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Abstract

Background: Rare diseases are complex disorders with huge variability in clinical
manifestations. Decreasing cost of next-generation sequencing (NGS) tests in recent
years made it affordable. We witnessed the diagnostic yield and clinical use of differ-
ent NGS strategies on a myriad of monogenic disorders in a pediatric setting.
Methods: Next-generation sequencing tests are performed for 98 unrelated Chinese
patients within their first year of life, who were admitted to Xin Hua Hospital, affili-
ated with Shanghai Jiao Tong University School of Medicine, during a 2-year period.
Results: Clinical indications for NGS tests included a range of medical concerns.
The mean age was 4.4 + 4.2 months of age for infants undergoing targeting specific
(known) disease-causing genes (TRS) analysis, and 4.4 + 4.3 months of age for
whole-exome sequencing (WES) (p > 0.05). A molecular diagnosis is done in 72
infants (73.47%), which finds a relatively high yield with phenotypes of metabolism/
homeostasis abnormality (HP: 0001939) (odds ratio, 1.83; 95% CI, 0.56-6.04;
p =0.32) and a significantly low yield with atypical symptoms (without a definite
HPO term) (odds ratio, 0.08; 95% CI, 0.01-0.73; p = 0.03). TRS analysis provides
molecular yields higher than WES (p = 0.01). Ninety-eight different mutations are
discovered in 72 patients. Twenty-seven of them have not been reported previously.
Nearly half (43.06%, 31/72) of the patients are found to carry 11 common disorders,
mostly being inborn errors of metabolism (IEM) and neurogenetic disorders and all
of them are observed through TRS analysis. Eight positive cases are identified
through WES, and all of them are sporadic, of highly variable phenotypes and sever-
ity. There are 26 patients with negative findings in this study.

Conclusion: This study provides evidence that NGS can yield high success rates in
a tertiary pediatric setting, but suggests that the scope of known Mendelian condi-

tions may be considerably broader than currently recognized.
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1 | INTRODUCTION

Rare disease is a health condition that affects a small number
of people compared with other prevalent diseases in the general
population (Baldovino, Moliner, Taruscio, Daina, & Roccatello,
2016). To date, between 5,000 and 8,000 distinct rare diseases
have been documented with new ones reported regularly in the
medical literature (Taruscio, Floridia, Salvatore, Groft, & Gahl,
2017). Although they are characterized by their rarity, the total
number of patients affected is large [e.g., 25-50 millions in
the United States (Fernandez-Marmiesse, Gouveia, & Couce,
2018), 27-36 millions in the EU (Moliner & Waligora, 2017),
and 16.8 millions in China (Yang, Su, Lee, & Bai, 2015)]. Rare
diseases are typically severe, mostly genetic in origin, and the
majority of cases are reported in patients with very early onset
(Luzzatto et al., 2015). Therefore, efforts have been made con-
tinuously to identify the causative mutations for these infantile-
onset rare Mendelian diseases (Bacchelli & Williams, 2016),
which is of great importance for patient management (Silibello
et al., 2016) and family counseling (Babac, 2017).

Although traditional gene mapping approaches, such as Sanger
sequencing (Botstein & Risch, 2003), linkage analysis (Teare &
Santibanez Koref, 2014), and homozygosity mapping (Lander &
Botstein, 1987) have led to great insights into Mendelian diseases
over the past few decades; they are unable to detect all forms of varia-
tion in a single experiment. The rapid development of next generation
sequencing (NGS) constituted a turning point for the advancement of
our understanding of this type of diseases, which requires a broad
search for causal variants across their genetically heterogeneous
spectrum within a short time (Shen, Lee, Shen, & Lin, 2015), es-
pecially for life-threatening or chronically debilitating cases. Today,
different NGS techniques can be used for diagnostic purposes.
Targeting specific (known) disease-causing genes (TRS), which is
applied to assist with molecular diagnosis of well-defined disorders
caused by a group of genes (Deleye, Gansemans, De Coninck, Van
Nieuwerburgh, & Deforce, 2018) and sequencing the exons of every
protein-coding gene (whole-exome sequencing: WES) for patients
without an identified molecular cause are the two commonly used
tools (Al-Shamsi, Hertecant, Souid, & Al-Jasmi, 2016).

In the present work, we study 98 patients with the clinical sus-
picion of a rare Mendelian disease with infantile onset. The pa-
tients were referred for NGS testing to establish a definitive genetic
diagnosis. We demonstrate the clinical utility of NGS techniques in
a pediatric setting by systematically describing our patient cohort.

