
Inhibition of Plasminogen Activator Inhibitor-1 Restores
Skeletal Muscle Regeneration in Untreated Type 1
Diabetic Mice
Matthew P. Krause,

1,2
Jasmin Moradi,

1,2
Aliyah A. Nissar,

1,2
Michael C. Riddell,

2
and

Thomas J. Hawke
1,2

OBJECTIVE—Type 1 diabetes leads to impairments in growth,
function, and regenerative capacity of skeletal muscle; however,
the underlying mechanisms have not been clearly defined.

RESEARCH DESIGN AND METHODS—With the use of
Ins2WT/C96Y mice (model of adolescent-onset type 1 diabetes),
muscle regeneration was characterized in terms of muscle mass,
myofiber size (cross-sectional area), and protein expression. Blood
plasma was analyzed for glucose, nonesterified fatty acids, insulin,
and plasminogen activator inhibitor-1 (PAI-1). PAI-039, an effective
inhibitor of PAI-1, was orally administered to determine if PAI-1
was attenuating muscle regeneration in Ins2WT/C96Y mice.

RESULTS—Ins2WT/C96Y mice exposed to 1 or 8 weeks of un-
treated type 1 diabetes before chemically induced muscle injury
display significant impairments in their regenerative capacity as
demonstrated by decreased muscle mass, myofiber cross-sectional
area, myogenin, and Myh3 expression. PAI-1, a physiologic inhib-
itor of the fibrinolytic system and primary contributor to other
diabetes complications, was more than twofold increased within
2 weeks of diabetes onset and remained elevated throughout the
experimental period. Consistent with increased circulating PAI-1,
regenerating muscles of diabetic mice exhibited excessive col-
lagen levels at 5 and 10 days postinjury with concomitant
decreases in active urokinase plasminogen activator and ma-
trix metalloproteinase-9. Pharmacologic inhibition of PAI-1
with orally administered PAI-039 rescued the early regenera-
tive impairments in noninsulin-treated Ins2WT/C96Y mice.

CONCLUSIONS—Taken together, these data illustrate that the
pharmacologic inhibition of elevated PAI-1 restores the early
impairments in skeletal muscle repair observed in type 1 diabetes
and suggests that early interventional studies targeting PAI-1 may
be warranted to ensure optimal growth and repair in adolescent
diabetic skeletal muscle. Diabetes 60:1964–1972, 2011

W
ith type 1 diabetes onset predominantly oc-
curring during youth, a time of critical growth
and development, two important issues re-
lated to the current study must be considered:

1) atrophic stimuli placed on young, growing muscle re-
sults in a rapid and irreversible remodeling process (1–3),
and 2) populations with pediatric type 1 diabetes consistently

display elevated plasminogen activator inhibitor-1 (PAI-1)
levels, irrespective of HbA1c (4). Unfortunately, assessment
of skeletal muscle health in type 1 diabetes has not been
a consideration in the clinical setting because it is assumed
that insulin therapy alone is enough to restore normal
muscle health by balancing protein synthesis and degrada-
tion. However, several studies have demonstrated that in-
sulin treatment does not restore this balance (5–8), and the
information to date indicates that young patients with di-
abetes score significantly lower on maximal strength tests
(9) and that adolescents newly diagnosed with type 1 di-
abetes experience reduced muscle fiber size and altered
muscle morphology (10). Studies using appropriate animal
models of adolescent type 1 diabetes also demonstrate
significant limitations in muscle growth and contractile
function (11–13).

For skeletal muscle tissue to stay healthy, it must con-
tinuously be maintained, adapt to changing needs, and
be capable of repair in instances of overuse, exercise, or
trauma. The repair of skeletal muscle is a complex or-
chestration of events including degeneration, extracellular
matrix (ECM) remodeling, and repair/replacement of dam-
aged muscle fibers (14). This regenerative process must
proceed in an orderly and efficient manner if skeletal
muscle is to be maintained as a healthy, functioning organ.
Although it has been reported that the type 1 diabetes en-
vironment may affect muscle regeneration after injury (15–
17), it has been proposed, although never demonstrated,
that the lack of insulin’s anabolic action is the sole reason
for the deficits observed. However, the role of insulin in
skeletal muscle repair and regeneration has yet to be
established. It is now becoming increasingly evident from
studies conducted in various tissues that other factors,
such as alterations in circulating PAI-1, may be as im-
portant in diabetes complications as hypoinsulinemia/
hyperglycemia (18–20). In skeletal muscle, alterations in
PAI-1 levels, an inhibitor of the fibrinolytic system, can
have profound effects on ECM remodeling and ultimately
delay muscle regeneration after injury (21–25).

In the current study, we sought to determine the tem-
poral pattern of regeneration and elucidate the underlying
mechanism(s) resulting in deficits in the regenerative ca-
pacity of skeletal muscle in adolescent type 1 diabetes us-
ing a genetic murine model of the disease, the Ins2WT/C96Y

mouse.

