCP 2.6 scenario corresponds to a forcing of +2.6 W/m2

(Watt per square meter), the RCP 4.5 scenario to +4.5 W/m2, and the same for the RCP6 and
RCP8.5 scenarios. The latest scenarios, so-called SSPs, are presented according to the efforts
that will need to be made in adaptation and mitigation if the world is moving towards such
scenarios.

The LMM model is forced by daily rainfall and temperature data from the WFDEI,
and the multi-model ensemble mean of the bias-corrected CMIP6 data to develop malaria
incidence in different climatological periods, using historical experiments and SSP126,
SSP245, and SSP585 emission scenarios separately. The datasets (observed and simulated)
used were interpolated on the same grid to make them consistent. The LMM takes climate
data at this interpolated resolution. The bias-corrected CMIP6 data used in this work
were obtained from the LMDZ server (LMD stands for the Laboratoire de Météorologie
Dynamique, the “Z” in LMDZ stands for “zoom” and refers to the regional refinement
capacity of the grid). The data processing was performed using a MATLAB language that
includes several functions for mapping NetCDF data and organizing time series to be easily
used within the box plot function.

The annual cycles of the rainfall, the temperature, and the malaria incidence are
estimated from datasets by taking the average of monthly values for all years, and the
interannual variability is calculated from datasets by taking the annual mean, that is, the
average of all months for a given year. Climatologically, the annual cycle is commonly
estimated from datasets by taking the average of all the months of the year. After removing
the seasonal cycle first, standardized anomaly values were considered. Standardized
anomalies are defined as the difference between annual values and the climatological
average; this difference is then divided by the standard deviation of the seasonal values.

Furthermore, the Taylor diagram described by Taylor et al. [20] is used to evaluate the
performance of CMIP6 (multi-model ensemble) models against the WFDEI data used as
a point of reference. This diagram offers the advantage of representing at the same time
three statistical measures, which are the mean squared error (RMSE for root mean square
error in English), the standard deviation of the simulation compared to the observation (or
reference data), and the correlation coefficient between observation and simulation. It was
invented by researcher Karl E. Taylor in 1994 and is frequently used by meteorologists and
atmospheric scientists. The most used statistic to quantify the similarity between observed
and simulated values is the correlation coefficient. This coefficient makes it possible to
detect the presence or absence of a linear relationship between two continuous quantitative
characters. The correlation coefficient measures the degree of connection or dependence
between two quantitative traits. The best method is the one that maximizes the correlation
coefficient. Standard deviation is the most used measure of data dispersion in statistics. The
lower the standard deviation, the less the values are dispersed around their mean. The root
mean square error is the square root of the arithmetic mean of the square of the difference
between the observed and simulated values. The calculation of the RMSE provides us with
information on the amplitude of the deviations. The best method is the one that minimizes
the RMSE. The RMSE is an appropriate error measure for data that exhibits very high
seasonality. The correlation coefficient and the root mean square error provide additional
statistical information to quantify the correspondence between two sets of data for a more
complete characterization of the observed and estimated data.
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2.3. LMM Malaria Model

The Liverpool Malaria Model (LMM) is a dynamic model of malaria driven by daily
time series of rainfall and temperature. The different components of the malaria transmis-
sion model and the calibration of the parameters are described in more detail by Hoshen
and Morse [9] then by Ermert et al. [21]. The LMM is a mathematical-biological model
of parasite dynamics, which includes an intra-vector phase dependent on meteorological
conditions and a phase within the human host independent on meteorological conditions.
The mosquito population is simulated using larval and adult stages, the number of eggs
deposited in the breeding sites and the larval mortality rate according to the rains of the
previous 10 days. The mortality rate of adult mosquitoes and the egg-laying/biting cycle
(called the gonotrophic cycle) depend on temperature. The process of parasite transmis-
sion between humans and mosquitoes is modeled with a temperature dependence for the
parasite reproduction rate (sporogonic cycle) and mosquito biting rate. The two cycles
evolve according to the number of “degree-days” above a certain temperature threshold.
The gonotrophic cycle takes approximately 37 degree days with a threshold of 9 ◦C, while
the sporogonic cycle takes approximately 111 degree days with a threshold of 18 ◦C [22].
Climate and health studies have used LMM simulations in southern Africa, including Zim-
babwe, Botswana and across the African continent [23,24]. The model’s output variables
are, among others, the incidence, prevalence, mosquito population, etc. The current version
of the model (LMM2010) [21] has shown significant improvements in the simulation of
malaria dynamics in sub-Saharan African countries, including Senegal.