2 | MATERIALS AND METHODS
2.1 | Editorial policies and ethical
considerations

We have submitted our research proposal to the Ethics
Committee of Xinhua Hospital affiliated to Shanghai Jiao Tong

University School of Medicine. Our study protocol as well as
the application form was fully reviewed and the organization
has certified that this study would not incur any patient risk
issues and is in accordance with the Declaration of Helsinki.

2.2 | Clinical samples

Our study included 98 unrelated Chinese pediatric patients
within the age range of 1 year or younger at the time of test-
ing from Xin Hua Hospital affiliated with Shanghai Jiao
Tong University School of Medicine between January 2016
and December 2017. They were referred by medical special-
ists for either WES or TRS, and have had the analysis and
results disclosure completed. The patients in this cohort have
diverse clinical features which are summarized in Tables
1-3. Informal written consent was obtained from the pa-
tients’ parents or legal guardians participating in the study
prior to collecting 3 ml of the said patients’ peripheral blood.

2.3 | The targeting specific disease-causing
genes (TRS) analysis and Sanger confirmation

A total of 12 different specific disease panels based
on Targeted Exome Sequencing (TES) (designed by
MyGenostics, Beijing, China) were implemented on our
cohort according to their clinical features to collect the
protein-coding regions of the targeted genes. A gene cap-
ture strategy with GenCap custom exome enrichment kits
(MyGenostics, Beijing, China) was used in our study. The
extracted DNA samples were quantified by Nanodrop 2000
(Thermo Fisher Scientific, Wilmington, DE). A minimum
of 3 mg of DNA from the patient was used to generate index
libraries (average size of 350450 bp, including adapter se-
quences) for Solexa HiSeq2000 sequencing (Illumina, San
Diego, CA). Sequencing was carried out using 90 cycles per
read. The obtained mean exome coverage was more than
98%, with variants accuracy at more than 99%. Clinically
relevant variants, from proband and parental samples (when-
ever available), were confirmed by Sanger sequencing.

For those patients with clinical suspicions of
Duchenne/Becker muscular dystrophies (OMIM 310200),
Neurofibromatosis, type 1 (OMIM 162200), Spinal muscu-
lar atrophy-1 (OMIM 253300), and Prader-Willi syndrome
(OMIM 176270), we performed multiplex ligation-de-
pendent probe amplification (MLPA) analysis (Stuppia,
Antonucci, Palka, & Gatta, 2012) to detect the deletion or
duplication of DMD (MIM 300377), NFI (MIM 613113),
SMNI1 (MIM 600354), and SNRPN (MIM 182279) genes in
exonsusing the SALSA MS-MLPA P034-B2/P035-B1 DMD
(NM_004006.2), P081-C1/P082-C1 NF1 (NM_000267.3),
P060-B2 SMN1 (NM_000344.3), and ME028-B2 Prader-
Willi/Angelman kits (MRC-Holland, Amsterdam, The
Netherlands) according to the manufacturer's instructions
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(MyGenostics, Beijing, China). The sample with a single
exon deletion was further verified by PCR and direct se-
quencing. Patients with negative MLPA were further tested
for small mutations.

24 | Whole-exome sequencing and Sanger
confirmation

Whole-exome sequencing and its analysis protocols were
developed and validated by MyGenostics, Beijing, China.
Genomic DNA from patients was fragmented by sonication.
The fragments were ligated to illumina multiplexing paired-
end adapters, amplified by polymerase chain-reaction assay,
and hybridized to biotin-labeled P039-Exome (at 65°C for
16 hr). Paired-end sequencing was performed on Illumina
NextSeq 500 platform, with an average sequencing depth
of more than 100. Meanwhile, coverage of the targeted base
for the N20 read was 95%. Following sequencing, raw image
files were processed using Bcl2Fastq software (Bcl2Fastq
2.18.0.12, Illumina, Inc.) for base calling and raw data gener-
ation. Low-quality variations were filtered out using a quality
score >20. Short Oligonucleotide Analysis Package (SOAP)
aligner software (SOAP2.21; soap.genomics.org.cn/soapsnp.
html) was then used to align and refresh reads to the reference
human genome (hg19). Variants were prioritized on the basis
of the phenotype-driven gene lists for each participant and
predicted effect. Clinically relevant variants, from proband
and parental samples (whenever available), were confirmed
by Sanger sequencing.