RESEARCH DESIGN AND METHODS

Animal care. Male C57BL/6-Ins2Akita/J (hereafter Ins2WT/C96Y) mice and their
wild-type (WT) littermates were purchased at 3 weeks of age from Jackson
Laboratory (Bar Harbor, ME). Mice (N = 16/group) were studied over a period
of 8 to 13 weeks of untreated type 1 diabetes. A separate group of Ins2WT/C96Y

and WT mice (N = 3/group) were used for the 1 week of type 1 diabetes
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regeneration study. Ins2WT/C96Y mice become spontaneously diabetic at ;4
weeks of age because of a heterozygous mutation in the Ins2 gene (26). Exact
onset of diabetes was determined by monitoring blood glucose as previously
described (12). The Ins2WT/C96Y mice were chosen instead of the commonly
used streptozotocin-induced diabetic rodent model because of known growth-
arresting effects of streptozotocin on skeletal muscle (27).

The animal room was maintained at 21°C, 50% humidity, and 12-h/12-h light–
dark cycle. All mice had access to standard breeder chow and water ad libitum.

Blood glucose and bodymass were measured biweekly (fed state: 1200–1400 h)
in the 8-week experimental groups. Blood samples were collected at 2, 4,
and 6 weeks of diabetes for analysis of metabolites and hormones. All animal
experiments were approved by the McMaster and York University Animal Care
Committees in accordance with Canadian Council for Animal Care guidelines.
Skeletal muscle injury. Skeletal muscle injury was induced with an intra-
muscular injection of 10 mM cardiotoxin (CTX; Latoxan, France) as previously
described (28). Injuries were generated in the left tibialis anterior (TA) and
quadriceps muscles of both Ins2WT/C96Y and WT mice at 1 and 8 weeks of
diabetes. The 1-week group was harvested at 10 days postinjury, whereas the
8-week group was subdivided into four recovery time points: 5, 10, 21, and
35 days.
Tissue collection. After the specified regeneration period, animals were killed
and blood was collected from the thoracic cavity after heart excision. Injured
and uninjured TA muscles were coated in optimum cutting temperature em-
bedding compound and frozen in isopentane cooled by liquid nitrogen, and
injured quadriceps muscles were snap-frozen and stored at 280°C.
PAI-039 treatment. To determine if elevations in circulating PAI-1 were
contributing to impaired skeletal muscle regeneration in the diabetic animals,
PAI-039, an orally effective inhibitor of active PAI-1 (29), was administered
throughout the regenerative process. An additional group of WT and Ins2WT/C96Y

mice (N = 4) were treated via oral gavage with vehicle (2% Tween-80 and 0.5%
methylcellulose in sterile H2O) or vehicle plus PAI-039 (2 mg/kg; Axon Med-
chem, the Netherlands), respectively. On the day of CTX injury (at 8 weeks of
diabetes), mice were treated with vehicle or vehicle plus PAI-039 at 1100 h,
received CTX injury to the TA at 1200 h, and received PAI-039 treatment again
at 1500 h. PAI-039 treatment was continued twice daily (1100 and 1500 h)
throughout the 5-day regeneration period, at which point the animals were
killed and tissues were dissected and stored as described above. Those
treatment time points were chosen to best attenuate the peak of PAI-1 activity
because of its circadian expression pattern (30). WT mice treated with vehicle
(WT + vehicle) demonstrated no significant difference from untreated WT in
active urokinase plasminogen activator (uPA), active matrix metalloproteinase
(MMP)-9, collagen levels, and Myh3; therefore, these two groups were pooled
for comparison with Ins2WT/C96Y mice and Ins2WT/C96Y mice treated with PAI-039
(Ins2WT/C96Y+PAI-039) as illustrated in Fig. 3.
Blood analyses. Heparinized blood plasma was analyzed for insulin and total
PAI-1 (MADPK-71 K; Millipore, Billerica, MA) at all collection time points.
Plasma was also analyzed for nonesterified fatty acids with the use of a col-
orimetric assay (Wako Diagnostics, Richmond, VA).
Western blot analysis. Snap-frozen quadriceps or TA samples were ho-
mogenized, analyzed for protein concentration, electrophoretically separated
on acrylamide gels, and transferred to polyvinylidene fluoride membranes as
previously described (28). Primary antibodies included Myh3 (Hybridoma
Bank F1.652), GAPDH (Abcam 8245, loading control; Cambridge, MA), myo-
genin (Hybridoma Bank F5D), MMP9 (Abcam 38898), and uPA (Abcam
28230). uPA was analyzed for unbound (active) uPA and uPA bound to PAI-1
as a measure of PAI-1 activity in the muscle (31). Active uPA is found at ;48
kDa, and inactive (PAI-1-bound) uPA is found at ;93 kDa. Appropriate
horseradish peroxidase-conjugated secondary antibodies were used and vi-
sualized with the addition of chemiluminescent reagent (Amersham,
Piscataway, NJ). Images were acquired with a Fusion Fx7 imager (Vilber
Lourmat, Eberhardzell, Germany) and analyzed with ImageJ.
Histochemical and immunofluorescent analyses. Eight-micron skeletal
muscle cross-sections were mounted on glass slides and stained as described
below.
Hematoxylin–eosin. Hematoxylin–eosin staining was used to determine the
average fiber area of uninjured and injured TA. Three images spaced evenly
throughout the TA (;1 mm apart) were used for analysis where 25 fibers per
image were analyzed for area (75 total fibers per TA). We have previously
demonstrated that in this muscle, quantification of this number of fibers pro-
vides a representative analysis of fiber area (12,32).
Picrosirius red. To stain for collagen content, sections were immersed in
picrosirius red solution (0.1%w/v Direct Red 80 [Sigma 365548; St. Louis, MO] in
a saturated aqueous solution of picric acid [Sigma p6744]) for 1 h. Sections were
briefly rinsed in two changes of acidified dH20 (0.5% glacial acetic acid),
dehydrated, cleared, and mounted.
Immunofluorescence. Sections were fixed with ice-cold 2% paraformaldehyde,
blocked with 10% normal goat serum/1.5% BSA, followed by mouse IgG Block