3. Results
3.1. CMIP6 Models’ Evaluation: Validation of the Rainfall and Temperature Inputs

Figure 2a shows the distribution of standardized rainfall anomalies for each year of
the validation period by comparing historical time series with WFDEI data (observations).
The years when the CMIP6 rainfall median is positive (negative) largely correspond to the
years when the WFDEI is also positive (negative). In Figure 2b, if we project the axis of
the correlations, we note that the correlation coefficient is around 0.95, and for the mean
squared error, considering the semicircles whose origin is centered around 1, we see that the
blue point is between 0 and 0.25, so approximately, the root mean square error is 0.1. For the
standard deviation, considering the semicircles whose origin is centered around 0, we see
that the blue point is between 0.75 and 1, so the corresponding value is approximately 0.8.
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Figure 2. (a) Standardized rainfall anomalies showing the interannual variability of rainfall (dark
blue bars for the reference data WFDEI and light blue bars for CMIP6 simulations). Boxes indicate
the interquartile range and median of the ensemble, whilst the whiskers represent the 5th and
95th percentiles. (b) Standardized Taylor diagram displaying the statistics (coefficients, standard
deviations and mean square errors) of rainfall comparing multi-model ensemble mean of the bias-
corrected CMIP6 with reference climate data (WFDEI). The multi-model ensemble mean of the
bias-corrected CMIP6 compared is shown by the blue cycle, and the WFDEI used as a point of
reference is shown by the black dot point on the x-axis.

Figure 3a shows the distribution of standardized temperature anomalies for each year
of the validation period by comparing historical time series with WFDEI data (observations).
The years when the CMIP6 temperature median is positive (negative) largely correspond
to the years when the WFDEI is also positive (negative) with some exceptions such as for
the years 1989 and 1999. In Figure 3b, the correlation coefficient is around 0.93. For the
mean squared error, considering the semicircles whose origin is centered around 1, we see
that the red point is between 0 and 0.25, so approximately 0.23. For the standard deviation,
considering the semicircles whose origin is centered around 0, the corresponding value is
exactly 0.75.
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indicate the interquartile range and median of the ensemble, whilst the whiskers represent the 5th
and 95th percentiles. (b) Standardized Taylor diagram displaying the statistics (coefficients, standard
deviations and mean square errors) of temperature comparing multi-model ensemble mean of the
bias-corrected CMIP6 with reference climate data (WFDEI). The multi-model ensemble mean of
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3.2. Projected Changes in the Spatiotemporal Variability of the CMIP6 Data
3.2.1. Projected Changes in the Spatiotemporal Variability of the CMIP6 Rainfall

In Figure 4, the spatial distribution of rainfall variables is represented for the historical
period (1950–2014), under the SSP126, SSP245 and SSP585 scenarios for the 2015–2080
projection period (common period of the different models used for the ensemble mean). A
latitudinal gradient is observed on the rainfall maps. These results also show a decrease
in rainfall for the projections. Figure 5a obtained from the ensemble mean of the CMIP6
simulations over the period 1950–2013 exhibits a particular interest explained by the fact
that it reveals the largest rainfall deficit ever recorded during the 20th century in Senegal.
The marked drought of the 1970s was the most serious event recorded in the historical
period. The multi-decadal variability shows an alternation of wet and dry periods. Between
two wet periods (1950–1970 and 2005–2010), there was a period of intense drought. The
curve representative of the multi-decadal variability shows that during the wet period
(1950 and 1960), we observe dry sequences (in 1957, 1960 and 1965, and 1966). Thus, we
observe that the year 1977 was relatively wet during the period of the great drought of the
1970s.
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In Figure 5b, the variation in the amplitude of rainfall is much more marked between
the months of July and August, with the SSP585 scenario. On the other hand, the rainfall
regime was almost maintained between the historical and the SSP126 and SSP245 scenarios
with a peak of 200 mm in August. The different time series are consistent with the annual
cycle characterized by a single rainy season in the year (from May to October) with maxi-
mum rainfall in August. Figure 5c represents the interannual variations in rainfall for the
historical periods and scenarios SSP125, SSP245, and SSP585. The significant difference
between the historical dataset and the three scenarios is noted in the interannual variability
(Figure 5c). The comparison of the interannual variability reveals a clear decrease in rainfall
for the projections, with the extreme scenario SSP585 and scenarios sSSP126 and SSP245 to
a lesser extent.

