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Abstract. Tumor‑associated macrophages have become 
important biomarkers for cancer diagnosis, prognosis and 

therapy. The dynamic changes in macrophage subpopulations 
significantly impact the outcomes of cancer immunotherapy. 
Hence, identifying additional macrophage‑related biomarkers 
is essential for enhancing prognostic predictions in colorectal 
cancer (CRC) immunotherapy. CRC single‑cell RNA 
sequencing (scRNA‑seq) data was obtained from the Gene 
Expression Omnibus (GEO) database. The data were processed, 
normalized and clustered using the ‘Seurat’ package. Cell types 
within each cluster were annotated using the ‘SingleR’ package. 
Weighted gene co‑expression network analysis identified 
modules corresponding to specific cell types. A non‑negative 
matrix factorization algorithm was employed to segregate 
different clusters based on the selected module. Differentially 
expressed genes (DEGs) were identified across various clusters 
and a prognostic model was constructed using lasso regression 
and Cox regression analyses. The robustness of the model was 
validated using The Cancer Genome Atlas (TCGA) database 
and GEO microarrays. Additionally, the prognosis, immune 
characteristics and response to immune checkpoint inhibitor 
(ICI) therapy were individually analyzed. The scRNA‑seq data 
from GSE200997, consisting of 23 samples, were analyzed. 
Dimensionality reduction and cluster identification allowed 
the isolation of the primary myeloid cell subpopulations. The 
macrophage‑related brown module was identified, which was 
further divided into two clusters. Using the DEGs from these 
clusters, a prognostic model was developed, comprising five 
macrophage‑related genes. The robustness of the model was 
confirmed using microarray datasets GSE17536, GSE38832 
and GSE39582, as well as TCGA cohort. Patients classified 
as high‑risk by the present model exhibited poorer survival 
rates, lower tumor mutation burden, reduced microsatellite 
instability, lower tumor purity, more severe tumor immune 
dysfunction and exclusion, and less benefit from ICIs therapy 
compared with low‑risk patients. The present prognostic 
model shows promise as a biomarker for risk stratification and 
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predicting therapeutic efficacy in patients with CRC. However, 
further well‑designed prospective studies are necessary to 
validate the findings.

Introduction

Colorectal cancer (CRC) represents a significant global health 
burden, contributing to a substantial number of cancer‑related 
deaths worldwide. In 2020 alone, there were over 1.9 million 
new cases and 0.94 million deaths attributed to CRC glob‑
ally (1). It ranks third in terms of incidence and second in 
mortality among cancers (1). Despite the potential of early 
screening to reduce CRC incidence and mortality, challenges 
persist in the performance of screening tests and patient adher‑
ence among eligible populations (2). Metastatic CRC occurs in 
~20% of all CRC cases (3), with 40% experiencing recurrence 
following treatment of the primary lesion (4). Unfortunately, 
the prognosis for metastatic CRC remains grim, with a 
five‑year survival rate of <20% (5). Elderly individuals bear a 
significant burden, as nearly 70% of CRC cases are diagnosed 
in those aged >65 years (6). However, the impact of age on 
survival outcomes is not universally agreed upon. Factors such 
as stage at presentation, tumor location, preexisting health 
conditions and treatment type may confound the prognosis of 
older patients (7). Given these challenges, there is an urgent 
need to develop more effective therapeutic strategies for 
patients with advanced‑stage CRC.

Cancer immunotherapy has emerged as a promising 
approach for treating challenging solid tumors by enhancing 
the ability of the immune system to eliminate cancer 
cells  (8‑10). In CRC, immune checkpoint inhibitors (ICIs) 
gained regulatory approval following the CheckMate142 
clinical trial in 2017 (11,12). The ICIs are specifically designed 
for patients with CRC with a high tumor mutation burden 
(TMB), characterized by deficient mismatch repair protein 
(dMMR) and high microsatellite instability (MSI‑H), collec‑
tively known as the dMMR/MSI‑H CRC subtype (12). PD‑L1 
expression in immune cells is significantly higher in MSI‑H 
CRC than in proficient MMR [low microsatellite instability 
(MSI‑L)] tumors, with no notable differences among various 
MSI‑H molecular subtypes (13). Currently, the recommended 
screening for defective MMR involves immunohistochem‑
istry (IHC) and/or MSI testing (14). However, capturing the 
biological and technical heterogeneity of MSI testing poses 
challenges. IHC testing of the mismatch repair machinery may 
yield varying results for specific germline mutations, while 
somatic nonsense mutations can also influence the overall 
findings (14). Consequently, it is crucial for CRC immuno‑
therapy to identify the molecular characteristics of the tumor 
microenvironment (TME) and search for reliable immune 
prognostic indicators.

Macrophages are pivotal in various immune processes, 
serving essential functions such as phagocytosis, antigen 
presentation and the secretion of signaling molecules (15,16). 
In the TME, tumor‑associated macrophages (TAMs) are 
derived from peripheral blood monocytes that infiltrate tumor 
tissues (17,18). These TAMs are closely associated with tumor 
initiation, progression, angiogenesis and metastasis (19). TAMs 
are generally classified into two subpopulations including clas‑
sically activated macrophages (M1) and alternatively activated 

macrophages (M2) (20). M1 macrophages release chemokines 
and pro‑inflammatory cytokines, which have anti‑tumor 
effects and promote immune surveillance (20). By contrast, 
M2 macrophages secrete inhibitory cytokines that primarily 
support tumor growth and metastasis (21). 