2.5 | Molecular diagnoses

In this study, sequence changes including rearrangements,
stop codon-introducing (nonsense), insertion/deletion (indel)
variants, and splice site variants were regarded as null alleles
(Lander & Botstein, 1987), abolishing production of the cor-
responding protein from the affected allele. Pathogenicity
prediction (Nakken, Alseth, & Rognes, 2007) (SIFT [sift.
bii.a-star.edu.sg] and PolyPhen-2 [genetics.bwh.harvard.
edu]) were used to evaluate putative pathogenicity of novel
nonsynonymous coding variants (unreported previously). All
our findings are classified under three categories. We describe
causative mutations in the context of their consistent corre-
spondence to the patients’ phenotypes, biochemical findings,
familial (segregation) studies, or previously reported patho-
genicity, and group these patients accordingly into category I
by following the American College of Medical Genetics and
Genomics (ACMG) variant classification guidelines (Lander
& Botstein, 1987). We indicate those variants which were
consistent with patients’ phenotypes and had been predicted
to be deleterious though unreported previously, patients with
such features were grouped under category II. Patients with
variants belonging to category I and II were identified as
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either positive or confirmed cases. Category III include the
patients with variants which were inconsistent with patients’
phenotypes or biochemical/ familial (segregation) study re-
sults, as well as those with no identified pathogenic variants
and those with previously unreported variants that were pre-
dicted as either consistently nondamaging or inconsistent be-
tween two prediction tools.

We used a human phenotype ontology (HPO) term (Shen
et al., 2015) to classify the primary disease of the patient that
can be annotated by his clinical notes, which is essential for
variant interpretation in our cohort characteristic of clinically
and genetically heterogeneous disorders.

2.6 |

A chi-squared test was applied to compare the different di-
agnostic yields in the two groups of patients. The statistical
calculations were performed using SPSS 22.0 version.

Statistical analysis

3 | RESULTS

This work is a retrospective evaluation of an advanced
clinical diagnostic tool utility in a tertiary pediatric center.
In this work, we investigated the diagnostic yield of NGS
in a cohort of 98 Chinese patients with suspected rare
Mendelian disease of infantile onset. Their clinical and bio-
chemical profiles were undertaken prior to the referral for
NGS analysis.

The NGS method consisted of TRS analysis (n = 81/98,
82.65%) and WES (n=17/98, 17.35%) depending on a
range of clinical concerns. There was no significant differ-
ence in the age of the patients at the time of testing between
the two categories (p =0.9678). The median turnaround
time of TRS analysis was 30.0 days and that of WES was
50.0 days. Consequently, the median (SEM) age of diagnosis
in infants who were undergoing TRS analysis (mean + SD:
4.4 + 4.2 months of age) was not significantly younger or
older than those who were undergoing WES (mean + SD:
4.4 + 4.3 months of age).

The NGS results of 98 patients were divided into the
following groups depending on our method criteria. Group
A included 15 patients in line with Category II, shown in
Table 1. Group B included 57 patients in line with Category
I, shown in Table 2, while Group C included 26 patients in
line with Category III, shown in Table 3. Therefore, a defin-
itive genetic diagnosis was achieved for 72 patients (73.47%,
72/98) in the study. The TRS analysis provided higher molec-
ular yields for 64 of 81 pediatric patients (79.01%) than WES
for 8 of 17 ones (47.06%) (OR: 0.24; 95% CI (0.08-0.70); p:
0.01, Fisher’s exact test). All reported pathogenic and delete-
rious point mutations in Tables 1 and 2, confirmed by Sanger
sequencing.
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TABLE 3 Negative diagnosis by NGS tests in 26 individuals

Case
ID

37

71
129

173

212

299
374

412
471

524

550

575

621

662

707

756

797

854

902

941

Primary disease
classification by HPO
top-level term

Abnormality of the
metabolism/homeostasis

N
Abnormality of the

integument
Abnormality of the
cardiovascular system
Abnormality of the
nervous system
N

Abnormality of the
metabolism/homeostasis

N

Abnormality of the blood
and blood-forming
tissues

Abnormality of the
endocrine system

Abnormality of the
integument

Abnormality of the
nervous system

Abnormality of the
nervous system

Abnormality of prenatal
development or birth

Abnormality of the

nervous system

Abnormality of the
nervous system

Abnormality of the
genitourinary system

Abnormality of the
metabolism/homeostasis

Abnormality of the
nervous system

Abnormality of the
nervous system

Gender
Male

Male

Female

Female

Male

Female

Female

Female

Male

Male

Female

Male

Male

Female

Female

Male

Male

Male

Male

Female

Age at
testing
(months)

22 days*

1.5

8 days"

15 days*
16 days*

5 days”
18 days”

23 days

2.5

11

10

24 days”

10

Open Access,

Comments

The biochemical findings and phenotypes were consistent with HMG-CoA
lyase deficiency [OMIM: 246450] with a recessive inheritance pattern, but
only one variant (¢.122G>A (p.R41Q)) which was reported previously to be
associated with the disorder was found in HMGCL gene