3.2.2. Projected Changes in the Spatiotemporal Variability of the CMIP6 Temperature

Figure 6 highlights global warming with an increase in the trend in the projections
compared to the historical period. The highest temperature generally prevails in the
country’s interior but also in the eastern part of Senegal for historical and projection
datasets. The lowest temperature values occur over portions of Senegal’s coastal area.
The scenarios SSP245 and SSP585 indicate a sharp increase in temperature for the future,
particularly towards eastern parts of Senegal, with monthly average temperature ranges
approaching 32 to 33 ◦C for the SSP245 and 32 ◦C for the SSP585. Figure 7 represents the
evolution of the average temperature over Senegal for the historical period 1950–2013, and
the average annual cycles of three time series, namely the historical, and the projections
under SSP126, SSP245, and SSP585 scenarios. During the historical period, the upward
trend in temperature is better appreciated considering the decadal evolution (Figure 7a).
The increase is perceptible over the year-to-year variability, even if the period 1950–1990 is
marked by negative standardized anomalies (Figure 7a). The annual regime (Figure 7b) of
the temperature with the different time series shows an increase for the projection period,
with all three scenarios considered. The annual cycle indicates a bimodal temperature cycle,
one in May and the other in October. The analysis of the monthly temperature evolution
indicates that the hottest months are March, April, May, June, October, and November with
a temperature above 30◦C. On the other hand, the temperature is relatively low in August
and September with values between 28 and 30 ◦C due to the influence of cloud cover and
heavy rainfall during the rainy season. The temperature remains relatively high during
the year. Indeed, the climate conditions during the year in Senegal can be categorized into
different seasons:

• between December and January, there is a period marked by a dry climate and very
low temperatures linked to the polar invasions during the winter season.

• between February and May, it is very hot and dry with the first peak in temperature in
May; this absolute peak in temperature precedes the start of the rainy season;

• the period from July to September (rainy season) is very rainy and wet with mild
temperature due to cloud cover;

• the last period of this classification extends between October and November and is
marked by high humidity and slightly high temperature. The second peak of the
annual temperature cycle often occurs in October with a peak approaching 32 ◦C.
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Figure 7. (a) Trend of average temperature over Senegal for the historical period 1950–2013 (overall
average of CMIP6 models) highlighting interannual variability, decadal and multi-decadal variability,
(a,b) respectively, annual cycle and interannual variability rainfall in Senegal with historical data
(1950–2014), and (c) projections (2015–2080) for the SSP126, SSP245, SSP585 scenarios of the CMIP.

For interannual variability (Figure 7c), significant changes in temperature are clearly
exhibited. We can see a regular trend reflected in rising temperature since the beginning of
the projection period (2015). Moreover, we even see this tendency of increased temperature
since the historical period, which is getting worse in the projections.

3.3. Simulated Malaria Incidence in Senegal

In Figure 8, we analyze the spatiotemporal variability of malaria incidence simulated
by the LMM model forced by daily rainfall and temperature data of the reference data
(WFDEI). There is a clear difference in the intensity of the malaria incidence signal between
the northern and southern regions of Senegal. A very intense signal is observed in the
southern part of Senegal, while in the far north, the signal is very weak. Indeed, the
strong occurrence only extends around 15◦ N. Malaria transmission prevails over the
country, notably between 11◦ N and 15◦ N. A particularly high signal is observed during
the September–October–November season with a maximum in October.
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Figure 8. Spatial distribution and monthly evolution of malaria incidence for 1979–2018: LMM
model simulations based on WFDEI data. (a–l) corresponds respectively to the evolution of malaria
incidence from January to December over Senegal.