High levels of TAM infiltration in tumor tissues are 
typically considered a risk factor for poor prognosis in 
cancer treatments, including radiotherapy, chemotherapy and 
targeted therapy (16,22‑24). Moreover, the dynamic changes 
in macrophage subpopulations can significantly influence 
the effectiveness of immunotherapy across various cancer 
types (25‑27). Conventional biomarkers are often insufficient 
for predicting the efficacy of cancer immunotherapies. Although 
gene mutations such as V‑Ki‑Ras2 Kirsten rat sarcoma 2 viral 
oncogene (KRAS), neuroblastoma RAS viral oncology and 
B‑Raf Proto‑Oncogene (BRAF), inflammatory markers such 
as neutrophil‑lymphocyte ratio, lymphocyte‑monocyte ratio 
and platelet‑lymphocyte ratio, and aberrant miRNAs serve 
as prognostic and predictive biomarkers for personalized 
CRC therapy, more research is required to optimize their 
detection and validation (28). In the present study, to identify 
more macrophage‑related biomarkers with clinical relevance, 
single‑cell RNA sequencing (scRNA‑seq) was used for a 
precise analysis of CRC macrophages.

scRNA‑seq is a revolutionary method that enables the 
detailed examination of global gene expression profiles in 
individual cell types, providing profound insights into cellular 
heterogeneity  (29,30). Currently, numerous research initia‑
tives aim to discover novel biomarkers for malignancies by 
integrating scRNA‑seq with traditional RNA sequencing 
(RNA‑seq)  (31‑33). Despite these efforts, there remains a 
significant gap in knowledge regarding macrophage‑related 
immunotherapeutic indicators identified through the combina‑
tion of scRNA‑seq and weighted gene co‑expression network 
analysis (WGCNA) (34). The present study aimed to bridge 
this gap by developing a novel gene signature through the 
integration of the aforementioned advanced tools, thereby 
improving prognostic predictions for CRC immunotherapy. This 
innovative approach offers a theoretical foundation for creating 
personalized treatment strategies for patients with CRC.

Materials and methods 

Data acquisition and processing. The present study 
utilized five independent public datasets, including 
scRNA‑seq, high‑throughput RNA‑seq and microarray 
cohorts. The scRNA‑seq dataset (GSE200997; n=23)  (35), 
was sourced from the Gene Expression Omnibus (GEO) 
(https://www.ncbi.nlm.nih.gov/geo/). This dataset provided 
valuable insights into colorectal cellular diversity and 
heterogeneity within tumor and microenvironmental cells. 
Transcriptome datasets and corresponding clinical informa‑
tion for CRC were obtained from The Cancer Genome Atlas 
[dataset  no.  TCGA‑COAD/TCGA‑READ; n=522; colon 
cancer/rectum cancer (481/41); https://portal.gdc.cancer.gov/]. 
Additionally, microarray cohorts from the GEO database 
were included: GSE17536 (n=177), GSE38832 (n=122) and 
GSE39582 (n=585).

The raw RNA‑seq count data were converted to transcripts 
per million format and subsequently log‑2 transformed. 
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Expression profiles from GEO were processed and normalized 
using the ‘affy’ (version 1.48.0) and ‘lumi’ (version 2.22.0) 
packages, tailored to the different platforms. The four datasets, 
excluding the scRNA‑seq cohort, were combined, and the ‘sva’ 
package (3.18.0) was employed to correct for batch effects.

scRNA‑seq data analysis. ScRNA‑seq data analysis was 
performed with R language programming (R version 4.2.3, 
https://www.r‑project.org). To ensure quality, single‑cell gene 
expression profiles were filtered to remove mitochondrial 
genes and cells with <200 detected genes. Dimensional reduc‑
tion and clustering visualization were performed using the 
‘Seurat’ package. The resulting cell clusters were annotated 
using the ‘SingleR’ package. Unique marker genes for each 
cluster were identified with the ‘FindAllMarkers’ function. 
Subsequently, enrichment analysis was conducted using the 
irGSEA package to gain further insights into the biological 
significance of these markers.

WGCNA. To explore the correlations between gene modules 
and clinicopathological data, WGCNA (version 1.72‑5) was 
used (36). Initially, a scale‑free gene co‑expression networks 
was constructed using the ‘wgcna’ package, removing outlier 
samples with a connectivity threshold <‑2.5. The soft threshold 
powers were determined by calculating the scale‑free topology 
fitting indices (R2) using the ‘pickSoftThreshold’ function, 
ensuring a power value >0.8 to approximate a scale‑free 
network topology.

After which, the adjacency matrix was transformed into 
a topological overlap matrix (TOM) and computed the corre‑
sponding dissimilarity TOM (1‑TOM). Using the dynamic tree 
cut method, gene modules were identified and colored. The 
relationship between module eigenvalues and phenotypes was 
evaluated, selecting the modules with the highest correlation 
for further analysis.

Non‑negative matrix factorization and estimation of TME 
cell infiltration. To identify genes associated with prognosis, 
univariate Cox regression analysis was conducted. Molecular 
clustering was performed using the non‑negative matrix factor‑
ization (NMF) package (R version 4.2.3; https://cran.r‑project.
org/package=NMF) (37), iterating through the matrix factor‑
ization process. The ESTIMATE algorithm was applied to 
infer immune and stromal scores for each sample, providing 
insights into the TME. Additionally, the CIBERSORT 
algorithm was utilized to estimate the enrichment scores of 
immune and stromal cell types within the samples (38). 

Construction of the Macrophages‑Gene‑Hub‑Signature‑
related prognostic model. Using the ‘limma’ package 
(version 3.28.6), 175 differentially expressed genes (DEGs) 
were identified between two subtypes. To mitigate the risk of 
overfitting, a Macrophages‑Gene‑Hub‑Signature (MHGS) risk 
score was developed using the Lasso regression. Subsequently, 
multivariate Cox regression analysis was conducted to screen 
candidate genes. The MHGS score was calculated as follows: 
MHGS score=Σ (Exp x coefi), where ‘Exp’ and ‘coefi’ denote 
the expression and coefficient of each MHGS‑related gene, 
respectively. Patients in both the training and validation 
sets were stratified into low‑risk and high‑risk groups based 

on the median MHGS score. Kaplan‑Meier survival curves 
were generated and analyzed for these groups. Additionally, 
the prognostic accuracy of the risk‑score model was assessed 
using receiver operating characteristic (ROC) curves.

Analysis of molecular and immune characteristics and ICI 
therapy in the MHGS model. The analysis was initiated by 
performing differential expression analysis of all genes 
between high‑risk and low‑risk MHGS groups using the 
‘limma’ package (version 3.28.6). Subsequently, gene set 
enrichment analysis (GSEA) was employed via the ‘clusterPro‑
filer’ package in R (R version 4.2.3; https://www.r‑project.org) 
to identify specific signaling pathways associated with these 
genes, focusing on those with statistical significance (P<0.05 
and FDR<0.25).

Gene mutation analysis utilized data obtained from the 
TCGA and GEO databases, leveraging the ‘Maftools’ package 
(version 0.99.30) to assess genetic alterations across different 
risk groups. Pearson correlation analysis was conducted 
to explore the relationship between the MHGS score and 
TMB. Additionally, the relative proportions of 22 types of 
immune cells in the MHGS groups were estimated using 
the CIBERSORT algorithm. These proportions were then 
compared alongside clinicopathological factors such as age, 
sex, TNM stage, TP53, KRAS, BRAF and recurrence.