No pathogenic variants related to patient phenotypes were identified

No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified

No pathogenic variants related to patient phenotypes were identified

The biochemical findings and phenotypes were consistent with Coenzyme
Q10 deficiency [OMIM: 607426] with a recessive inheritance pattern, but
only one variant (c.170_171insTGGGCTCGCGAGCCGC (p.F59Lfs"39))
which was predicted as a null allele was found in COQ?2 gene

No pathogenic variants related to patient phenotypes were identified

No pathogenic variants related to patient phenotypes were identified

The biochemical findings and phenotypes were consistent with thyroid
dyshormonogenesis [OMIM: 274500] with a recessive inheritance pattern,
but only one variant (c.2654G>T (p.R885L)) which was previously reported
to be associated with the disorder was found in DUOX2 gene

No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified
No pathogenic variants related to patient phenotypes were identified

The biochemical findings and phenotypes were consistent with Carnitine
deficiency [OMIM: 212140] with a recessive inheritance pattern, but only
one variant (c.51C>G (p.F17L)) which was previously reported to be
associated with the disorder was found in SLC22A5 gene

The VUS (c.817C>T (p.Q273X) in ATP13A4 gene) that is predicted as a null
allele explains several of the clinical features (seizures and epilepsy) of the
patient

The phenotypes and familial (segregation) results were consistent with mental
retardation, autosomal recessive, 37 [OMIM 615493], but one VUS
(c.8988G>C (p.Q2996H) in ANK3 gene) is predicted consistently as
un-damaging (Tolerated for SIFT® and Benign for PolyPhen_2%)

(Continues)
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TABLE 3 (Continued)

Case
1D

978

1003

1041

1073

1109

1329

Primary disease
classification by HPO
top-level term

Abnormality of the eye

Abnormality of the
cardiovascular system

Abnormality of the
nervous system

Abnormality of the
metabolism/homeostasis

Abnormality of the
nervous system

Abnormality of the
integument

Gender

Female

Male

Female

Male

Female

Female

Age at
testing

(months)

11

1.3

4 days*

12

Medicine

HONG ET AL.

Comments

The phenotypes and familial (segregation) results were partly consistent with
Cohen syndrome [OMIM: 216550] with a recessive inheritance pattern, but
two VUS (c.10333G>A (p.V3445M) and ¢.10718C>T (p.T3573]) in
VPS13B gene) are both predicted consistently as un-damaging (Tolerated for
SIFT* and Benign for PolyPhen_2%)

This patient received triple molecular diagnoses. The VUS (c.89delA
(p-D30fs) in ACTN2 gene) that is predicted as a null allele explains most of
the clinical features of the patient to be diagnosed with Cardiomyopathy,
hypertrophic, 23, with or without LVNC [OMIM: 612158] with a dominant
inheritance pattern; the VUS (c.439C>T (p.L147F) in JUP gene that is
predicted consistently as damaging (Damaging for SIFT® and Probably
damaging for PolyPhen_2§) explains most of the clinical features of the
patient to be diagnosed with Arrhythmogenic right ventricular dysplasia 12
[OMIM: 611528] with a dominant inheritance pattern; the VUS (c.103G>C
(p-G35R) in LMNA gene that is predicted consistently as damaging
(Damaging for SIFT® and Probably damaging for PolyPhen_2*%) explains
most of the clinical features of the patient to be diagnosed with
Cardiomyopathy, dilated, 1A [OMIM: 115200] with a dominant inheritance
pattern

The phenotypes were consistent with Mental retardation, autosomal recessive
38 [OMIM: 615516], but one VUS (c.8329A>G (p,M2777V) in HERC?2
gene) is predicted consistently as un-damaging (Tolerated for SIFT and
Benign for PolyPhen_2); another VUS (¢.5213G>C (p.W1738S) in HERC2
gene) is predicted inconsistently (Damaging for SIFT"and Benign for
PolyPhen_2*%)

The phenotypes and familial (segregation) results were consistent with
Ornithine transcarbamylase deficiency [OMIM: 311250] with a X-linked
inheritance pattern, but the VUS (c.176T>C (p.L59P) in OTC gene) is
predicted inconsistently (Tolerated for SIFT® and Probably damaging for
PolyPhen_2%)

The phenotypes and familial (segregation) results were consistent with Spastic
paraplegia 39, autosomal recessive [OMIM: 612020], but one VUS
(c.2096G>A (p.S699N) in PNPLAG6 gene) is predicted inconsistently
(Damaging for SIFT® and Benign for PolyPhen_2§)

This patient received dual molecular diagnoses. The VUS (¢.5124+1G>T in
COL7A1I gene) that is predicted as a null allele explains most of the clinical
features of the patient to be diagnosed with Epidermolysis bullosa dystroph-
ica [OMIM: 131750] with a dominant inheritance pattern; the VUS
(c.2975G>C (p.C992S) in RTELI gene that is predicted consistently as
damaging (Damaging for SIFT® and Probably damaging for PolyPhen_2%)
explains most of the clinical features of the patient to be diagnosed with
Dyskeratosis congenita, autosomal recessive 5 [OMIM: 615190] with a
dominant inheritance pattern

Note. Abbreviations: HPO, human phenotype ontology; HP, human phenotype;VUS: variants of uncertain significance; OMIM, Phenotype Mendelian Inheritance in

Man.

