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Abstract: Here we present the synthesis, structure and magnetic properties of complexes of general
formula (Mn)(Me2NH2)4][Mn3(µ-L)6(H2O)6] and (Me2NH2)6[M3(µ-L)6(H2O)6] (M = CoII, NiII and
CuII); L−2 = 4-(1,2,4-triazol-4-yl) ethanedisulfonate). The trinuclear polyanions were isolated as
dimethylammonium salts, and their crystal structures determined by single crystal and powder X-ray
diffraction data. The polyanionic part of these salts have the same molecular structure, which consists
of a linear array of metal(II) ions linked by triple N1-N2-triazole bridges. In turn, the composition and
crystal packing of the MnII salt differs from the rest of the complexes (with six dimethyl ammonia as
countercations) in containing one Mn+2 and four dimethyl ammonia as countercations. Magnetic data
indicate dominant intramolecular antiferromagnetic interactions stabilizing a paramagnetic ground
state. Susceptibility data have been successfully modeled with a simple isotropic Hamiltonian for
a centrosymmetric linear trimer, H = −2J (S1S2 + S2S3) with super-exchange parameters J = −0.4 K
for MnII, −7.5 K for NiII and −45 K for CuII complex. The magnetic properties of these complexes
and their easy processing opens unique possibilities for their incorporation as magnetic molecular
probes into such hybrid materials as magnetic/conducting multifunctional materials or as dopant for
organic conducting polymers.

Keywords: linear trimers; crystal structure; magnetic exchange; coordination chemistry

1. Introduction

Molecule-based magnetism has attracted the attention of a great number of researchers
due to its multidisciplinarity and its applications in such fields as (nano)electronics [1–3],
quantum computing [4], spintronics [5,6] and molecular biology [7,8]. From a more funda-
mental point of view, molecular magnetism aims at offering a profound comprehension
of magneto-structural correlations of molecular magnetic materials. Coordination chem-
istry appears as a powerful tool to design novel materials with tailor-made magnetic
properties [9–13].

In this context, polymetallic complexes are ideal compounds for studying magnetic
and electronic interactions between magnetic metal centers in a controlled (molecular)
environment. In particular, the investigation of spin coupling effects over long distances
has been of high interest for metalloprotein studies [14] and engineering of molecule-based
spintronic devices [15]. Exchange spin coupling, or superexchange, is a phenomenon in
molecular magnetic systems. The study of magnetic interactions between ions through
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non-magnetic connecting atoms (linkers) is a challenging task in extended solids [16,17],
whereas molecules offer a controlled and tunable framework where spin carriers and
linkers can be incorporated as building blocks in the desired connectivity, allowing for
analysis based on their localized/molecular nature.

The chemical design and synthesis of bridging ligands, which provides effective path-
ways to transmit spin coupling effects, promotes an attractive strategy for creating novel
and interesting polynuclear complexes with desirable magnetic properties. In particular,
1,2,4-triazole and its derivatives, due to their capacity to form N1-N2 bridges between metal
centers, are interesting ligands for forming stable coordination structures of different dimen-
sionalities, such as discrete polynuclear metal complexes [18–21], 1D/2D polymers [22–26]
or 3D metal–organic frameworks (MOFs) [27–31]. The N1-N2-1,2,4-triazole bridges offer
short and conjugated diatomic pathways to propagate an effective superexchange between
the paramagnetic metal centers. Moreover, the nitrogen donor atoms of the triazole ring
can create a suitable ligand field for spin transition in ferrous complexes [32–34], which
provides a potential approach to molecule-based data storage application [35–37].

All these reasons justify the use of discrete polynuclear complexes from derivated
1,2,4-triazoles in the study of magnetic interactions between metal centers. In recent years,
a large number of polynuclear compounds based on 1,2,4-triazole and its derivatives
have been synthetized and investigated to further understand magnetic superexchange
coupling [38–40].