To evaluate the predictive value of the MHGS score in the 
context of immunotherapy, the Tumor Immune Dysfunction 
and Exclusion (TIDE) score (http://tide.dfci.harvard.edu) 
and the immunophenoscore (IPS) were employed from The 
Cancer Immunome Atlas (TCIA) (https://tcia.at/) to assess 
treatment response. A lower TIDE score and higher IPS are 
indicative of a more favorable response to immunotherapy (39). 
Survival analyses of the MHGS risk score were conducted 
within a cohort of patients with urothelial cancer treated with 
anti‑PD‑L1 therapy (40). Furthermore, time‑dependent ROC 
curve analyses were performed to compare the prognostic 
value of MHGS with that of the tumor inflammation signa‑
ture (TIS), calculated as the average log2‑scale normalized 
expression of 18 signature genes (41).

Cell culture and transfection procedures. CRC cell lines 
(RKO, SW480 and LoVo), colon epithelial cells (HIEC) and 
293T cells were cultured in high‑glucose DMEM medium 
(HyClone; Cytiva) supplemented with 10% fetal bovine serum 
(FBS; Gibco; Thermo Fisher Scientific, Inc.). HCT15 cells 
were cultured in RPMI 1640 medium (HyClone; Cytiva) with 
10% FBS (Gibco; Thermo Fisher Scientific, Inc.). These cell 
lines were sourced from the Sichuan Bio Biotechnology Co., 
Ltd. and maintained at 37˚C with 5% CO2 in culture dishes.

To downregulate secreted protein acidic and rich in 
cysteine‑like 1 (SPARCL1) expression, shRNA targeting 
SPARCL1 was obtained from Shanghai GenePharma Co., 
Ltd. and transfected using Lipofectamine® 2000 (Invitrogen; 
Thermo Fisher Scientific, Inc.) following the manufac‑
turer's protocol. The specific siRNA sequences used were: 
sh‑SPARCL1 target sequence: CCG​GCC​CGA​CAA​ATG​CAA​
GAT​TAT​TCT​CGA​GAA​TAA​TCT​TGC​ATT​TGT​CGG​GTT​T; 
sh‑negative control (sh‑NC) target sequence: CCT​AAG​GTT​
AAG​TCG​CCC​TCG​CTC​GAG​CGA​GGG​CGA​CTT​AAC​CTT​
AGG. PLKO.1‑TRC was selected as the plasmid backbone. 

https://www.spandidos-publications.com/10.3892/ol.2024.14721
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The concentration of nucleic acid was 2 µg plasmid DNA per 
well in a 6‑well plate. The transfection was carried out at 37˚C 
for 4‑6 h. A 48‑h interval was maintained between transfection 
and subsequent experimentation.

Tissue microarray (TMA) and IHC analysis. A total of 
80 pairs of CRC and adjacent tissue samples were collected 
from the Second Affiliated Hospital of Xi'an Jiaotong 
University (Xi'an, China) during the period from January 
2023 to September 2023. The ages of the patients ranged 
from 31 to 81 years, comprising 36 women and 44 men. The 
inclusion criteria included: i) Aged over 18 years; ii) diagnosis 
of advanced‑stage colorectal cancer based on pathological 
standards; iii) availability of complete clinicopathological 
information including sex, age, TNM stage, treatment and 
prognosis; iv) willingness to participate in the clinical study 
and provision of informed consent; and v) well‑preserved 
tumor tissue sample meeting experimental requirements. The 
exclusion criteria included: i) Presence of simultaneous or 
metachronous multi‑site tumors; ii) incomplete tumor clinic 
information leading to insufficient data collection; and iii) loss 
of tissue sample during transport. 

The collection of human tissues was approved by 
The Medical Ethics Committee of The Second Affiliated 
Hospital of Xi'an Jiaotong University (Xi'an, China; 
approval no. 2023R063) and written informed consent was 
obtained from all individuals or individuals' guardians. The 
samples were then sent to Hunan Aifang Biotechnology Co., 
Ltd. where TMA construction and IHC staining analysis was 
performed on the collected samples. Tissues were dehydrated 
in ethanol solutions (75, 85, 95 and 100%) for 1 h each, cleared 
in xylene tanks (Tank I for 20 min; Tank II for 30 min), and 
infiltrated in paraffin tanks (Tank I for 1 h; Tank II for 1.5 h; 
Tank III for 2 h). After which, the samples were embedded in 
liquid paraffin, trimmed, marked and retrieved for sectioning. 
Tissue strips were arranged in paraffin blocks for microarray 
preparation. The final steps involved securing tissue pieces 
in paraffin blocks using a specialized machine. During 
sectioning, the paraffin block was adjusted in a microtome, the 
section was aligned, cut to 4‑µm thick, warmed, affixed to a 
glass slide, dried briefly, heated and baked. 

IHC staining for SPARCL1 was performed using the 
anti‑SPARCL1 antibody following standardized protocols 
described in previous studies  (42). Paraffin‑embedded 
samples were fixed with 10% formalin at room temperature 
(25˚C) for 24 h, resin‑embedded in paraffin and sectioned at 
4 µm thickness. Antigen retrieval was performed at 100˚C 
using phosphate‑buffered saline, followed by rehydration in 
a descending ethanol series. The samples were blocked with 
3% BSA at room temperature (25˚C) for 30 min (Wuhan 
Servicebio Technology Co., Ltd.; cat. no. G5001), and 3% 
hydrogen peroxide was used to block endogenous peroxidase 
activity in HRP/DAB staining. The samples were incubated 
with the primary antibody for SPARCL1 (cat. no. 13517‑1‑AP; 
Proteintech Group, Inc.; 1:100) at 4˚C overnight, followed by 
incubation with the secondary antibody (polymer‑horseradish 
peroxidase conjugated goat anti‑rabbit Ig G polyclonal anti‑
body; cat.  no.  AFIHC003; Hunan Aifang Biotechnology 
Co., Ltd) at room temperature for 50 min. DAB was used for 
chromogen detection, and hematoxylin counterstaining was 

performed at room temperature for 3 min. Digital images of 
the stained CRC tissues were captured using a KF‑FL‑020 
digital slide scanner (KonFoong Bioinformation Tech Co., 
Ltd.) utilizing 50 and 200 µm scale bars and analyzed using 
Visiopharm software (https://visiopharm.com).