If SIFTori is smaller than 0.05 (rank score >0.395) the corresponding nsSNV is predicted as “Damaging”’; otherwise it is predicted as “Tolerated”. Multiple predictions
separated by “;”
Polyphen?2 prediction based on HumDiv, “D” (“probably damaging,” HDIV score in [0.957, 1] or rank score in [0.52844, 0.89865]), “P” (“possibly damaging,” HDIV
score in [0.453, 0.956] or rank score in [0.34282, 0.52689]), and “B” (“benign”, HDIV score in [0, 0.452] or rank score in [0.02634, 0.34268]).

*Less than one month *SIFT and PolyPhen-2 are two pathogenicity predictions used to evaluate putative pathogenicity of novel nonsynonymous coding variants
(unreported previously).
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All patients were under 1 year of age at the time of NGS
analysis (average age was 4.38 months), with 41 females
(41.84%, 41/98) and 57 males (58.16%, 57/98). Eighteen of
them were <1 month of age (18.37%, 18/98), while 38 were
between 1- and 3-month-old infants (38.78%, 38/98). It was
shown that more than half of our patients developed various
symptoms within 3 months of age.

Of this cohort, 23.47%, 22.45%, 8.16%, 8.16%, and 7.14%
were patients with primary phenotypes defined by HPO term
related to abnormality of the nervous system (HP:0000707),
abnormality of the metabolism/homeostasis (HP:0001939),
abnormality of the immune system (HP:0002715), abnor-
mality of the eye (HP:0000478), and abnormality of the in-
tegument (HP:0001574), respectively (Figure la, primary
indication). 5.10% (5/98) had clinical features of more than
two of the broad aforementioned HPO term or atypical symp-
toms so that they were not given the exact HPO terms for their
primary phenotypes. For most patients, both parents’ DNA
was tested (Figure 1b, family members tested).

Cohort description

32 |

Of the 98 probands, 72 carried 125 mutant alleles at 53
different chromosomal loci that satisfied the criteria for a

Molecular diagnosis

Other: 1
HPO:0001871
HPO:0001626
HPO:0025031
HP0:0000598
HPO:0000119 L
HP0:0000924

HPO:0000818
HPO:0000818
HPO:0001197
HPO:0003011
None (N) _J

FIGURE 1
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confirmed molecular diagnosis (Tables 1 and 2). A diverse
group of disorders was represented by patients who tested
positive. Three diseases, namely Neurofibromatosis type 1
(OMIM 162200), Duchenne/Becker muscular dystrophies
(OMIM 310200), and Methylmalonic aciduria mut (0) type
(OMIM 251000), which were caused by variants in the NF1,
DMD, and MUT (MIM 609058) genes, were observed in
14 diagnosed infants (19.44%, 14/72). They comprised the
most frequent infantile onset single-gene disorders in our
cohort. Other disorders found in at least two infants included
Alagille syndrome 1 (OMIM 118450), persistent hyperin-
sulinemic hypoglycemia of infancy (OMIM 256450), ret-
inoblastoma (OMIM 180200), deafness autosomal recessive
1A (OMIM 220290), methylmalonic aciduria and homocyst-
inuria cblC type (OMIM 277400), phenylketonuria (OMIM
261600), Norrie disease (OMIM 310600), severe combined
immunodeficiency, and X-linked (OMIM 300400), which
collectively comprised 17 of 72 diagnoses (23.61%). Nearly
half (43.06%, 31/72) of the diagnosed patients were identi-
fied to have the above 11 different disorders.