The chemical nature of the triazole substituents influence the structure and mag-
netic properties of their complexes [28–40]. Among the family of 1,2,4-triazoles, the 4-
functionalized derivatives have been the most studied for the development of magnetic
materials. This type of functionalization does not sterically hinder the N1-N2 bridging
coordination mode, and the functional group might additionally offer different structural
motifs to the coordination complexes. In the literature, the most common functional groups
in this 4-position are aromatic rings/heterocycles, including pyridyls [41–43], triazol [44,45]
or tetrazoles [46], and alkyl tails [47]. All of them lead to the formation of neutral ligands,
and therefore to the synthesis of cationic coordination metal complexes. Among them, a
large variety of triazol-based FeII systems, including [Fe(4-R-1,2,4-triazole)3]2+ polymers
and discrete polynuclear complexes, reveal spin crossover (SCO) behaviour [48–51].

Recently, our group synthetized a dianionic triazole ligand (L−2 = 4-(1,2,4-triazol-
4-yl)ethanedisulfonate) with two sulfonated groups in the functional moieties at the 4-
position of the triazol. The polar and anionic nature of this ligand would increase solubility
and stability in polar solvents of the resulting coordination complexes, facilitating their pos-
terior processing into magnetic hybrid materials. The coordination of this dianionic ligand
with iron (II) ions led to the formation of a polyanionic FeII trinuclear complex with a spin
transition above room temperature [52]. Here we present the synthesis, crystal structure
and magnetic properties of first-row transition metal complexes (MnII, CoII, NiII and CuII)
with this anionic ligand (L), in order to investigate the structure and magnetic behavior of
these polyanionic trimers, establishing a rational magneto-structural correlation.

2. Results
2.1. Synthesis of the Complexes

The complexes were synthesized by reacting the ligand, (Me2NH2)6L (Dimethyl-
ammonium 4-(1,2,4-triazol-4-yl)ethanedisulfonate), and the corresponding perchlorate
metal salt in water in a 2.5:1 molar ratio, leading to the formation of polyanionic linear
trinuclear complexes with the formula [M3(µ-L)6(H2O)6]−6 [M = MnII (Mn), CoII (Co),
NiII (Ni), or CuII (Cu)]. These complexes were isolated in solid state as the corresponding
dimethyl ammonium salts by slow ethanol vapor diffusion into the aqueous reaction
mixture (Figure S1a). This crystallization process yielded needle-shaped crystals for Mn,
Co and Ni, with distinct colors depending on the metal: colorless for MnII, orange for
CoII, and blue-purple for NiII (Figure S1b). The high quality of these crystals enabled us to
determine their crystal structure from single crystal X-Ray diffraction data. We could not
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isolate Cu complex as single crystals, although highly crystalline powder was obtained,
and their crystal lattice was determined by Pawley fit of the X-Ray powder diffractogram.

2.2. Structural Characterization

The structure of Mn, Co and Ni was elucidated from single crystal X-Ray diffraction
data, collected at 100 K. Crystallographic refinement showed that the three compounds
contain the same polyanionic trinuclear units, crystallizing in the triclinic P1 space group
(see detailed crystallographic data in Table S1). All of them contain analogous metal-
lic complexes formed by a linear array of three transition metal centers connected by
six triazole ligands via two triple N1-N2 bridges (Figure 1a). These complexes show
structure similar to that observed in analogous trinuclear metal complexes based on 4(R)-
1,2,4-triazole [19]. Thus, the central metal cation is in a MN6 octahedral configuration,
whereas the terminal metal cations show an MN3O3 fac-octahedral configuration with
three nitrogen atoms from the bridging triazole ligands and three oxygen atoms from
water molecules occupying the terminal coordination positions. This yields a polyanion
with a total charge of −6, given their

(
M+2

3 L−2
6

)
· (H2O)6 composition. Geometry pa-

rameters for these trimers in each compound are summarized in Figure S2 and Table S2.
The metal-ligand bonding distances indicate high spin (HS) configurations for all metal
positions (average M-N (Å) = 2.239, 2.121 and 2.064 for Mn, Co and Ni, respectively), in
good agreement with the corresponding metal ion radii in HS state [r (MnII

HS) = 97 pm,
r (CoII

HS) = 88 pm and r (NiIIHS) = 83 pm] [52,53].