An IHC staining score was calculated for each slide 
to assess SPARCL1 expression. The score was derived by 
multiplying the staining intensity (i) by the percentage of 
positively stained cells (pi) and summing these values: 
IHC‑Score=∑(pi x i). Staining intensity was graded on a scale 
from 0 (no staining) to 3 (strong staining)  (43). Thus, the 
resulting IHC‑Score ranged from 0‑300, with higher scores 
indicating greater overall positive staining intensity.

Cell culture and colony formation assay. Colonies were iden‑
tified as clusters consisting of >50 cells that originated from a 
single cell. Cell lines were trypsinized to obtain a single‑cell 
suspension, and 200 cells were seeded per well in 6‑well plates. 
The plates were then incubated for 2 weeks under standard 
conditions in a 37˚C, humidified atmosphere with 5% CO2 
using culture medium with 10% FBS and antibiotics. After 
incubation, colonies were fixed with 4% paraformaldehyde for 
30 min at room temperature (25˚C) and subsequently stained 
with 0.5% crystal violet for 1 h at 37˚C. The colonies were 
quantified by manual counting under a light microscope after 
crystal violet staining. Three independent experiments were 
performed in triplicate, and the average number of colonies 
was calculated.

Wound healing assay. The wound closure was assessed by 
measuring the wound area at 0, 24, and 36 h. The percentage 
closure was determined by comparing the areas at each time 
point to the initial area at 0 h. CRC cells treated with various 
conditions (sh‑NC and sh‑SPARCL1) were seeded into 6‑well 
culture dishes and allowed to grow until they reached 90% 
confluence. Subsequently, all plates were placed in a 37˚C 
humidified atmosphere with 5% CO2 for the 36‑h experimental 
duration. A linear scratch was made across the cell mono‑
layer in each well using a 200 µl pipette tip. After creating 
the wound, the wells were washed with phosphate‑buffered 
saline (PBS) to remove any detached cells. Subsequently, fresh 
medium without FBS was added to the wells. The progress 
of wound closure was monitored and recorded using an 
inverted microscope (Olympus Corporation) at 0, 24 and 36 h 
post‑scratching. A total of three independent experiments were 
conducted in triplicate to calculate the average percentage of 
wound closure.

Cell migration assay. For the cell migration assay, 3x104 cells 
were suspended in serum‑free medium and seeded into the 
upper chamber of a Transwell plate (Corning Inc.). Each lower 
chamber was filled with medium containing 10% FBS (Gibco; 
Thermo Fisher Scientific, Inc.; 500 µl/well). The cells were 
allowed to migrate for 24 h at 37˚C. Following incubation, 
non‑migrated cells on the upper surface of the membrane 
were carefully removed using a cotton swab. Subsequently, 
the migrated cells on the lower surface of the membrane 
were fixed with 4% paraformaldehyde for 15 min at room 
temperature (25˚C) and the fixed cells were stained with a 
0.1% crystal violet solution for 30 min. Finally, the stained 
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cells were quantified by counting by the number of stained 
cells in five randomly selected fields per membrane under a 
light microscope.

Protein extraction and Western blot analysis. Total protein 
was extracted using RIPA lysis buffer (Beyotime Institution 
of Biotechnology) supplemented with protease and phospha‑
tase inhibitors (Beyotime Institution of Biotechnology). The 
concentration of extracted proteins was quantified using a 
BCA protein assay kit (Beyotime Institution of Biotechnology). 
Subsequently, the proteins were separated by 10% SDS‑PAGE 
and transferred onto a PVDF membrane (Cytiva) with 30 µg 
protein loaded per lane. After which, 5% non‑fat dry milk in 
TBST (Tris‑buffered saline with 0.1% Tween‑20) was used to 
block non‑specific antigen sites for 1 h at room temperature 
(25˚C). The membranes were incubated overnight at 4˚C with 
the following primary antibodies: SPARCL1 (1:1,000 dilu‑
tion; cat. no. ab255597; Abcam) and β‑actin (1:1,000 dilution; 
cat. no. ab8227; Abcam), followed by incubation for 1 h at 
room temperature (20˚C) with horseradish peroxidase‑conju‑
gated goat anti‑rabbit secondary antibodies (1:50,000, 
cat. no. HA1001; 1:20,000; cat. no. HA1006; HUABIO) for 
visualization of protein bands. The transferred proteins were 
detected using an enhanced chemiluminescence detection 
system (Sensi Sage Technology).

Statistical analysis. Data are presented as the mean ± standard 
deviation (SD) for continuous variables. For non‑parametric 
data, results were presented as the median with interquar‑
tile range (IQR). Categorical variables were presented as 
frequencies and percentages. Graphs display individual 
data points along with error bars representing SD or IQR as 
appropriate. The statistical analyses were conducted using 
R (version 3.3.1) and GraphPad Prism 8.0 (Dotmatics). 
Comparisons between two groups were evaluated by the 
Wilcoxon rank‑sum test, while the Kruskal‑Wallis test was 
conducted to compare more than two groups. An independent 
t‑test was applied to compare continuous variables between 
two groups. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Single‑cell analysis reveals cell subtypes. scRNA‑seq analysis 
of the GSE200997 dataset included 16 colon cancer samples 
and seven normal samples, totaling 47,560 immune cells 
passing quality control (Fig. S1). Using principal component 
analysis (Figs. S2 and S3) and t‑distributed stochastic neighbor 
embedding (t‑SNE) analysis (Fig. 1A and B), the cells were 
classified into 31 clusters. Based on distinct gene signatures, 
the immune cells were categorized into seven major clusters: 
i) T cells; ii) B cells; iii) epithelial cells; iv) natural killer (NK) 
cells; v) myeloid cells; vi)  fibroblasts; and vii) endothelial 
cells (Fig. 1C and D). Further analysis revealed significant 
decreases in T cells, B cells and NK cells in tumor tissues, 
accompanied by increases in epithelial cells and myeloid cells 
compared with normal tissues (Fig. 1E). Given the pivotal role 
of macrophages in tumor immunity and progression, addi‑
tional investigation and characterization of macrophage cells 
were conducted at the single‑cell level in the present study.