Ninety-eight different mutations were discovered in 72
diagnosed patients and a full range of mutation types was ob-
served, including 44 missense, 17 frame-shift, 13 nonsense,
12 CNV (copy number variation), 6 in-frame, and 6 spicing
(Tables 1 and 2). Missense (44.90%, 44/98) and frame-shift
(17.35%, 17/98) mutations made up the highest percentages

Proband+mom,
7.14%

and+father,
1.04%

~_ Trio+1sibs, 3.06%[Prob
\

b

Descriptive statistics of the patient cohort. (a) Primary indication; (b) Family members tested. Abbreviations: HPO, human

phenotype ontology; HP, human phenotype. HPO(0000119): Abnormality of the genitourinary system; HPO(0000478): Abnormality of the eye;
HPO(0000598): Abnormality of the ear; HPO(0000707): Abnormality of the nervous system; HPO(0000818): Abnormality of the endocrine
system; HPO(0000924): Abnormality of the skeletal system; HPO(0001197): Abnormality of prenatal development or birth; HPO(0001574):
Abnormality of the integument; HPO(0001626): Abnormality of the cardiovascular system; HPO(0001871): Abnormality of the blood and
blood-forming tissues; HPO(0001939): Abnormality of the metabolism/homeostasis; HPO(0002715): Abnormality of the immune system;
HPO(0003011): Abnormality of the musculature; HPO(0025031): Abnormality of the digestive system; None (N): Patients had clinical features
of more than two of the broad aforementioned HPO term or atypical symptoms so that they were not given the exact HPO terms for their primary
phenotypes
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of changes. Moreover, 27 of the 98 mutations were previ-
ously unreported in the peer-reviewed literature and variant
databases.

The inheritance of those mutations in our positive cases
(See Table 4) were autosomal dominant (AD) (N =21
[29.17%, 21/72]), autosomal recessive (AR) (N =34
[47.22%, 34/72]), and X-linked (N = 15 [20.83%, 15/72]),
respectively. The majority of the variants in AD diseases
was de novo (57.14%, 12/21), defined as mutations present
in the proband and not in the parents; while inherited ones
were observed in four patients (19.05%, 4/21). Among the
diagnosed patients with AR diseases, 27 patients had com-
pound heterozygous variants and seven had homozygous
variants. The two patients with X-linked disorders had de
novo mutations; 11 were inherited from his carrier mother
(Table 4).

3.3 | Effect of clinical presentation on
molecular diagnosis

Approximately 24 of the 72 diagnosed individuals (33.33%,
24/72) have atypical or unrecognized infantile presentation of
genetic disorders. Some examples include that of a 3-month-old
infant with seizures that were caused by a pathogenic ABCD1
(MIM 300371) variant, and a short-limbed neonate hospitalized
of persistent hyper-lactic acidemia due to a defect in COL2A1

TABLE 4 Summary of the positive molecular diagnoses
provided by NGS methods

Number (%)
Category of diagnoses
Autosomal dominant®
De novo 12 (16.66%)
[2]
Inherited 4 (5.56%)

Inherited unknown 5(6.94%) [2]
Autosomal recessive®
27 (37.50%)

7 (9.72%) [11

Compound heterozygous
Homozygous

X-linked hemizygous®

2 (2.78%)

11 (15.28%)
(6]

De novo

Carrier mother

Carrier mother (mosaic) 2 (2.78%)
Isolated cases 1 (1.39%)
Mitochondrial inheritance 1(1.39%)
Total 72

Note. Number in brackets indicates cases with large copy number variant
findings.

“Causal variants are point variants, small indels, inserts, or large exon indels,
duplicates.

(MIM 120140). Some other examples of atypical presentation
in infants of known Mendelian disorders include minicore my-
opathy with external ophthalmoplegia, which is instantiated by
an §-month-old girl harboring RYRI (MIM 180901) mutations,
who shows poor intermittent feeding, diffuse muscle weakness,
and a CHD7 (MIM 608892) mutation presenting only a facial
asymmetry without heart defect, extremity abnormalities, and
genital hypoplasia, such as identified in a 20-day neonate.

To assess whether specific clinical presentations were
more likely to be associated with a molecular diagnosis, the
diagnostic rate was compared among patients who were an-
notated with different phenotypes as represented by HPO
term. Analyses were performed at the top-level branching of
HPO phenotypes to ensure adequate counts of participants
(Table 5). Individuals with phenotypes of HPO category ““ab-
normality of metabolism/homeostasis” (HP: 0001939) were
found to yield higher diagnostic rate, though insignificantly
(odds ratio, 1.83; 95% CI, 0.56-6.04; p = 0.32). Otherwise,
individuals without a definite HPO term were found to be
significantly underrepresented in cases with atypical symp-
toms (odds ratio, 0.08; 95% CI, 0.01-0.73; p = 0.03).

3.4 | Negative cases

Of 26 infants who did not receive a diagnosis in this study
(Table 3): only one variant was observed in four infants
(15.38%, 4/26) with a suspected compound heterozygous
model; one infant received a partial diagnosis by a special
panel, the variant (c.817C>T (p.Q273X) in ATP13A4 (MIM
609556) gene that is predicted as a null allele explains several
of the clinical features (seizures and epilepsy) of the patient;
two infants (7.69%, 2/26) received a dual or triple molecular
diagnoses respectively; among five infants (19.23%, 5/26),
their previously unreported findings were predicted as either
consistently nondamaging or inconsistent between two tools;
for the other 14 individuals (53.85%, 14/26), no pathogenic
variants related to patient phenotypes were identified in the
analyzed genes.