Figure 1. (a) Chemical structure of the polyanionic part for all the complexes. Oxygen atoms from the
sulfonated groups were omitted for clarity. (b) Representation of the anionic part with countercations.
Hydrogen atoms are omitted for clarity. Dimethyl ammonium cations (disordered) are represented
only in one of their crystallographic positions.
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Although all single crystals confirmed the presence of analogous trimers, the packing
is slightly different for Mn; whereas Co and Ni complexes are isostructural with consis-
tent cell parameters and analogous unit cell contents (Table S1), the anionic MnII trimer
crystallizes with a slightly different counter ion content, formed by one MnII and four
[(CH3)2NH2]+ moieties. The Mn2+ cation external to the trimer occupies a nearby crys-
tallographic position, directly coordinated to three sulfonate groups and completing its
coordination geometry with three interstitial water molecules (Figure 1b).

Regarding the crystallographic packing, the trimers are oriented parallel to the z axis,
forming chains via inter-trimer H-bonds between coordinated water molecules and sul-
fonated groups (Figure S3). These chains of trimers are also connected to each other along
the x and y axis by additional intermolecular H-bonding interactions [d(O···H) = 1.9–2.3 Å
for Mn; d(O···H) = 1.9–2.1 Å for Co and Ni]. Dimethyl ammonium cations and water
molecules are disordered in the interstices of this anionic network.

In order to confirm the phase purity of these compounds in bulk, we analyzed the
powder X-ray diffraction (PXRD) data of the polycrystalline samples. Pawley fits were
carried out on the experimental diffractograms (Figure S4), obtaining refined cell parame-
ters for each sample (Table S3). The refined cell parameters for Mn, Co and Ni are in good
agreement with single crystal data, confirming a single crystallographic phase. The PXRD
data for Cu was successfully reproduced with a Pawley fitting confirming that this material
is isostructural to the CoII and NiII salts, with consistent cell parameters (Table S3). This
is also supported by IR spectroscopy, which shows identical spectra for all the complexes
(Figure S5).

2.3. Magnetic Measurements

Magnetic susceptibility (χm) measurements for all the compounds were performed in
the 300–2 K range, with an applied magnetic field of 0.1 T (Figure 2). The χmT products of
Mn, Co and Ni at room temperature were in good agreement with the expected values for
magnetically diluted high spin samples with g ≈ 2 (Table 1). As expected, the CoII trimer
exhibited larger χmT values as a result of its high magnetic anisotropy (g > 2), typically
found in octahedral CoII ions [54].

Below a certain temperature, the χmT value starts to decrease, suggesting the presence
of antiferromagnetic (AF) intramolecular interactions. In good agreement, negative Weiss
constants (θ) were obtained by fitting the experimental magnetic data (>50 K) to a Curie–
Weiss Law (Equations (S1) and (S2), Figure S6 and Table 1).

Figure 2. Magnetic susceptibility data for [M3(µ-L)6(H2O)6]−6 complexes within 300–2 K range.
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Table 1. Comparison of theoretical and experimental χmT product and Curie–Weiss parameters
(C and θ) for all the complexes.

Complex χmTtheoretical
(cm3·mol−1·K)

χmTexperimental
(cm3·mol−1·K)

C
(cm3·mol−1·K)

θ
(K)

Mn 13.12 12.95 13.13 −3.76
Co 5.60 6.82 7.07 −11.26
Ni 3.00 3.32 3.59 −20.25
Cu 1.20 1.26 1.74 −108.48

In order to quantify the intra-trimer spin–spin coupling, the magnetic susceptibility
data for Mn, Ni and Cu were modelled, as a first approximation, to a centro-symmetrical
linear trimer (Figure S7) by using the isotropic Hamiltonian (Equation (1)):

H = 2J s2 (s1 + s3) (1)

where sn are the spins of the different metal centers and J is the corresponding superex-
change constant. In a first approximation, intermolecular interactions and zero field
splitting contributions are considered to be negligible. The couplings between terminal
metal centers are also omitted due to the long metal-to-metal distances (≈7.5 Å) and the in-
efficient pathway for magnetic exchange between them [55]. Based on this isotropic model,
the susceptibility data were successfully reproduced with the MAGPACK package [56,57],
obtaining the best fit parameters (J and g) for Mn, Ni and Cu (Figure 3). The magnetic
behavior for Co could not be modelled with this approximation, and will be discussed
later.