Identif ication of macrophage‑related genes in CRC 
development via WGCNA. The myeloid cell subpopulations 
underwent t‑SNE dimensional reduction, revealing six 
principal subclusters (Fig.  2A). Analysis of specific gene 
markers in each subcluster indicated that cluster one showed 
elevated expression of CD68 and CD14 (Fig. S4), recognized 
as distinctive macrophage markers. To further investigate these 
subclusters, co‑expression network analysis was conducted 
using the WGCNA package. A soft thresholding power β of 
seven was chosen, achieving a fit index of 0.90 and demon‑
strating a network with scale‑free topology (Fig. 2B). Dynamic 
tree cutting identified ten modules (Figs. S5 and 2C), with 
the brown, yellow, turquoise and purple modules strongly 
correlating with clusters 1, 2, 3 and 5, respectively (Fig. 2D). 
Given the association of cluster 1 with macrophages, the blue 
module linked to cluster 1 was selected for network analysis. 
The network connectivity of the top 25 hub genes within the 
brown module was visualized (Fig. 2E and F).

Different molecular subtype identification. Based on the 
expression profiles of 25 macrophage‑related genes, the 
NMF clustering algorithm was applied to classify patients 
with CRC into two distinct subtypes: Subtype C1 and C2 
(Figs. 3A and S6). Notably, patients in subtype C1 exhib‑
ited significantly improved overall survival (OS) outcomes 
compared with those in subtype C2 (Fig. 3B). To explore the 
relationship between these subtypes and 22 human immune 
cell subsets within CRC samples, correlation analyses were 
conducted using the CIBERSORT algorithm (Fig. 3C). The 
findings revealed substantial differences in immune cell 
infiltration between the two subtypes, except for naïve B cells, 
CD8+ T cells, memory activated CD4+ T cells, activated 
NK cells and resting dendritic cells. Specifically, subtype C1 
showed higher infiltration levels of memory B cells, plasma 
cells, naïve CD4+ T cells, memory resting B cells, regula‑
tory T cells, resting NK cells, monocytes, activated dendritic 
cells and activated mast cells compared with subtype C2. By 
contrast, the infiltration levels of follicular helper T cells, delta 
T cells (Tγδ), M0, M1 and M2 macrophages, resting mast 
cells, eosinophils and neutrophils were significantly lower in 
subtype C1 than in subtype C2. Additionally, the TME scores 
were evaluated using the ESTIMATE algorithm, including 
stromal score, immune score and estimate score, for both 
subtypes. The analysis revealed that subtype C1 displayed 
inferior stromal and immune scores but higher tumor purity 
compared with subtype C2 (Fig. 3D).

MGHS prognostic model construction and validation. Using 
the ‘limma’ package, an analysis was conducted to identify 
DEGs associated with CRC subtypes. Initially, 175 DEGs 
underwent univariate Cox regression to pinpoint potential 
prognostic markers within the CRC cohorts. To streamline 
the findings, LASSO regression and Cox regression were 
used to select independent prognostic markers (Fig.  4A). 
This comprehensive approach highlighted five genes, V‑set 
and immunoglobulin domain containing 4 (VSIG4), CXCL9, 
secreted phosphoprotein 1 (SPP1), CXCL13 and SPARCL1, 
as significant prognostic indicators. The risk model was 
constructed using the coefficients of these genes, and the risk 
score was calculated using the following formula: MHGS 

https://www.spandidos-publications.com/10.3892/ol.2024.14721
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Figure 1. Single‑cell RNA‑seq profiling of different immune cell clusters derived from colorectal cancer. t‑distributed stochastic neighbor embedding plot 
of all the single cells, with each color coded for (A) sample origin (normal or tumor) (B) 31 major cell clusters and (C) immune cell types in CRC. (D) Top 
marker gene of eight immune cell types identified in this profile. (E) Proportions of five immune cell types originated from tumor and normal tissue. CRC, 
colorectal cancer; NK, natural killer; t‑SNE, t‑distributed stochastic neighbor embedding; KRT18, cytokeratin18; PECAM1, platelet endothelial cell adhesion 
molecular 1; COL1A2, collagen type I alpha 2 chain; LYZ, lysozyme; CD3D, CD3 delta subunit of T‑Cell receptor complex; CD3E, CD3 epsilon subunit of 
T‑Cell receptor complex; CD79A, B‑cell antigen receptor complex‑associated protein alpha chain; NKG7, natural killer cell granule protein 7. 
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Figure 2. Identification of macrophage‑related genes that participate in CRC development through WGCNA. (A) The myeloid cell subpopulations divided 
into six principle subclusters by t‑SNE dimensional reduction. (B) The scale‑free fit index for soft thresholding powers. The soft thresholding power β in 
the WGCNA was determined based on a scale‑free R2 (R2=0.90). (C) Pairwise correlation coefficients between modules. (D) Bubble plot revealed that the 
correlation between clusters and gene modules. (E) The network connectivity of the top 25 hub genes in the brown module. (F) The top 15 hub genes listed in 
modules. CRC, colorectal cancer; WGCNA, weighted gene correlation network analysis; t‑SNE, t‑distributed stochastic neighbor embedding; kME, module 
eigengene connectivity. 
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Figure 3. Different subtype identification and clinical relevance analysis. (A) A total of two different subtypes were identified via the NMF algorithm. (B) The 
relationship between different subtypes and OS of CRC. (C) Abundance of 22 infiltrating immune cell types in the two CRC subtypes. (D) Correlations 
between the two CRC subtypes and TME score. *P<0.05, ***P<0.001. NMF, non‑negative matrix factorization; OS, overall survival; TME, tumor microenviron‑
ment; CRC, colorectal cancer; NK, natural killer; ns, not significant. 
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Figure 4. Prognostic model establishment and validation for patients with CRC. (A) A total of six DEGs were selected for multivariate analysis via LASSO 
regression analysis. (B) Survival curves evaluate the risk stratification ability of the constructed risk model in the training and validation sets. (C) ROC curves 
evaluate the risk predictive ability of the constructed risk model in the training and validation sets. (D) Risk plots to illustrate the survival status of each 
sample in the training set. (E) Risk plots to illustrate the survival status of each sample in the validation set. CRC, colorectal cancer; LASSO, Least Absolute 
Shrinkage and Selection Operator; ROC, receiver operating characteristic curve; DEG, differentially expressed gene; AUC, area under the curve; MHGS, 
Macrophages‑Gene‑Hub‑Signature; VSIG4, V‑set and immunoglobulin domain containing 4; SPP1, secreted phosphoprotein 1; SPARCL1, secreted protein 
acidic and rich in cysteine‑like 1.

https://www.spandidos-publications.com/10.3892/ol.2024.14721


FENG et al:  MACROPHAGE-RELATED TRANSCRIPTIONAL SIGNATURE FOR COLORECTAL CANCER PROGNOSIS10

risk score=(expression level of VSIG4 x 0.21) + (expression 
level of CXCL9 x ‑0.09) + (expression level of SPP1 x 0.07) + 
(expression level of CXCL13 x ‑0.14) + (expression level of 
SPARCL1 x 0.16). 