The annual cycle of the simulated malaria incidence is shown in Figure 9. The analysis
of the seasonal evolution shows an incidence rate close to zero during the period from
January to June. From July, we see an increase in malaria incidence, which peaked in
October at 70%. Malaria transmission follows the rainfall regime. The rainy season is
a period of high mosquito density. Other studies have shown that the peak of malaria
mostly follows the peak of rainfall [6]. Thus, the season of high malaria transmission has a
maximum shift of one to two months compared to the rainfall.
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Figure 10 shows the latitudinal malaria incidence gradient, highlighting the difference
between the north and the south. We see that the malaria incidence decreases from the
latitude 12◦ N towards the high latitude 16◦ N. In general, the parameters of malaria
increase from north to south. So, they follow the latitudinal gradient of rainfall in Senegal
and the environmental conditions.
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Figure 10. Latitudinal variation in malaria incidence for the period 1979–2018: LMM model simula-
tions based on WFDEI data.

The Hovmöller diagram (Figure 11) of malaria incidence indicates again that the
maximum is observed in September–October. The high malaria transmission season occurs
from September to November. High malaria incidence prevails throughout the area with an
unequal distribution; the most affected regions are in the south (below 14.5◦ N) compared
to the north (above 14.5◦ N). This difference between the north and the south is also
implied by significant vegetation cover and optimal temperatures for malaria transmission.
The Hovmöller diagram also indicates the year-to-year variability of malaria incidence.
Figure 11b shows the average intensity of malaria incidence from 1985 to 2014. The signal
is particularly strong in some years, including between 2000 and 2016.
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3.4. Validation of Simulated Malaria Incidence in Senegal

In Figure 12a, the mean annual values of malaria cases, malaria incidence and climatic
data (rainfall and temperature) have been presented. The high malaria transmission period
extends to three months in observation and simulation. For the observed malaria cases,
the period September–November is marked by an increased occurrence of malaria, with
the maximum intensity of signal prevailing in October. For the malaria incidence, the
substantial transmission period is August–October, with a maximum in October. The
model performs well in the simulations of the high malaria transmission period. The
interannual variability of the climatic and malaria parameters is shown in Figure 12b. The
model well reproduced the interannual variability of transmission. Low malaria in 2002
was implied by particular dryness in Senegal during this year. In general, corresponding
years of positive (negative) malaria case anomalies and malaria incidence anomalies during
positive (negative) rainfall anomalies are observed. In 2010, 2012, and 2015, high malaria
transmission was observed in both observed malaria cases and simulated malaria incidence.
A decrease in malaria prevailed in the latest year of the time series. Figure 12b shows
that temperature plays a role in the annual variability of malaria. On the other hand,
the role that rainfall plays in the transmission of malaria is predominant for a variation
from one year to another. In Figure 12c,d, a marked interannual variability of malaria is
indicated, and the simulated seasonality of malaria over Senegal is well-represented. A
clear corresponding signal with high intensity is found in the observed malaria cases and
simulated malaria incidence.
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3.5. Projected Changes in Malaria Incidence Based on CMIP6 Data

Figure 13a,b illustrate consistency between the malaria incidence simulated by the
LMM model forced by the WFDEI (reference data) and that obtained from the CMIP6 data,
both with the historical and with the different scenarios. For the spatial variability, there
is still a clear difference in the intensity of the signal of the malaria incidence between
the northern regions and southern Senegal. The latitudinal gradient of the distribution
of malaria in Senegal would be still maintained. By comparing with historical data (Fig-
ure 13a,b), we find that the simulated malaria incidence decrease likely tends to prevail
over many portions of Senegal, in the north and the center, and this even in the near future
(2015–2044), but especially in the far future (2050–2080), with the magnitude of the decrease
greater with the SSP245 and SSP585 scenarios (Figure 13d,e,g and Figure 14h). However,
looking at the southern part of Senegal in Figure 13c,f and comparing it with Figure 13a as
a point of reference, malaria is expected to increase in the southern part of the study area.
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ulations based, respectively, on scenarios SSP126, SSP245, SSP585 of the CMIP6 data, (c–e) for the 
near future 2015–2044 and (f–h) for the far future 2050–2080. 