Figure 3. Plots of χmT vs. T for Mn (a), Ni (b) and Cu (c), and their corresponding best-fit curves
(red line) obtained with the MAGPACK package.
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In the MnII compound (Figure 3a), the χmT product at 300 K is 12.94 cm3·mol−1·K,
in agreement with the presence of three high spin MnII ions with S = 5/2. This value
remains constant down to 70 K. At lower temperatures, the χmT product decreases rapidly
to reach 5.90 cm3·mol−1·K at 2 K. This behavior was successfully modelled for the isotropic
trinuclear model with best fitting parameters g = 2.0 and J = −0.4 K, which is in good
agreement with J values previously reported for triazole-bridged MnII centers [58,59].

The NiII compound data (Figure 3b) reveals a χmT value of 3.33 cm3·mol−1·K at 300 K,
which is consistent with the presence of three high spin NiII ions with S = 1. χmT remains
constant down to 150 K, when it starts to decrease quickly down to 1.12 cm3·mol−1·K at
2 K. The best fitting of these experimental data with the isotropic trimer model yielded
g = 2.2 and J = −7.5 K, again in good agreement triazole-bridged NiII centers (J from −13.8
to −6.7 K) [60–62].

In the CuII complex (Figure 3c), the χmT product at 300 K is 1.27 cm3·mol−1·K,
which corresponds to the spin-only value for three CuII ions S = 1/2. Upon being sub-
jected to the cooling process, χmT decreases gradually to reach a constant value around
0.53 cm3·mol−1·K below 15 K. This experimental data can be well-modelled with J = −45 K
and g = 2.3. The value of J parameter is in good agreement with previous reported values
for triazole-bridged CuII centers, where magnetic superexchange only occurs through the
N-N bridge that lies in equatorial position with respect to the magnetic dx2-y2 orbital
(Figure 4) [63]. The equatorial configuration of the triazol ensures a good orbital overlap,
enhancing the efficient metal-to-metal magnetic interactions [64–66]. Consequently, our
J value represents weaker antiferromagnetic interaction when compared with the J values
between −70 K [67] and −107 K [63] found in analogue CuII complexes where the bridging
modes favor better orbital overlap.

Figure 4. Schematic representation of magnetic molecular orbitals in triazole-bridges complexes. The
bridge in the bottom represents the σ overlap for an efficient AF exchange propagation. The bridge
in the top represents an absence of orbital overlapping (dotted orange line).

The CoII compound cannot be appropriately modeled with the isotropic model used
due to the spin orbit coupling and high single-ion anisotropy [68–70]. In the literature, some
linear CoII trinuclear complexes with triazole ligands have been modeled with modified
Lines approximations [60], showing J value between −6.9 K [55] and −4 K [62].

Field-dependence of the magnetization (M) was also measured at 2 K (Figure 5). The
experimental curves are fitted with MAGPACK by using J and g parameters obtained from
susceptibility data. The M vs. H curves for all the complexes show a similar field depen-
dence. At low applied fields, the magnetization is proportionally linear to the magnetic
field, effectively described by the Curie Law. When the magnetic field becomes larger,
the magnetization tends to a saturation value, Ms (generally described as Equation (S3)).
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The saturation values for Co, Ni and Cu are in good agreement with an antiferromagnetic
ground state (Table 2). In the case of Mn, this initial saturation limit is broken above ≈ 4 T,
appearing as a second increase that continues monotonically up to the maximum applied
field (7 T) without any sign of reaching a new saturation value.