Patients were stratified into high‑ and low‑risk groups 
based on their risk scores, using the median value as the 
threshold. The survival analysis demonstrated that patients 
in the high‑risk group had significantly poorer OS compared 
with those in the low‑risk group (Fig. 4B).

Furthermore, the risk score exhibited robust predic‑
tive performance for OS in both the training and testing 
sets. In the training set, the area under the curve (AUC) for 
predicting survival at 1, 2 and 3 years was 0.681, 0.661 and 
0.674, respectively (Fig. 4C). Similarly, in the testing set, the 
AUC for predicting survival at 1, 3 and 5 years was 0.695, 
0.646 and 0.648, respectively (Fig. 4C). Detailed survival 
outcomes for individual patients in the training and testing 
sets were depicted using risk plots, providing a comprehensive 
visualization of patient‑specific outcomes based on the risk 
score (Fig. 4D and E).

Mutation landscape and enrichment analysis between 
high and low‑risk MGHS groups. Numerous studies have 
demonstrated that cancers with a high mutation burden may 
benefit from immunotherapy due to increased neoantigen 
presence  (8,44). In the present analysis of mutation data 
from both training and testing cohorts, it was observed that 
the low‑risk group exhibited a higher TMB compared with 
the high‑risk group. Spearman correlation analysis further 
indicated a negative correlation between the MHGS score 
and TMB, suggesting that patients in the low‑risk group may 
experience more favorable outcomes with immunotherapy 
(Fig. 5A and B). 

To delve deeper into somatic mutation characteristics, 
waterfall plots were generated comparing the two MHGS score 
groups in both the training and testing cohorts. Consistently, 
both cohorts revealed a higher frequency of mutations among 
the top 15 ranked genes in the low‑risk group compared with 
the high‑risk group (Fig. 5C and D). Subsequently, GSEA was 
performed to identify pathways significantly enriched between 
the two risk groups. Genes in the high‑risk group were notably 
enriched in pathways related to extracellular matrix receptor 
interaction and focal adhesion (Fig. 5E and F). Conversely, 
genes in the low‑risk group exhibited significant enrichment 
in pathways associated with cell cycle regulation and DNA 
replication (Fig. 5E and F).

Association between MHGS score, clinicopathological 
characteristics and immune cell profiling in CRC. The asso‑
ciation between the MHGS score and clinicopathological 
characteristics was investigated. The MHGS score showed 
significant associations with TNM stage, survival status and 
disease occurrence (Fig. 6A). Both univariate and multivariate 
Cox analyses confirmed the MHGS score as an independent 
prognostic factor for patients with CRC (Figs. 6A, B and S7). 
Additionally, differences in the proportions of 22 immune cell 
types between high and low‑risk groups were explored using 
the CIBERSORT algorithm. Fig. 6C illustrates the propor‑
tions of tumor‑infiltrating immune cells in these groups, while 
their distributions are detailed in Fig. 6D through boxplots. 

Compared with the high‑risk group, the low‑risk group 
exhibited significantly higher proportions of B naïve cells, 
plasma cells, CD8+ T cells, activated memory CD4+ T cells, 
T follicular helper cells, activated NK cells, macrophage M1 
and dendritic cells. Notably, patients with CRC with low‑risk 
scores demonstrated higher infiltration of macrophage M1, 
whereas the high‑risk score group showed elevated levels of 
macrophage M2 (Fig. 6D).

Association between MHGS score, MSI status, TME and 
immunotherapy response in CRC: The benefits of ICI therapy 
in high and low‑risk MGHS groups. Recent evidence indicates 
that patients with MSI‑H are more responsive to immuno‑
therapy (45). Correlation analyses between MSI status and 
MHGS revealed that patients with CRC with MSI‑L or micro‑
satellite stable (MSS) status had higher risk scores compared 
with those with MSI‑H in both training and testing sets. This 
highlights the ability of the prognostic model to distinguish 
microsatellite status in CRC (Fig. 7A).

A high MHGS score was closely associated with elevated 
stromal scores and lower tumor purity, while no significant 
difference in immune scores was observed between high 
and low‑risk groups (Fig. 7B). Next, in the present analysis 
of MHGS score and tumor immune escape in CRC immuno‑
therapy, T‑cell dysfunction and exclusion was focused on. The 
high‑risk group exhibited lower expression levels of markers 
such as merck18, CD8 and IFNγ compared with the low‑risk 
group, indicating severe T‑cell dysfunction associated with a 
high MHGS score (Fig. 7C). Additionally, the high‑risk group 
showed a stronger association with the cancer‑associated 
fibroblast signature and significantly lower levels of cytotoxic 
T  lymphocytes (CTLs). Combining these findings with 
dysfunction, exclusion and TIDE scores (Fig. 7C), it became 
evident that patients with high MHGS scores often had poor 
immune therapy responses due to T‑cell dysfunction and 
exclusion.

To assess the association between MHGS and immune 
checkpoint blockade (ICB) response, the IPS was used as a 
predictive scoring system from TCIA database. Patients with 
CRC in the low‑risk group showed more significant benefits 
from PD‑L1 or/and CTLA‑4 immunotherapy compared with 
those in the high‑risk group (Fig. 8A). Validation in the urothe‑
lial carcinoma immunotherapeutic cohort (IMvigor210) (40) 
consistently showed that the high‑risk group had a less effec‑
tive response to immunotherapy compared with the low‑risk 
group (Fig. 8B). Survival analysis further demonstrated that 
patients in the high‑risk group had inferior survival outcomes 
after receiving ICIs compared with those in the low‑risk group 
(Fig. 8C).