(BMK 2202; Vector Laboratories Inc., Burlingame, CA), and incubated with 1:1
dilution of anti-Myh3 overnight at 4°C. Alexa 488 anti-mouse secondary anti-
body (A-11001; Invitrogen, Carlsbad, CA) was used for detection, and 4,6-
diamidino-2-phenylindole was used to identify nuclei.
Image analysis. Images obtained with a Nikon 90i-eclipse microscope (Nikon
Inc., Melville, NY) were analyzed using NIS Elements software (Nikon, Inc.,
Melville, NY). Analysis included determination of collagen positive area and
Myh3 positive area using signal threshold settings as the detection method.
Fiber area was determined manually using NIS Elements software.
Statistical analysis. For all experiments, the appropriate t test or two-way
ANOVA with Bonferroni post hoc analysis was performed between Ins2WT/C96Y

and WT groups. Two-way ANOVA was run on datasets with dependent vari-
ables measured over time, and one-tailed t tests were carried out on data with
only single comparisons. One-tailed t tests were justified for these compar-
isons because differences in a specific direction were hypothesized a priori on
the basis of our data and previous reports (21–25). Data are presented as
mean6 SEM with P, 0.05 considered significant. Asterisks denote significant
differences identified by t test or Bonferroni post hoc test in pairwise com-
parisons, and significant main effect of diabetes or significant interaction be-
tween diabetes and time is listed in Figs. 1 to 3.

RESULTS

Ins2WT/C96Y mice spontaneously developed type 1 diabetes
(hypoinsulinemia/hyperglycemia) at ;4 weeks of age,
which was maintained throughout the study period (Tables 1
and 2) compared with WT littermates. Relative to WT mice,
Ins2WT/C96Y mice also displayed decreased body mass gain
and developed hyperlipidemia by 6 weeks of untreated di-
abetes (Tables 1 and 2), consistent with previous findings (33).

Histologic assessment of the uninjured TA served as an
index for the effects of type 1 diabetes on skeletal muscle
growth. We found that uninjured Ins2WT/C96Y muscles dis-
played no impairment in myofiber cross-sectional area
within the first 17 days of type 1 diabetes (Table 1), whereas
a significant reduction (12%) in myofiber cross-sectional
area accrual occurred by 8 weeks of type 1 diabetes that did
not significantly worsen with increasing disease duration
(up to 13 weeks, Table 2). This suggests that impaired
growth, rather than progressive atrophy, is responsible
for the reduced myofiber area observed in Ins2WT/C96Y, at
least until such time as significant neuropathic compli-
cations develop (34).

In response to muscle damage, deficits in muscle health
became considerably more apparent. Ins2WT/C96Y muscles
exposed to the type 1 diabetes environment for 1 week
before injury demonstrated a 21% decrement in myofiber
cross-sectional area at the 10-day regeneration mark (Fig.
1B). This novel finding suggests that even short-term ex-
posure to type 1 diabetes has profound effects on skeletal
muscle’s ability to repair after damage.