Figure 14a illustrates the trend in malaria incidence along the total historical used, 
i.e., the period from 1950 to 2013. There is a drop, particularly between the 1970s and the 
1990s; this decrease would be linked to the decline in rainfall during this period. On the 
annual cycle in Figure 14b, we observe that malaria transmission increases only between 
September and November with a peak in October, which is obtained with the climatology 

Figure 13. Spatial distribution of malaria incidence: (a) for the baseline period 1985–2013 and
for simulations based on WFDEI data as reference, (b) for the historical period 1985–2013 and for
simulations based, respectively, on scenarios SSP126, SSP245, SSP585 of the CMIP6 data, (c–e) for the
near future 2015–2044 and (f–h) for the far future 2050–2080.
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Figure 14a illustrates the trend in malaria incidence along the total historical used,
i.e., the period from 1950 to 2013. There is a drop, particularly between the 1970s and the
1990s; this decrease would be linked to the decline in rainfall during this period. On the
annual cycle in Figure 14b, we observe that malaria transmission increases only between
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September and November with a peak in October, which is obtained with the climatology
of the different time series. The projections in Figure 14c show more clearly the downward
trend in malaria incidence, which would be linked to the drop in precipitation mentioned
above, but also to temperatures that are too hot for the two scenarios SSP245 and SSP585.
As for the SSP126 scenarios, it illustrates a slight increase in malaria incidence in the far
future.

4. Discussion and Conclusions

Climate projections for the Sahel, particularly in Senegal, include uncertainties for
two reasons. On the one hand, because of the strong climate variability observed in the
20th century, it is more difficult to extract from the background noise a signal attributable
to climate change; on the other hand, climate models give very divergent results for this
region. This divergence is particularly noticeable in the case of rainfall, where even the
sign of the change is different between the models. For this reason, we consider the multi-
model ensemble mean of CMIP6 data from historical and the projections for rainfall and
temperature. Given the wide divergence between models, it is usually advisable not to base
assessments of future climate change on the results of a single model taken in isolation; so,
in this study, we work on an average of a set of different models of CMIP6 (multi-model
ensemble mean). The latitudinal gradient on precipitation in Senegal is well reproduced
with CMIP6 data. There is a slight decrease in the precipitation signal in the projections. For
the temperature, we note high temperature is more localized in the east of the country but
also inside the country to a lesser extent, both for history and for projections. The SSP245
and SSP585 scenarios show a strong increase in temperatures for the future, especially
toward eastern Senegal. Three statistical values including the mean squared error, the
standard deviation, and the correlation coefficient indicate the performance of CMIP6 in
reproducing rainfall and temperature observations (WFDEI).

The integration of LMM with future climate scenarios reveals the effect of changes
in rainfall and temperature on changes in malaria transmission. Based on the findings of
this study, malaria is expected to increase in the southern part of the study region in the
future. This agrees with earlier findings in previous studies over West Africa that showed
epidemic fringe shifted southward for most malaria models. Otherwise, it is expected
that by the 2080s, the climate will become unsuitable for malaria vectors in the northern
part of the Sahel, with no more additional people at risk. Some studies [25] show an
opposing effect of climate change on the global distribution of malaria, and they show a
decrease in the simulated malaria behaviors over the Sahel, whatever period and scenario
is related to a temperature effect. The ability of the LMM model to simulate the seasonality
of malaria incidence at the local scale was assessed. The model reveals a period of high
malaria transmission between September and November, with a maximum reached in
October. The lag between the peaks of rainfall and malaria incidence is explained by the
fact that intermittent rains (or showers) in August can on the one hand strengthen the
development of the population of mosquito vectors triggered at the onset of the first rains,
but these heavy rains in August mainly flush the female mosquitoes’ eggs deposited on
the water surface. In addition, the mild temperatures implied by the succession of rainy
days are unfavorable for the mosquitoes’ development from larvae to infectious mature
mosquitoes through the pupae stage. On the other hand, with a delay of 1 to 2 months, the
mosquito vectors have their living conditions improved with the wastewater, warm and
humid conditions [26] (humidity increases the longevity of mosquitoes), and environmental
conditions including the availability of ponds and vegetation cover. This delay is quite
logical in relation to what is known about the biology of the Anopheles vector and the
sporogonic cycle of the plasmodium parasite.