The prognostic accuracy of TIDE and TIS scores was 
compared with the MHGS score in training and testing sets. 
The MHGS score exhibited superior prognostic value for 
patients with CRC (Fig. 8D). Additionally, immunotherapeutic 
efficacy (Fig. 8E) and OS time (Fig. 8F) was analyzed using 
these scores for cancer patients treated with ICIs. In both sets, 
the MHGS score demonstrated improved prognostic accuracy 
for predicting immunotherapeutic efficacy and OS. However, 
caution is warranted when using the MHGS score as an immu‑
notherapy indicator, given its AUC value below 70%. Further 
validation in larger immunotherapy cohorts is essential.
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Figure 5. Gene mutation landscape analysis and pathway enrichment analysis of the prognostic model. (A) TMB in high‑ and low‑risk groups. (B) Spearman 
correlation analysis of the risk score and TMB. (C) Waterfall plots summarize the gene mutation landscape in high‑risk group. (D) Waterfall plots summarize 
the gene mutation landscape in low‑risk group. (E) GSEA to investigate the biological processes and pathways enriched in high‑risk group. (F) GSEA to 
investigate the biological processes and pathways enriched in low‑risk group. TMB, tumor mutation burden; GSEA, Gene Set Enrichment Analysis; MHGS, 
Macrophages‑Gene‑Hub‑Signature.
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Figure 6. Immune cell proportion analyses of the high and low‑risk patients. (A) Heatmap showing the distribution of clinicopathologic characteristics between 
the MHGS high‑ and low‑risk in training set (left) and test set (right). (B) Univariate (left) and multivariate (right) Cox regression analysis between MHGS and 
clinicopathologic characteristics. (C) Relative proportions of immune infiltration for 22 signatures in the high‑ and low‑risk groups. (D) Boxplots illustrate the 
different immune cell proportions between the high‑ and low‑risk groups. *P<0.05, **P<0.01, ***P<0.001. MHGS, Macrophages‑Gene‑Hub‑Signature.
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IHC validation of risk score model genes. Numerous studies 
have extensively investigated the association between 

CXCL9 (46), SPP1 (47) and CXCL13 (48) with CRC. However, 
the research concerning the association between VSIG4 and 

Figure 7. Landscape of the TME in the MHGS subgroups. (A) Association between MHGS score and MSI. (B) Association between MHGS score and both 
immune and stromal cells. (C) TIDE score for patients with CRC treated with immunotherapy in different MHGS subgroups. ***P<0.001. MSI, microsatellites 
instability; MSS, microsatellites stability; TIDE, Tumor Immune Dysfunction and Exclusion; MHGS, Macrophages‑Gene‑Hub‑Signature; L, low; H, high; 
ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; CAF, cancer associated fibroblast; MSI Expr Sig, 
microsatellites instability expression significance; MDSC, myeloid‑derived suppressor cell; IFNG, interferon γ; TAM, tumor‑associated macrophage.

https://www.spandidos-publications.com/10.3892/ol.2024.14721
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SPARCL1 in relation to CRC is relatively limited. Hence, 
SPARCL1 was selected for detailed investigation as a target 

gene in the present study. The clinical analysis revealed 
that SPARCL1 expression was lower in RKO, SW480 and 

Figure 8. Association between MHGS and the response to immune checkpoint blockade, as well as the prognostic accuracy of the MHGS score in both 
training and testing sets. (A) IPS comparison of four treatments, including no treatment, PD1, CTLA4 and PD1 + CTLA4, in the high‑risk and low‑risk groups. 
(B) Distribution of MHGS in different clinical responses (CR/PR, SD/PD) in the IMvigor210 dataset. (C) Overall survival analysis of MHGS in the IMvigor210 
dataset. (D) ROC of MHGS, TIDE and TIS for predicting the 1‑, 2‑ and 3‑year follow‑up in training and testing cohorts in TCGA and GEO datasets. (E) The 
prognostic accuracy of MHGS, TIDE and TIS for predicting immunotherapeutic efficacy after ICI treatments (IMvigor210). (F) The prognostic accuracy of 
MHGS, TIDE and TIS for predicting overall survival time of patients with cancer after ICI treatments at 1‑, 2‑ and 3‑year follow‑up (IMvigor210). IPS, immune 
cell proportion score; CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease; ROC, receiver operating characteristic. TIS, 
T cell inflamed signature; TIDE, tumor immune dysfunction and exclusion; MHGS, Macrophages‑Gene‑Hub‑Signature; TCGA, The Cancer Genome Atlas; 
GEO, Gene Expression Omnibus; ICI, immune checkpoint inhibitor; AUC, area under the curve; CTLA4, cytotoxic T‑lymphocyte associated protein 4.
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HCT15 cell lines compared with HIEC cells. By contrast, 
LoVo cells exhibited high expression levels of SPARCL1 
compared with HIEC cells (Fig. 9A and Fig. S8A). To validate 

these findings, IHC was performed on a tissue microarray. 
The results demonstrated a significant downregulation of 
SPARCL1 in CRC tissues compared with adjacent normal 

Figure 9. SPARCL1 knockdown promotes the proliferation, migration and invasion ability of CRC. (A) The protein expression levels of SPARCL1 detected 
by western blotting in normal cells and CRC cell lines. **P<0.01 for RKO vs. HIEC. The full‑length original images (cropped) of representative blots are 
presented in Fig. S8. (B) Representative immunohistochemistry images showing the expression level of SPARCL1 in tumor tissues and adjacent normal tissues. 
(C) Analysis of SPARCL1 expression in shNC and shSPARCL1 cells by western blotting. (D) Colony formation assay to assess tumorigenicity in shNC and 
shSPARCL1 cells. (E) Wound healing to evaluate the migration ability of the shNC and shSPARCL1 cells. (F) Transwell assay to measure invasion ability 
in shNC and shSPARCL1 cells. *P<0.05, **P<0.01 and ***P<0.001. SPARCL1, secreted protein acidic and rich in cysteine‑like 1; CRC, colorectal cancer; 
IHC, immunohistochemistry; NC, negative control. 
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tissues (Fig. 9B and Fig. S8B). To elucidate the functional 
role of SPARCL1, stable knockdown experiments in SW480 
and HCT15 cells were conducted (Fig. 9C). Subsequently, the 
impact of SPARCL1 was assessed on cell proliferation using 
a colony formation assay, revealing a substantial increase 
in proliferation upon SPARCL1 knockdown in SW480 and 
HCT15 cells (Fig.  9D). Furthermore, both wound healing 
and Transwell assays showed a significant enhancement in 
migration and invasion of CRC cells upon SPARCL1 silencing 
(Fig. 9E and F).