4 | DISCUSSION

While applying NGS to the diagnoses of 98 unrelated pa-
tients in their first year of life at a single tertiary institu-
tion, we observed an overall molecular diagnostic yield of
73.47%, which is higher than the positive rates of published
clinical NGS reports (Okazaki et al., 2016; Smith, Willig, &
Kingsmore, 2015; Stark et al., 2016). This difference is likely
due to the number of participants, the nature of their clinical
problems, and the selection bias of diagnostic tools between
our study and others (Al-Shamsi et al., 2016; Okazaki et al.,
2016). Moreover, significantly higher detection rates with
TRS analysis have been shown in this study (OR: 0.24; 95%
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CI(0.08-0.70); p: 0.01), as well as in previous studies (Coene
et al., 2018; Ponzi et al., 2018). All the 31 diagnosed infants
with the 11 most common disorders in our cohort were ob-
served through TRS analysis. Our high diagnostic yield dem-
onstrates that the importance of distinct NGS strategies may
be made available to address genetic diagnosis of a myriad of
monogenic disorders and the effect of disease spectrum itself
on the outcomes.

In our study, there were 22 patients with primary indi-
cation of infantile-onset inborn errors of metabolism (IEM)
(Rice & Steiner, 2016). For 18 of them, the reported patho-
genic variants derived from the specific IEM panel were
fully consistent with their clinical/biochemical (if available)
features. For one patient with features of metabolic acidosis,
recurrent hypoglycemia, poor-feeding, and vomiting, the ini-
tial panel test did not identify any mutations, while a positive
diagnosis by WES was received as a Combined oxidative
phosphorylation deficiency-23(COXPD23, OMIM 616198)
(Kopajtich et al., 2014), one of the common causes of inborn
errors in energy metabolism. Among these 22 individuals,

Open Access,

20 chose IEM panel and 2 WES. The results of this group
indicated that abnormality of the metabolism/homeostasis
underlined a substantial proportion of pediatric disease bur-
den; a number of IEM have nonspecific biomarkers so that
their diagnosis can be challenging depending on the tradi-
tional approaches, and a TRS analysis covering appropriate
panel of genes has significant clinical utility for this group.
Our results also illustrated that some variants not captured by
one pipeline were indeed detected by the other (Jacob et al.,
2018; Mori et al., 2017).

In our study, we applied WES rather than TRS to 17 pa-
tients mainly because the patients had nonspecific features
and/or because a feasible TRS analysis was unavailable.
The diagnosis was confirmed in eight of the patients. The
definite diagnoses were Minicore myopathy with exter-
nal ophthalmoplegia (OMIM 255320), the Strudwick type
of spondyloepimetaphyseal dysplasia (OMIM 184250),
CHARGE syndrome (OMIM 214800), Acrokeratosis ver-
ruciformis (OMIM 101900), Obesity with impaired pro-
hormone processing (OMIM 600955), Combined oxidative

TABLE 5 Comparison of diagnostic rate by NGS tests in groups with and without the phenotype

Diagnostic rate in
individuals with the term  term

HPO term HPO ID

Abnormality of the blood and HP:0001871  2/3

blood-forming tissues

Abnormality of the cardiovascular HP:0001626  0/2

system

Abnormality of the digestive system  HP:0025031  4/5

HP:0000598  2/3
HP:0000478  6/8
HP:0000119  2/3

Abnormality of the ear
Abnormality of the eye

Abnormality of the genitourinary
system

HP:0002715  6/8
HP:0001574  4/7

Abnormality of the immune system

Abnormality of the integument

Abnormality of the metabolism/ HP:0001939  18/22
homeostasis
Abnormality of the nervous system HP:0000707  14/23

Abnormality of the skeletal system HP:0000924  3/4

Abnormality of the endocrine HP:0000818  0/1
system

Abnormality of prenatal develop- HP:0001197  0/3

ment or birth
Abnormality of the musculature HP:0003011  1/1
N - 1/5

Note. Abbreviations: HPO, human phenotype ontology; HP, human phenotype.