The regenerative capacity was also impaired at 8 weeks
of disease progression because muscle masses and myofiber
cross-sectional areas of regenerating Ins2WT/C96Y muscles
were significantly less than WT muscles from 10 days of
regeneration onward (Fig. 1C–E). Loss of mass and
myofiber area was significant even when expressed as a
percentage of either the uninjured, contralateral TA or
body mass (Supplementary Fig. 1), confirming that the
poor regeneration in type 1 diabetes extends beyond the
reduced growth rate. These changes in overall mass and
myofiber area were preceded by alterations in the protein
expression of markers of the regenerative process, myo-
genin and embryonic myosin heavy chain (Myh3). Myo-
genin is a myogenic regulatory factor that is expressed
during early time points in regeneration and is important
for cell-cycle exit of myoblasts and consequent terminal
differentiation (35,36). Western blot analysis showed sup-
pressed expression of myogenin in Ins2WT/C96Y muscle
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FIG. 1. Type 1 diabetes impairs regeneration of skeletal muscle after CTX injury. Ten days after injury, TA muscle of the 1-week diabetic Ins2WT/C96Y

mice demonstrates a significant loss of (A) mass (t test: P = 0.015; N = 3) and (B) myofiber cross-sectional area (t test: P = 0.014; N = 3) compared
with WT, indicating impaired regeneration after injury at only 7 days of type 1 diabetes. C: Hematoxylin–eosin staining of TA injured at 8 weeks of
type 1 diabetes demonstrates loss of (D) muscle mass (N = 16) and (E) myofiber area (N = 16) compared with WT beginning at 10 days postinjury.
The uninjured time point in both panels is the contralateral TA to the 5-day post-CTX muscle and is included to illustrate the decrease in muscle
mass and myofiber area associated with the impaired growth of skeletal muscle in the type 1 diabetic state. The values for the uninjured time point
are not included in the statistical analysis. A main effect of diabetes (main effect: P < 0.001) is observed in both mass and fiber area with the
asterisk (*) denoting specific differences between WT and Ins2WT/C96Y

as defined by post hoc analysis. Note that the type 1 diabetic muscle does
not return to WT mass/fiber size at later time points, but continues to lag in regeneration. Because early expression of myogenic proteins is critical
to the early stages of regeneration, (F) myogenin (main effect: P = 0.062, interaction: P = 0.017; N = 8) and (G) embryonic myosin heavy chain
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compared with WT muscle at 5 days postinjury (Fig. 1F).
Myh3, a developmental myosin isoform, is expressed tran-
siently during skeletal muscle regeneration (37) and used as
a reference point to assess the process of differentiation
(38). Similar to myogenin, the protein expression of Myh3
was reduced in Ins2WT/C96Y muscle at 5 days of regener-
ation. Both Western blot and immunofluorescent staining
of regenerating muscles demonstrated this expression
pattern (Fig. 1G–I). Neither group displayed expression
of Myh3 at 21 or 35 days after regeneration, suggesting
that the impairments in the regenerative process are within
the early phases after injury with diabetes development
(#10 days), and after this time, maturation proceeds, albeit
delayed.

Skeletal muscle regeneration is a complex process that
is heavily dependent, particularly during the early phase,
on the optimal functioning of the fibrinolytic system (21–25).
We speculated that impairments in type 1 diabetes muscle
regeneration may be due, at least in part, to elevated PAI-1
preventing the activation of uPA and its downstream ef-
fectors, the MMPs (e.g., MMP9). Consequently, suppres-
sion of the fibrinolytic process would result in attenuation
of ECM remodeling, thus creating barriers for infiltration
of immune cells and efficient activation and invasion of the
myogenic stem cells that are responsible for the formation
of new myofibers (14). We observed total PAI-1 levels to be
more than twofold higher in Ins2WT/C96Y mice than in WT
mice within 2 weeks of hyperglycemia in the former group,
with values remaining elevated with diabetes throughout
the experimental period (Fig. 2A and B). Moreover, regen-
erating Ins2WT/C96Y muscle displayed elevations in collagen
content at 5 and 10 days of regeneration compared with
WT muscle (Fig. 2C and D). Active uPA levels at 5 days of
regeneration were decreased by ;35% in Ins2WT/C96Y

muscle compared with WT muscle (WT: 5978 6 1362 vs.
Ins2WT/C96Y: 38736 1241; P = 0.15). Although this decrease
in active uPA was not statistically significant, active MMP9,
the MMP associated with ECM remodeling in skeletal
muscle (39,40), was significantly elevated at 5 days of

regeneration in WT but not Ins2WT/C96Y muscle, with levels
between the two groups similar by 10 days postinjury
(Fig. 2E).

With PAI-1 elevated within ;2 weeks of type 1 diabetes
onset (Fig. 2A), we hypothesized that the deficit in re-
generation observed in Ins2WT/C96Y mice diabetic for 1
week before CTX injury would also display defective ECM
remodeling. As hypothesized, collagen content in regener-
ating Ins2WT/C96Y mice, diabetic for a total of 17 days, was
significantly elevated (Fig. 2F), consistent with a role of
PAI-1 in the impaired regeneration.