Such a decrease in malaria in the far future appears to be associated with climate
change [27]. A decrease in simulated malaria behaviors over the Sahel, regardless of the
period and scenario considered is related to temperature effect. Thus, temperatures that are
too hot could negatively impact adult mosquitoes’ survival by reducing the population of



Trop. Med. Infect. Dis. 2022, 7, 345 21 of 22

adult mosquitoes in the model, which implies a decrease in malaria transmission. However,
malaria incidence is expected to increase in the southern part of the study area. This agrees
with previous studies on West Africa such as Peterson [28] showed that the epidemic fringe
would be shifted to the south for most of the malaria models. It is expected that during the
2080s, the climate will become too unsuitable in the northern part of the Sahel, including
the northern regions of Senegal, without more people at risk [1].

However, these results must be interpreted with caution as there are still uncertainties
related to both the disease model and the CMIP6 projections for the future. Several sources
of uncertainties come from the model structural uncertainty. In the far future, the model
parameter uncertainty, particularly rainfall, can become relatively more important. This
work aimed to ascertain how best to incorporate such a model effectively into a national
decision-making process concerning health planning and interventions. Limitations related
to uncertainties must be indicated to stakeholders and policymakers. This could be achieved
by employing a multi-model experimental setup with additional modeling systems. We
will continue in other upcoming projects to improve our understanding of the malaria
incidence burdens in Senegal and elsewhere under the threat of climate change.

Author Contributions: Conceptualization, I.D., J.-A.N. and A.T.G.; methodology, I.D.; validation,
J.-A.N. and A.T.G.; formal analysis, I.D. and J.-A.N.; investigation, I.D. and J.-A.N.; resources, J.-A.N.
and A.T.G.; writing—original draft preparation, I.D.; writing—review and editing, I.D. and J.-A.N.;
supervision, A.T.G. and J.-A.N.; project administration, A.T.G.; funding acquisition, I.D. and A.T.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This study is part of the Senegal National Adaptation Plan support Project-Global Envi-
ronment Fund (NAP), N◦ 00109722, Ministry of the Environment and Sustainable Development of
Senegal. The authors extend their warm thanks to the NAP, who funded the study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are presented within the manuscript. The WFDEI
data are fully available without restriction from: ftp://rfdata:forceDATA@ftp.iiasa.ac.at (accessed
on 30 October 2022). The bias-corrected CMIP6 data used in this work are available from the LMDz
server, but the authors of this review do not have the right to openly make non-open access journal
articles public.

Acknowledgments: We thank the United Nations Development (UNDP), N◦ 5428, who supports the
government of Senegal in the development of the NAP-GEF Project, which awarded the achievement
of this study. We would like also to thank Gabriel Pierre Diomaye NDIAYE, coordinator of the
NAP-GEF project and the institutions from which the authors of this work are affiliated.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.; Martens, P.; Lloyd, S.J.

Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA 2014, 111, 3286–3291. [CrossRef] [PubMed]
2. Chitnis, N.; Hyman, J.; Cushing, J. Determining Important Parameters in the Spread of Malaria Through the Sensitivity Analysis

of a Mathematical Model. Bull. Math. Biol. 2008, 70, 1272–1296. [CrossRef] [PubMed]
3. Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M.; et al. Managing the

health effects of climate change: Lancet and University College London Institute for Global Health Commission. Lancet 2009, 373,
1693–1733. [CrossRef]

4. Romanello, M.; McGushin, A.; Di Napoli, C.; Drummond, P.; Hughes, N.; Jamart, L.; Kennard, H.; Lampard, P.; Rodriguez, B.S.;
Arnell, N.; et al. The 2021 report of the Lancet Countdown on health and climate change: Code red for a healthy future. Lancet
2021, 398, 1619–1662. [CrossRef]