Discussion

In the present study, a prognostic model for CRC was devel‑
oped by integrating single‑cell RNA‑seq and RNA‑seq data. 
Initially, scRNA‑seq analysis was conducted to identify 
distinct cell subpopulations, focusing particularly on myeloid 
cell clusters. Using t‑SNE dimensional reduction, myeloid 
cells were categorized into six principal subclusters and 
specific markers highly expressed in macrophages were 
identified. Subsequently, WGCNA was employed to explore 
the association between gene modules and these six clusters. 
This analysis identified macrophage‑related module genes and 
delineated macrophage‑related subtypes (C1 and C2) using 
NMF. In terms of TME infiltrating characteristics, subtype 
C1 exhibited a higher proportion of most immune cells but 
a lower content of macrophages compared with subtype C2. 
However, using the ESTIMATE algorithm, it was found that 
patients with the subtype C1 had lower immune and stromal 
scores but higher tumor purity compared with patients with 
the C2 subtype. Survival analysis indicated a superior survival 
advantage for patients with the C1 subtype, potentially linked 
to their higher somatic mutation burden due to elevated tumor 
purity (49). Following this, a prognostic model was conducted 
using DEGs between subtype C1 and C2.

The model identified five genes significantly correlated 
with CRC prognosis. In the high‑risk group, VSIG4, SPP1 and 
SPARCL1 showed upregulated expression, whereas CXCL9 
and CXCL13 were downregulated compared with the low‑risk 
group. VSIG4, located on the X chromosome, has immuno‑
suppressive functions in macrophages, including complement 
system inhibition and T cell suppression, suggesting its 
potential as a diagnostic and prognostic biomarker in cancer 
contexts  (50‑55). SPP1, a member of the SIBLING family, 
promotes tumorigenesis by activating MMPs and is associated 
with macrophage M2 polarization and poor prognosis (56‑60). 
SPARCL1, belonging to the SPARC family, is implicated 
in tumor metastasis regulation and prognosis (61‑63). In the 
present study, the findings of reduced SPARCL1 protein 
expression in CRC, supported by western blotting and IHC, 
associated with increased metastasis risk in functional assays. 
CXCL9 (64) and CXCL13 (65), members of the chemokine 
ligand family, play critical roles in antitumor immunity and 
TME regulation. CXCL9, derived from CD68+ macrophages, 
confers a survival advantage, whereas CXCL13, associated 
with M2 macrophages, may promote tumor metastasis (66‑68). 
The observed discrepancies between transcriptome and protein 
levels highlight potential complexities in tumor biology. Despite 
these challenges, the present model demonstrated moderate 
accuracy in predicting CRC survival outcomes.

The present study comprehensively analyzed the gene 
mutation landscape and immune function in both high and 
low‑risk groups of patients with CRC. A total of two distinct 
cohorts were examined to identify the top 15 mutation 
genes specific to each risk group, a number of which are 
well‑known driver genes in cancer research (69). Notably, 
the low‑risk group showed a higher frequency of mutations 
in these genes compared with the high‑risk group. The 
association between the MGHS risk score, MSI, immune 
cell infiltration patterns and PD‑L1 expression was evaluated 
relevant to immunotherapy. Patients in the high‑risk group 
predominantly exhibited MSS/MSI‑L status, characterized by 
lower CD8+ CTL infiltration and decreased PD‑L1 expres‑
sion levels. By contrast, patients with MSI‑H status showed a 
favorable response to immunotherapy, with reduced risks of 
recurrence compared with those with MSI‑L status (70,71). 
Recent studies have categorized a specific TME immune 
type (TMIT I) characterized by abundant infiltration of 
CD8+ CTLs and high PD‑L1 expression, indicating adaptive 
immune resistance to tumor cells and favorable outcomes 
with PD‑L1/PD‑1 immunotherapy (72,73). Conversely, TMIT 
II type is marked by low infiltration of CD8+ CTLs and 
minimal PD‑L1 expression, suggesting immune indifference 
towards tumor cells (74). Furthermore, the risk score model 
was integrated with the TIDE and IPS scoring systems to 
predict immunotherapy response. TIDE, a computational 
method based on tumor immune escape characteristics, 
highlighted differences in gene signatures associated with 
tumor immune evasion between the risk groups. Although 
immunosuppressive cell infiltration varied in the high‑risk 
group, T cell exclusion scores remained higher compared with 
the low‑risk group. Notably, the high‑risk group exhibited a 
higher content of TAMM2, which was not observed in the 
TIDE scoring system. IPS, a superior predictive scoring 
system for ICB response, indicated that low‑risk patients had 
higher scores and improved responses to immunotherapy, 
making them more suitable for ICIs treatment.

To validate the predictive ability of the model, MGHS 
with TIDE and TIS were compared in the urothelial carci‑
noma immunotherapy cohort. The results demonstrated 
that MGHS‑based immunotherapy predictions were signifi‑
cantly associated with improved prognosis and OS time 
compared with TIDE and TIS predictions. It is essential to 
note that while TIDE, IPS and TIS primarily focus on T cell 
function and status, providing only a partial reflection of the 
response of the TME to immunotherapy, MGHS consistently 
demonstrated moderate predictive ability for survival time and 
immunotherapy prognosis in patients with CRC. Moreover, 
MGHS comprises only five genes, making it easier to detect 
compared with TIDE and TIS.

To conclude, in the present study, scRNA‑seq, RNA‑seq 
and microarray data were integrated to develop and vali‑
date a macrophage‑related prognostic model for CRC. A 
total of two distinct subtypes, C1 and C2, were identified 
within the CRC population and a prognostic model based 
on genes differentially expressed in these subtypes was 
established. The analysis of prognosis and immune charac‑
teristics across various risk groups revealed that higher risk 
scores is associated with poorer survival outcomes, lower 
tumor mutational burden, MSI‑L status, decreased tumor 
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purity and higher TIDE score. The present prognostic model 
shows promise as a potential biomarker for risk stratification 
and predicting treatment response in patients with CRC. 
Future well‑designed prospective studies are essential to 
validate and further explore the clinical implications of the 
present findings.
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