By having identified that increased PAI-1 levels in
Ins2WT/C96Y mice are associated with early impairments in
muscle regeneration, we then determined if these deficits
could be restored with pharmacologic inhibition of PAI-1,
even in the absence of insulin therapy. Twice-daily oral
dosing of PAI-039 (tiplaxtinin), a pharmacologic inhibitor
of PAI-1 (29), effectively increased the amount of active
(free) uPA in the injured muscle of 8-week diabetic
Ins2WT/C96Y mice compared with untreated Ins2WT/C96Y

mice (Fig. 3A) and increased the ratio of active to inactive
uPA (uPA/PAI-1-uPA) (Ins2WT/C96Y: 1.22 6 0.13 AU vs.
Ins2WT/C96Y+PAI-039: 1.74 6 0.14 AU; P = 0.02). WT mice
treated with vehicle alone demonstrated no significant
change in active uPA levels (WT: 5978 6 1362 AU vs. WT +
vehicle: 7007 6 778 AU; P = 0.27) or uPA/PAI-1-uPA (WT:
1.40 6 0.18 AU vs. WT + vehicle: 1.28 6 0.09 AU; P = 0.29).
The downstream effect of elevated active uPA levels, re-
sultant from PAI-039 treatment, was an increase in active
MMP9 (Fig. 3B) and a normalization of collagen content
in the regenerating Ins2WT/C96 muscles to the levels ob-
served in WT mice (Fig. 3C and D). The recovery of the
fibrinolytic pathway with PAI-039 in Ins2WT/C96 mice re-
stored not only normal ECM remodeling but also Myh3
expression to levels similar to WT regenerating muscles
(Fig. 3E and F). Injured TA fiber area demonstrated
no significant difference between groups (WT + vehicle:
461 6 29 mm2 vs. Ins2WT/C96Y+PAI-039: 396 6 32 mm2;
P = 0.19), whereas TA mass exhibited a small but significant

(Myh3) expression (main effect: P = 0.117, interaction: P = 0.009; N = 8) were determined in quadriceps muscle and demonstrate significantly in-
creased expression at 5 days postinjury in WT but not Ins2WT/C96Y

(labeled Ins2, F and G). H: Immunofluorescent staining of injured TA with anti-
Myh3 confirms (I) the lack of Myh3 positive fibers in Ins2WT/C96Y

compared with WT (main effect: P = 0.013; interaction: P < 0.001; N = 8) at 5 days
postinjury. *Differences between groups at specific time points identified by Bonferroni post hoc analysis after 2-way ANOVA (D–G, I).A–I: White bars
represent WT, and black bars represent Ins2WT/C96Y

. (A high-quality digital representation of this figure is available in the online issue.)

TABLE 1
Characteristics of WT and diabetic mice at 8 weeks of diabetes (;13 weeks old)

Weeks of diabetes

Diabetes main effect
and interaction

with time

Measure Group 2 4 6 8 P value

Body mass (g) 8 weeks + variable
time post-CTX

WT 20.1 6 0.3 23.1 6 0.4 24.9 6 0.4 26.2 6 0.4 DME = 0.0004
Ins2 19.1 6 0.3 21.5 6 0.3* 22.9 6 0.4* 23.9 6 0.4* Int = 0.0035

Insulin (pg/mL) WT 789 6 86 778 6 175 814 6 106 DME ,0.0001
Ins2 225 6 24* 224 6 35* 222 6 56* Int = NS

Blood glucose (mmol/L) WT 11.3 6 0.6 9.1 6 0.3 9.1 6 0.3 8.2 6 0.3 DME ,0.0001
Ins2 29.1 6 1.0* 32.2 6 0.7* 32.4 6 0.7* 33.1 6 0.5* Int ,0.0001

Nonesterified fatty
acids (mmol/L)

WT 0.63 6 0.06 0.77 6 0.08 1.10 6 0.06 DME ,0.0001
Ins2 1.05 6 0.10 0.85 6 0.07 2.14 6 0.12* Int = 0.0003

Biweekly data for the long-term (8 weeks) type 1 diabetic and WT groups (N = 16). Ins2WT/C96Y mice are labeled Ins2. Two-factor ANOVA was
run to determine the main effects of diabetes, time, and interaction; P values for diabetes main effect and interaction are listed next to the
respective data. Absence of a significant main effect or interaction is indicated as NS. DME, diabetes main effect; Int, interaction with time.
*Significant difference at that time point by Bonferroni post hoc comparison.

M.P. KRAUSE AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 60, JULY 2011 1967



difference (WT + vehicle: 0.0396 0.002 g vs. Ins2WT/C96Y+PAI-
039: 0.031 6 0.002 g; P , 0.05). Similarly, no difference was
noted in fiber area at 5 days postinjury between WT and
Ins2WT/C96Y mice (Fig. 1E), with a small decrease in muscle
mass at that time point (Fig. 1D). The reasons underlying
the apparent discrepancy between fiber area and muscle
mass in the diabetic mice is unknown; however, it could be
speculated that differences in fibrosis, inflammatory re-
sponse, or lipid content within the muscles of the various
groups could contribute to these observations.