Figure 5. Magnetization (M) vs. magnetic field (H) plots at 2 K for [M3(µ-L)6(H2O)6]−6 complexes
and their corresponding fit curves (red line) obtained with the MAGPACK package, with the resulting
parameters of XT vs. T best-fitting.

Table 2. Comparison of experimental and theoretical saturation magnetization for the antiferromag-
netically (AF) coupled ground state with g = 2 for all the complexes.

Complex Ms (AF)
(µB)

Ms (experimental)
(µB)

Mn 5.00 12.05
Co 4.00 3.22
Ni 3.00 2.32
Cu 1.00 1.29

These results can be rationalized by taking into account the energy levels of the
electronic states (Equation (S4), Table S4 and Figure S8). Accordingly, Mn exhibits the
lowest energy difference between the ground AF state and the excited states. Thus, the
applied magnetic field facilitates the population of excited states due to Zeeman splitting,
breaking the saturation limit expected for the AF ground state. Even at 7 T, the Ms is far
from the maximum ferromagnetic alignment. In the rest of the series the magnetic fields
applied are not strong enough to provoke the same effect since all samples reach saturation
at relatively low applied fields.

3. Materials and Methods
3.1. Materials and Physical Measurements

All reagents were used as purchased without further purification. Inductively cou-
pled plasma optical emission spectrometry (ICP-OES) analytical data was obtained with
an Agilent 755-ES (Santa Clara, CA, USA inductively coupled plasma optical emission
spectrometer at the University of Valladolid. Infrared spectroscopy (IR) data were collected
with an FTIR Bruker spectrometer (Billerica, MA, USA) model Alpha equipped with an
ATR accessory. X-Ray powder diffraction (XRPD) data was collected with a Siemens D5000
diffractometer (Bragg−Brentano parafocusing geometry and vertical θ−θ goniometer,
Berlin, Germany) fitted with a curved graphite diffracted-beam monochromator, incident
and diffracted-beam Soller slits, a 0.06◦ receiving slit, and a scintillation counter as a detec-
tor. The angular 2θ diffraction range was between 5◦ and 40◦. Data were collected with
an angular step of 0.05◦ at 10 s per step and sample rotation. A low background Si(510)
wafer was used as a sample holder. Cu Kα radiation was obtained from a copper X-ray
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tube operated at 40 kV and 30 mA. The obtained XRPD patterns were analyzed by Pawley
profile analysis (between 8◦ and 35◦) using the TOPAS software [71]. A Chebyshev func-
tion of seven terms was used to fit the background. Magnetic measurements were carried
out on fine-grained powders with a Quantum Design MPMS-XL SQUID magnetometer
(Quantum Design, Inc., San Diego, CA, USA). Variable temperature magnetic susceptibility
measurements were carried out under an applied field of 1000 Oe at 1 K·min−1 between
300 and 2 K. Variable field magnetization measurements were carried out at 2 K from 0 to
7 T.

3.2. Synthesis of the Ligand (L)

(Me2NH2)2L (Dimethyl-ammonium 4-(1,2,4-triazol-4-yl)ethanedisulfonate 4-(1,2,4-
triazol-4-yl)ethanedisulfonate) was synthesized as previously reported [53].

3.3. Synthesis of the Complexes (Mn, Ni and Cu)

(Me2NH2)6[M3(µ-L)6(H2O)6]-M = CoII (Co), NiII (Ni) and CuII (Cu)- and
(Mn)(Me2NH2)4][Mn3(µ-L)6(H2O)6] (Mn) were synthetized by dissolving M(ClO4)2·6H2O
(0.05 mmol) and (Me2NH2)6L (0.05 g; 0.14 mmol) in water and then mixed (total volume
2 mL). Crystals of MnII, CoII and NiII complexes and crystalline powder of CuII complex
were isolated by slow ethanol vapor diffusion.