5. Patouillard, E.; Griffin, J.; Bhatt, S.; Ghani, A.; Cibulskis, R. Global investment targets for malaria control and elimination between
2016 and 2030. BMJ Glob. Health 2017, 2, e000176. [CrossRef]

ftp://rfdata:forceDATA@ftp.iiasa.ac.at
http://doi.org/10.1073/pnas.1302089111
http://www.ncbi.nlm.nih.gov/pubmed/24596427
http://doi.org/10.1007/s11538-008-9299-0
http://www.ncbi.nlm.nih.gov/pubmed/18293044
http://doi.org/10.1016/S0140-6736(09)60935-1
http://doi.org/10.1016/S0140-6736(21)01787-6
http://doi.org/10.1136/bmjgh-2016-000176


Trop. Med. Infect. Dis. 2022, 7, 345 22 of 22

6. Diouf, I.; Rodriguez-Fonseca, B.; Deme, A.; Caminade, C.; Morse, A.P.; Cisse, M.; Sy, I.; Dia, I.; Ermert, V.; Ndione, J.-A.; et al.
Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal. Int. J. Environ.
Res. Public Health 2017, 14, 1119. [CrossRef]

7. Diouf, I.; Rodríguez-Fonseca, B.; Caminade, C.; Thiaw, W.M.; Deme, A.; Morse, A.P.; Ndione, J.-A.; Gaye, A.T.; Diaw, A.; Ndiaye,
M.K.N. Climate Variability and Malaria over West Africa. Am. J. Trop. Med. Hyg. 2020, 102, 1037–1047. [CrossRef]

8. Diouf, I.; Suárez-Moreno, R.; Rodríguez-Fonseca, B.; Caminade, C.; Wade, M.; Thiaw, W.M.; Deme, A.; Morse, A.P.; Ndione, J.-A.;
Gaye, A.T.; et al. Oceanic Influence on Seasonal Malaria Incidence in West Africa. Weather. Clim. Soc. 2022, 14, 287–302. [CrossRef]

9. Hoshen, M.B.; Morse, A.P. A weather-driven model of malaria transmission. Malar. J. 2004, 3, 32. [CrossRef]
10. Suárez-Moreno, R.; Rodríguez-Fonseca, B. S4CAST v2.0: Sea surface temperature based statistical seasonal forecast model. Geosci.

Model Dev. 2015, 8, 3639–3658. [CrossRef]
11. Fall, P.; Diouf, I.; Deme, A.; Sene, D. Assessment of Climate-Driven Variations in Malaria Transmission in Senegal Using the

VECTRI Model. Atmosphere 2022, 13, 418. [CrossRef]
12. Cornforth, R.; Parker, D.J.; Diop-Kane, M.; Fink, A.H.; Lafore, J.P.; Laing, A.; Afiesimama, E.; Caughey, J.; Diongue-Niang, A.;

Kassimou, A.; et al. The First Forecasters’ Handbook for West Africa. Bull. Am. Meteorol. Soc. 2019, 100, 2343–2351. [CrossRef]
13. Gaye, A. Caractéristiques Dynamisuqes et Pluviosité des Lignes de Grains en Afrique de l’Ouest. Ph.D. Thesis, Université Cheikh

Anta Diop, Dakar, Sénégal, 2002.
14. Le Borgne, J. La Pluviométrie au Sénégal et en Gambie, Document Multigraphié; ORSTOM, Coopération Française: Dakar, Senegal,

1988.
15. Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ.

Res. Lett. 2016, 11, 054016. [CrossRef]
16. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.;

et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011,
137, 553–597. [CrossRef]

17. Michelangeli, P.-A.; Vrac, M.; Loukos, H. Probabilistic downscaling approaches: Application to wind cumulative distribution
functions. Geophys. Res. Lett. 2009, 36, L11708. [CrossRef]

18. Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH
Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [CrossRef]

19. Zhongming, Z.; Linong, L.; Xiaona, Y.; Wangqiang, Z.; Wei, L. AR6 Climate Change 2021: The Physical Science Basis; IPCC: Geneva,
Switzerland, 2021.

20. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.
[CrossRef]

21. Ermert, V.; Fink, A.H.; E Jones, A.; Morse, A.P. Development of a new version of the Liverpool Malaria Model. II. Calibration and
validation for West Africa. Malar. J. 2011, 10, 62. [CrossRef]

22. Caminade, C.; Ndione, J.A.; Kebe, C.M.F.; Jones, A.E.; Danuor, S.; Tay, S.; Tourre, Y.M.; Lacaux, J.-P.; Vignolles, C.; Duchemin, J.B.;
et al. Mapping Rift Valley fever and malaria risk over West Africa using climatic indicators. Atmospheric Sci. Lett. 2011, 12, 96–103.
[CrossRef]

23. Morse, A.P.; Doblas-Reyes, F.J.; Hoshen, M.B.; Hagedorn, R.; Palmer, T.N. A forecast quality assessment of an end-to-end
probabilistic multi-model seasonal forecast system using a malaria model. Tellus A Dyn. Meteorol. Oceanogr. 2005, 57, 464–475.
[CrossRef]

24. Jones, A.E.; Morse, A.P. Application and Validation of a Seasonal Ensemble Prediction System Using a Dynamic Malaria Model. J.
Clim. 2010, 23, 4202–4215. [CrossRef]

25. Béguin, A.; Hales, S.; Rocklöv, J.; Åström, C.; Louis, V.R.; Sauerborn, R. The opposing effects of climate change and socio-economic
development on the global distribution of malaria. Glob. Environ. Chang. 2011, 21, 1209–1214. [CrossRef]

26. Yamana, T.K.; Eltahir, E.A.B. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito
population dynamics in the Sahel region of Africa. Parasites Vectors 2013, 6, 235. [CrossRef] [PubMed]

27. Diouf, I.; Adeola, A.M.; Abiodun, G.J.; Lennard, C.; Shirinde, J.M.; Yaka, P.; Ndione, J.A.; Gbobaniyi, E.O. Impact of future climate
change on malaria in West Africa. Theor. Appl. Climatol. 2022, 147, 853–865. [CrossRef]

28. Peterson, A.T. Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect. Dis. 2009, 9, 59. [CrossRef]

http://doi.org/10.3390/ijerph14101119
http://doi.org/10.4269/ajtmh.19-0062
http://doi.org/10.1175/wcas-d-20-0160.1
http://doi.org/10.1186/1475-2875-3-32
http://doi.org/10.5194/gmd-8-3639-2015
http://doi.org/10.3390/atmos13030418
http://doi.org/10.1175/BAMS-D-16-0273.1
http://doi.org/10.1088/1748-9326/11/5/054016
http://doi.org/10.1002/qj.828
http://doi.org/10.1029/2009GL038401
http://doi.org/10.1002/2014WR015638
http://doi.org/10.1029/2000JD900719
http://doi.org/10.1186/1475-2875-10-62
http://doi.org/10.1002/asl.296
http://doi.org/10.3402/tellusa.v57i3.14668
http://doi.org/10.1175/2010JCLI3208.1
http://doi.org/10.1016/j.gloenvcha.2011.06.001
http://doi.org/10.1186/1756-3305-6-235
http://www.ncbi.nlm.nih.gov/pubmed/23938022
http://doi.org/10.1007/s00704-021-03807-6
http://doi.org/10.1186/1471-2334-9-59

	Introduction 
	Materials and Methods 
	Study Area 
	Data Used 
	Malaria Data Surveillance 
	Climate Data and Methods 

	LMM Malaria Model 

	Results 
	CMIP6 Models’ Evaluation: Validation of the Rainfall and Temperature Inputs 
	Projected Changes in the Spatiotemporal Variability of the CMIP6 Data 
	Projected Changes in the Spatiotemporal Variability of the CMIP6 Rainfall 
	Projected Changes in the Spatiotemporal Variability of the CMIP6 Temperature 

	Simulated Malaria Incidence in Senegal 
	Validation of Simulated Malaria Incidence in Senegal 
	Projected Changes in Malaria Incidence Based on CMIP6 Data 

	Discussion and Conclusions 
	References