To rule out the possibility that PAI-039 treatment im-
proves glycemic or insulinemic levels, thus improving the
diabetic environment in ways other than affecting PAI-1
activity, whole-blood glucose and plasma insulin levels
were measured. Blood glucose concentrations remained
severely elevated in the Ins2WT/C96Y mice treated with
PAI-039 (WT + vehicle: 8.96 0.7 mmol/L vs. Ins2WT/C96Y+PAI-
039: 35.0 6 0.0 mmol/L; P , 0.05), whereas insulin
levels remained low (WT + vehicle: 916 6 74 pg/mL vs.
Ins2WT/C96Y+PAI-039: 146 6 29 pg/mL; P , 0.05).

DISCUSSION

Our results indicate that the type 1 diabetic environment
negatively affects the health of skeletal muscle, as defined
by impaired growth and poor regenerative capacity. The
deficits in regenerative capacity occur rapidly with ex-
posure to type 1 diabetes (within ;2 weeks) and, as we
demonstrated, are consistent with elevated PAI-1 and in-
effective ECM remodeling.

Maintaining a healthy muscle mass in the type 1 diabetic
population has not typically been addressed in the clinical
setting. Unfortunately, many studies demonstrate impair-
ments in skeletal muscle health (e.g., impaired morphol-
ogy, decreased strength, and metabolic capacity) observed
early in patients with type 1 diabetes who are receiving
insulin therapy, changes that may precede other diabetes

complications (13). The results presented support these
previous findings as we demonstrate that repair from
muscle damage is significantly blunted in the diabetic state
with as little as 7 days of uncontrolled type 1 diabetes
before muscle injury. Furthermore, we also demonstrate
that PAI-1 is significantly elevated within the first 2 weeks
of type 1 diabetes onset and that inhibition of this hormone
restores the regenerative capacity of type 1 diabetic mice,
irrespective of the hypoinsulinemia. Although skeletal
muscle is capable of maintaining basic function in the face
of extreme stressors, this does not equate to a healthy
muscle mass that is functioning optimally. We and others
have demonstrated that although basic indices of muscle
function may not be significantly impaired, dramatic
changes are occurring within the muscle demonstrating
compromised health (11,12,41). If we heed lessons from
other metabolic disease states (e.g., obesity), as muscle
health diminishes, disease severity increases. For example,
the muscle wasting that occurs with obesity (sarcopenic
obesity) is a serious complication resulting in the expedi-
tion of complications within other tissues (42). Given the
importance of skeletal muscle to whole-body fuel metab-
olism, ensuring that skeletal muscle health is maintained in
metabolic disease states is obviously of critical impor-
tance.

Type 1 diabetes onset most often occurs during
childhood/adolescence, and previous studies have shown
that atrophic stimuli (e.g., hindlimb casting) placed on
young, growing muscle result in a rapid and irreversible
remodeling process, ultimately leading to a failure to achieve
its full potential of adult muscle mass (1–3). We were
interested to determine if type 1 diabetes may prove to be
one of these “atrophic environments.” The present findings
illustrate that growing skeletal muscle exposed to type 1
diabetes will display a failure to accrue muscle mass/fiber
area, and these findings are not the product of progressive
atrophy resultant from prolonged type 1 diabetes exposure

TABLE 2
Characteristics of WT and diabetic mice during skeletal muscle regeneration after a period of untreated type 1 diabetes

Days post-CTX injury

Diabetes main
effect and
interaction
with time

Measure Group 5 10 21 35 P value

Body mass (g) 8 weeks + variable
time post-CTX

WT 26.8 6 1.2 26.8 6 0.9 28.5 6 0.7 29.9 6 0.9 DME ,0.0001
Ins2 25.0 6 0.6 23.0 6 0.6* 24.6 6 0.5* 25.5 6 0.4* Int = NS

Insulin (pg/mL) WT 1,294 6 286 1,242 6 268 1,818 6 461 2,413 6 349 DME ,0.0001
Ins2 235 6 23* 235 6 41* 194 6 115* 157 6 53* Int = NS

Blood glucose (mmol/L) WT 8.2 6 0.2 9.2 6 0.4 8.7 6 0.3 8.6 6 0.4 DME ,0.0001
Ins2 31.4 6 0.7* 33.2 6 0.7* 33.2 6 0.9* 32.1 6 0.6* Int = NS

Nonesterified fatty
acids (mmol/L)

WT 0.69 6 0.09 0.56 6 0.06 0.53 6 0.08 0.73 6 0.04 DME ,0.0001
Ins2 1.27 6 0.13* 1.54 6 0.06* 1.26 6 0.19* 1.97 6 0.25* Int = NS