Diagnostic rate in
individuals without the Odds ratio

(95% CI) p

70/95 0.71 (0.06-8.22)  0.79
72/96 0.33(0.04-2.50) 0.28
68/93 1.47 0.74
(0.16-13.80)
70/95 0.71 (0.06-8.22)  0.79
66/90 1.09 (0.21-5.78)  0.92
70/95 0.71 (0.06-8.22)  0.79
66/90 1.09 (0.21-5.78)  0.92

68/91 0.45(0.09-2.17)  0.32

54/76 1.83 (0.56-6.04)  0.32
58/75 0.62 (0.23-1.62)  0.33
69/94 1.09 0.94
(0.11-10.94)
72/97 0.69 (0.06-7.99)  0.77
72/95 0.21 (0.03-1.35)  0.10
71/97 0.18 (0.02-2.11)  0.17
71/93 0.08 (0.01-0.73)  0.03*

“Patients had clinical features of more than two of the broad aforementioned HPO term or atypical symptoms so that they were not given the exact HPO terms for their

primary phenotypes.
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phosphorylation deficiency-23 (OMIM 616198), Niemann-
Pick disease type C1 (OMIM 257220), and Pseudovaginal
perineoscrotal hypospadias (OMIM 264600). The success in
these cases showed that there was not prior knowledge of the
genetic condition in the patients since all cases were sporadic,
of highly variable phenotypes and of variable severity. Eleven
patients developed their clinical manifestations during neo-
natal period or early infancy (before 3 months of age), and 10
of them were critically ill babies in our NICU who required
rapid comprehensive genetic reporting for both prognosti-
cation and clinical decision making. Our results supported
the conclusion (Meng et al., 2017) derived from the study by
Linyan Meng et al that the atypical and unrecognized presen-
tation of genetic disorders that were observed in some young
infants further challenged the traditional paradigm of tiered
genetic testing in critical care units because the earlier the
onset, the faster the progression and consequently the shorter
the life span (Fitzgerald et al., 2015; Retterer et al., 2016).
Since this work did not provide a cost-effective analysis of
various NGS tests, as compared with conventional tools, in
our patients, it is unknown whether NGS would increase or
decrease the cost potentially. Also, since this work did not
provide management details and follow-up investigations of
those patients, it is yet unknown how much NGS testing could
affect a personalized treatment for each patient. We hope to
find these answers in research yet to set up.

Negative results for 26 cases in our study could be ex-
plained by various reasons. We applied WES to nine patients
and various panels to the other 17 depending on our under-
standing of the function of various genes, and the primary
indication of each patient. Fourteen individuals (53.85%,
14/26) were not identified with any pathogenic variants re-
lated to their clinical phenotypes. The main reasons might be
that the causative gene was not included in the panel design
and that the genes encoding proteins involved in the alteration
of a specific biochemical marker/clinical phenotype are cur-
rently unknown or unrelated to human diseases. Nine patients
had primary indication of abnormality of the nervous system,
their highly heterogeneous phenotypes and puzzling para-
clinical investigations might confuse the clinical orientation,
leading to their negative results. For five infants in this group,
their variants were previously unreported and predicted as ei-
ther consistently nondamaging or inconsistent between two
in-silico tools, indicating them as negative cases, which sig-
nal probable determination bias. It is therefore essential for
clinicians to understand the strengths and limitations of every
molecular test in order to choose the appropriate one for each
patient (Meng et al., 2017). Also, functional studies should
be performed to assess the impact of those VUS on the corre-
sponding genes (Bao et al., 2014).

Unusual combination of signs, symptoms, and biochemi-
cal phenotypes sometimes can confuse even expert clinicians
and geneticists. Therefore, a HPO term was used to classify

the primary disorder of our cohort. Clinical assessments of
the effect of HPO phenotype analysis on our diagnostic yields
indicated a significantly low success rate for patients with
atypical clinical features (no exact HPO terms); this is the
same as the conclusion derived from another study: com-
pound phenotype was noted to yield a lower diagnosis rate
compared with an isolated phenotype. On the other hand,
HPO analysis determined a higher diagnostic rate, though in-
significantly, for the “abnormality of the metabolism/homeo-
stasis” phenotype, which mainly might be due to the sample
size of our study. But in another study, a higher diagnostic
rate was associated with the “abnormality of the muscula-
ture” phenotype (Meng et al., 2017). Even though diagnostic
yield was low for patients with nonspecific or overlapping
clinical phenotypes, the confirmed case of Prader-Willi syn-
drome is a good example of the application of NGS technol-
ogy, because using traditional methods proved to have limited
results with huge cost and lengthy duration for this disease
(Butler, 2017).

5 | CONCLUSION

In our study, NGS tools identified pathogenic mutations in
73.47% of our cases, demonstrating that they are informative
in a tertiary clinical setting for Mendelian disorders. Moreover,
it is proven by our study that NGS is effective in identifying
new variants in known diseases as well as widening the spec-
trum of phenotypes resulting from deleterious variations in
known genes. Therefore, it will not be long to see NGS tool as
a routine diagnostic test for many genetic conditions.
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