Mn: IR (ATR): ν = 3420, 3114, 1632, 1205, 1020, 838, 716, 636, 592, 505. ICP experimental
and calculated for C32H93Mn4N22O53S12 (2238.72 g/mol) (%exp; %calc): C (16.99%; 17.16%),
H (3.91%; 4.18%), N (14.27%; 13.76%), S (17.31%; 17.18%).

Co: IR (ATR): ν = 3420, 3114, 1632, 1205, 1020, 838, 716, 636, 592, 505. Elemental
Analysis experimental and calculated for C36H102Co3N24O48S12 (2200.90 g/mol) (%exp;
%calc): C (18.28%; 19.06%), H (4.04%; 4.67%), N (14.10%; 15.27%), S (16.51%; 17.48%).

Ni: IR (ATR): ν = 3420, 3121, 1653, 1204, 1020, 844, 715, 639, 595, 505. Elemental
Analysis experimental and calculated for C36H100Ni3N24O47S12 (2182.17 g/mol) (%exp;
%calc): C (16.08% 17.06%), H (4.09%; 4.61%), N(15.42%; 15.40%), S (16.14%; 17.63%).

Cu: IR (ATR): ν = 3467, 3119, 1643, 1205, 1020, 837, 712, 639, 589, 510. Elemental
Analysis experimental and calculated for C36H100N24Cu3O47S12 (2196.73 g/mol) (%exp;
%calc): C (19.30%; 19.68%), H (4.61%; 4.58%), N(15.53%; 15.30%), S (16.61%; 17.51%).

3.4. Single Crystal X-ray Diffraction

Data were collected at 100(2) K on a Bruker-Nonius diffractometer (Billerica, MA,
USA) with an APPEX 2 4K CCD area detector using Mo–Kα (λ = 0.71073 Å) and equipped
with an Oxford Cryostrem 700 plus. Crystal structure solution was obtained using SIR2011
and refinement was performed using SHELXL v. 2018/3 under the ShelXle (Rev. 912)
interface. All non-hydrogen atoms were refined anisotropically.

The complexes contain a trinuclear polyanion [M3(µ-L)6(H2O)6]6−, formed by a linear
array of octahedral metal(II) ions (M1-M2-M1) connected by two triple µ-triazole bridges
(Figure S2). The central metal positions have a MN6 configuration and the terminal metal
position completes its N3O3 hexacoordination with three H2O molecules in fac conforma-
tion. The asymmetric unit of Mn contains one molecule of the MnII trimer coordinated
by six water molecules, four dimethyl ammonium cations, 8.25 non-coordinated water
molecules and one manganese cation (+2). This latter is bonded to three water molecules
and three sulfonate groups. Most of the sulfonate rests are disordered in different ori-
entations. The dimethylammonium cations are disordered in 11 positions with different
occupancies summing a total of four cations. The non-coordinated water molecules are
disordered in 14 positions with different occupancies. The asymmetric unit of Co and Ni
contains one molecule of the trinuclear metal complex, six dimethyl ammonium cations
and 6.25 and 4.90 water molecules, respectively. Most of the sulfonate rests on the main
molecule are disordered in two orientations. The dimethylammonium cations are dis-
ordered in 15 positions with different occupancies summing a total of six cations. The
non-coordinated water molecules are disordered in 21 and 13 positions with different
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occupancies. Although the unit cells of these structures are quite similar to Mn, they are
not isostructural and the gamma angle of the triclinic cell differs from 83.8◦/83.6◦ at Co/Ni
to 87.4◦ at Mn. The structures of Co and Ni were refined with strong damping factors
based on the isostructural iron derivative (CCDC 1016539); after some corrections and
omitting the damping factors, refinement remained consistent. The location of the cations
and water molecules were extremely diffuse and their positions could only be located using
the positions from the iron complex, which offered a much better dataset. Crystallographic
data and main refinement parameters are included in Table S1. Crystallographic data
for Mn, Co and Ni have been deposited at the Cambridge Crystallographic Database
Centre, with deposition numbers CCDC 2045018–2045020, respectively. Copies of this
data can be obtained free of charge on application to the CCDC, Cambridge, UK via
www.ccdc.cam.ac.uk/data_request/cif.