Uninjured TA mass (g) WT 0.047 6 0.001 0.049 6 0.002 0.050 6 0.001 0.054 6 0.004 DME ,0.0001
Ins2 0.039 6 0.002 0.038 6 0.001* 0.044 6 0.002 0.045 6 0.003* Int = NS

Uninjured TA fiber
area (mm2)

WT 2,168 6 135 2,349 6 121 2,182 6 89 2,338 6 229 DME = 0.0007
Ins2 1,905 6 103 1,813 6 32* 2,074 6 158 1,834 6 36* Int = NS

Uninjured TA fiber
area (mm2)

1 week +
time post-CTX

WT 1,832 6 96
Ins2 1,768 6 61

Data for the long-term (8 weeks + variable time post-CTX; N = 16 [4 per time point]) and short-term (1 week + 10 days post-CTX; N = 3) type 1
diabetic and WT groups. Ins2WT/C96Y mice are labeled Ins2. Two-factor ANOVA was run to determine the main effects of diabetes, time, and
interaction; P values for diabetes main effect and interaction are listed next to the respective data. Absence of a significant main effect or
interaction is indicated as NS. DME, diabetes main effect; Int, interaction with time. *Significant difference at that time point by Bonferroni
post hoc comparison. For single comparison of short-term groups, t test revealed no significant difference.
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or neuropathic complications, because no change in muscle
mass or fiber area was observed once into adulthood (a
further 5 weeks of uncontrolled type 1 diabetes). Although
we investigated the uncontrolled diabetic state in a rodent
model of diabetes, it is worth considering that there are two
situations in which pediatric type 1 diabetic populations

may be under this stress: 1) before diagnosis (which may
last a period of months) and 2) after diagnosis when gly-
cemic control is difficult and suboptimal (43). Consistent
with our results, findings in newly diagnosed juvenile type 1
diabetic humans demonstrate a reduced myofiber area
compared with healthy age-matched control subjects (10).

FIG. 2. Type 1 diabetes causes elevated PAI-1, suppresses MMP9 activation, and increases collagen content during early regeneration time points.
Significantly elevated PAI-1 levels in Ins2WT/C96Y

mice compared with WT mice were found in blood plasma collected (A) throughout type 1 diabetes
progression (main effect: P < 0.001; N = 16) and (B) after CTX injury (main effect: P < 0.001; N = 16). This led to the hypothesis that collagen would
be elevated in the Ins2WT/C96Y

mice because of suppression of the fibrinolytic pathway. C: Picrosirius red staining of injured TA sections revealed
increased collagen (red color), which was statistically significant (D, main effect: P = 0.001, interaction: P = 0.004; N = 16). E: MMP9, an important
protease in skeletal muscle collagen cleavage, was also found to be significantly repressed in Ins2WT/C96Y

mice (labeled Ins2,E) at the 5-day time point
(N = 8). F: The short-term Ins2WT/C96Y mice also exhibited increased collagen at 10 days postinjury (t test: P = 0.047, N = 3). *Differences between
groups at specific time points identified by Bonferroni post hoc analysis after 2-way ANOVA (A, B, D, E). A–E: White bars/circles represent WT, and
black bars/squares represent Ins2WT/C96Y

. (A high-quality digital representation of this figure is available in the online issue.)

M.P. KRAUSE AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 60, JULY 2011 1969



Repair from muscle damage consists of multiple, over-
lapping stages (14). After the initial injury, an inflammatory
phase ensues to remove damaged cells and debris. It is
during this early phase that remodeling of the ECM begins,
with a dramatic increase in ECM proteins, particularly
collagen, which is needed as the structural integrity of the
muscle is compromised while damaged muscle fibers un-
dergo phagocytosis. As repair continues, so does ECM re-
modeling, with the excess of ECM proteins undergoing
degradation as nascent myofibers form and mature. Ac-
tivity of the fibrinolytic system (PAI-1, uPA, MMPs) is

critical during this ECM remodeling period (21–25). Newly
formed myofibers will initially express immature myosin
heavy chain isoforms, such as Myh3 (embryonic myosin
heavy chain). As maturation continues, the muscle fibers
will increase in size, returning to a preinjury state while
replacing the immature contractile proteins with mature
isoforms. We show in this study that in response to muscle
damage, ECM remodeling is impaired in the type 1 diabetic
state, and this is a direct result of elevated PAI-1. The in-
crease in PAI-1 observed in regenerating muscle of type 1
diabetic mice decreased active uPA and MMP9 levels,

FIG. 3. Pharmacologic treatment against PAI-1 improves fibrinolytic pathway activity, collagen degradation, and regeneration at 5 days post-CTX
injury in type 1 diabetes. A: Treatment with PAI-039 caused an increase in free uPA in Ins2WT/C96Y compared with untreated Ins2WT/C96Y (t test: P =
0.004; N = 4). B: Similarly, active MMP9 was elevated in PAI-039–treated Ins2WT/C96Y