4. Conclusions

A series of complexes based on polyanionic linear trimers, [M3(µ-L)6(H2O)6]−6

(M = MnII, CoII, NiII and CuII) have been selectively synthesized via the reaction of
the ligand L−2 = 4-(1,2,4-triazol-4-yl)ethanedisulfonate with the corresponding metal(II)
perchlorate salts in a 2.5:1 molar ratio. Crystallographic data confirm identical molecular
structure for the polyanionic part of all the complexes, formed by three metal ions linked
by triply N-N-triazole bridges. The anionic CoII, NiII and CuII trimers crystallize with six
[(CH3)2NH2]+ moieties, whereas the MnII complex shows a slightly different counter ion
content, formed by one MnII and four [(CH3)2NH2]+ moieties. Magnetic susceptibility
studies showed dominant intra-trimer antiferromagnetic interactions between terminal
and central metal positions, as expected for a N1,N2-triazole-bridging mode. An isotropic
model for centrosymmetric linear trimers was good enough to model the thermal depen-
dence of the magnetic susceptibility, extracting consistent coupling parameters (J) with
the exception of the CoII derivative, considering intermolecular interactions as negligible.
The analysis of the magnetization data at very low temperatures and up to 7 T revealed
that the ground antiferromagnetic (AF) state is a good descriptor for these trimers with
the exception of the MnII derivative, where exited states with different multiplicity are
close enough in energy to become populated by magnetic fields. Regarding the practical
utilization of these complexes, the polyanionic nature of these trimers, along with their
high solubility and stability in polar solvents, open interesting possibilities for their incor-
poration into hybrid materials as magnetic components, such as in magnetic/conducting
hybrid salts [72] or as doping elements in organic conducting polymers [73]. These studies
are under development.

Supplementary Materials: The following are available online. Table S1. Crystallographic data of
Mn, Co and Ni crystals; Table S2. Metal-Nitrogen Bond Length for [M3(µ-L)6(H2O)6]−6 complexes
(Figure S2); Table S3. Cell parameters and cell volume obtained from Pawley fit of experimental
XRPD pattern shown in Figure S3; Table S4. Energy levels for trimers of Mn, Ni and Cu according to
Equation (S4); Figure S1. (a) Pictures of the formation of all the complexes in the synthesis solution
after seven days in ethanol vapor flow. (b) Optical microscopic images of Mn, Co and Ni single
crystals in their mother liquor; Figure S2. Labeling scheme for the general framework of the [M3(µ-
L)6(H2O)6]−6 complexes. H atoms of coordinating molecules have been omitted for clarity; Figure
S3. Packing diagrams showing the arrangement of the trimers. Intratrimer H-bonded interactions
(d(O···H) = 1.9–2.3/2.1 Å) are represented by red dotted lines for Mn/Co or Ni; Figure S4. Pawley
fits of the X-ray powder diffraction patterns of the [M3(µ-L)6(H2O)6]−6 complexes. The experimental
and calculated data are represented as red circles and a black solid line respectively, whereas the
green line is the difference between them; Figure S5. Infrarred spectra for MII complexes. The
400–700 cm−1 region of the IR spectra is attributed to the metal–ligand stretching vibrations (M-N
and M-O vibration modes). The band at 1200 cm−1 and 1650 cm−1 can be assigned to S=O and
C=N stretching, respectively. The bands at 3491 cm−1 (OH stretching) and at 1630 cm−1 (H-OH
bending) evidence the presence of coordinated water molecules; Figure S6. χ−1 vs. T plots (solid
lines) and their corresponding linear fitting above 50 K (dash lines) for all the complexes; Figure S7.

www.ccdc.cam.ac.uk/data_request/cif
www.ccdc.cam.ac.uk/data_request/cif
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Centrosymmetrical model of linear trinuclear complexes; Figure S8. Energy Diagram for MnII, NiII

and CuII trimers (see Table S4) with those J values determined from experimental χT vs. T data.
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