(t test: P = 0.025; N = 4). These findings are characteristic of
restored fibrinolytic pathway activity, which presumably led to the (C and D) reduced collagen levels (t test: P < 0.001; N = 4) and (E and F)
increased Myh3-positive area (t test: P = 0.011; N = 4) observed in PAI-039–treated Ins2WT/C96Y compared with untreated Ins2WT/C96Y (labeled Ins2,
C and E). A–E: Black bars represent Ins2WT/C96Y, and striped bars represent PAI-039–treated Ins2WT/C96Y. Data are presented relative to the mean
of the WT and WT + vehicle pooled data. *Differences between groups identified by t test. (A high-quality digital representation of this figure is
available in the online issue.)
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thereby attenuating ECM turnover (as noted by elevated
intramuscular collagen) during the first 10 days postinjury.
Restoration of the fibrinolytic system in type 1 diabetic
mice via pharmacologic inhibition of PAI-1 restored active
MMP9 expression, returned collagen levels to normative
values, and ultimately allowed for nascent muscle fiber
growth to occur. Consistent with these findings, mice de-
ficient in uPA exhibit impaired muscle regeneration, whereas
PAI-1–deficient mice exhibit augmented muscle repair
(22,44). It is worth noting that, in the current study, PAI-
039 treatment in Ins2WT/C96Y mice resulted in active uPA
levels that significantly exceeded that measured in WT
mice muscles. Although this may be considered “supra-
physiologic,” tissues were collected 1 h after PAI-039 ad-
ministration on the day of harvest, a time when the drug
effects were at their peak. With a PAI-039 half-life of 4.1 h
(29), it can be speculated that more time was spent below
this elevated level than within it.

Although the evidence to date suggests that insulin ad-
ministration does not restore function of the fibrinolytic
pathway (because insulin therapy does not reduce PAI-1
levels in human pediatric populations) (4), and thus would
not improve collagen degradation and de novo myofiber
formation, insulin might facilitate the rate of myofiber
growth (later stages of regeneration) by modestly im-
proving protein turnover (5–8). Future studies are needed
to clearly define if PAI-039 treatment, in combination with
standard insulin therapy, provides a more optimal re-
generation environment. Furthermore, we administered
PAI-039 just before the injury; however, future studies
should consider the clinically important issue of treatment
after injury, in terms of both effectiveness and timeframe.
A final clinical consideration of PAI-039 treatment is the
long-term effects of its administration if it were to be given
prophylactically or for prolonged periods of time. To date,
there is limited information on this topic. One study ad-
ministered PAI-039 for 42 days through addition to the
rodent chow and found an acute protection against
radiation-induced intestinal injury but noted no adverse
effects of drug treatment (45), whereas a second study
provided a 2-month administration of PAI-039 to AngII/
salt–treated mice (46). In the latter study, PAI-039 was
effective in decreasing aortic remodeling with no effect of
PAI-039 alone on serum amyloid A levels (an index of
systemic inflammation).

Although elevated PAI-1 has been linked to other com-
plications usually associated with diabetes, such as coro-
nary artery disease and nephropathy (18–20), it is somewhat
surprising that this is the first time that a clinically relevant
inhibition of PAI-1 (through pharmacologic means) has been
used to treat a diabetes complication. In fact, to the best
of our knowledge, only three other studies have investigated
mitigating diabetes complications by altering PAI-1 levels.
These studies used streptozotocin-induced diabetes in
PAI-1–deficient rodents to investigate the role of PAI-1 in
mediating the effects of type 1 diabetes on renal morphol-
ogy and function (18,47,48). Collectively, these authors
found that elevated PAI-1 was contributing to diabetic
nephropathy (increased glomerular ECM, decreased glo-
merular filtration rate) and that amelioration of these
symptoms occurred in the PAI-1–deficient background.
Given the demonstrated (present study) (18,47,48) and
proposed (19,20) linkage of PAI-1 with diabetes compli-
cations and the fact that PAI-1 is elevated in populations
with pediatric type 1 diabetes regardless of the level of
glycemic control (4,49,50), we propose that aggressive

therapeutic approaches, including intensive insulin and
PAI-1 inhibitor strategies, warrant further investigation
for the treatment of young type 1 diabetic patients. This
will not only ensure optimal accrual and maintenance of
a healthy skeletal muscle mass but also will reduce the
onset and progression of other diabetes complications.
Clearly, future studies are needed to definitively demon-
strate the causative role of PAI-1 in the impaired muscle
regeneration of patients with diabetes, and these studies
may also prove valuable in developing therapeutic strat-
egies to ensure the most effective management of other
diabetes complications.
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