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Abstract: The relationships between land use patterns and water quality in trans-boundary
watersheds remain elusive due to the heterogeneous natural environment. We assess the impact
of land use patterns on water quality at different eco-functional regions in the Songhua River
basin during two hydrological seasons in 2016. The partial least square regression indicated that
agricultural activities associated with most water quality pollutants in the region with a relative
higher runoff depth and lower altitude. Intensive grazing had negative impacts on water quality
in plain areas with low runoff depth. Forest was related negatively with degraded water quality in
mountainous high flow region. Patch density and edge density had major impacts on water quality
contaminants especially in mountainous high flow region; Contagion was related with non-point
source pollutants in mountainous normal flow region; landscape shape index was an effective
indicator for anions in some eco-regions in high flow season; Shannon’s diversity index contributed
to degraded water quality in each eco-region, indicating the variation of landscape heterogeneity
influenced water quality regardless of natural environment. The results provide a regional based
approach of identifying the impact of land use patterns on water quality in order to improve water
pollution control and land use management.

Keywords: land use patterns; water quality variations; eco-functional regions; partial least
square regression

1. Introduction

Water quality integrates important geomorphic, hydrologic, and some of the biological processes
of a watershed which make it one of the essential elements of a healthy watershed [1]. The deterioration
of surface water quality is a considerable issue in river basin management throughout the world,
which has become a serious threat to the chemical integrity of the aquatic environment. Surface
water can be polluted by anthropogenic activities in two ways: (1) by point sources, such as sewage
treatment discharge; and (2) by non-point sources such as overland runoff from urban and agricultural
areas (buffer zones) [2]. Non-point source pollution is more difficult to verify than point sources
due to the intricate and diffuse nature of the interactions between runoff and landscape [3]. Land
use patterns have been deemed as a significant regulator of contaminants in surface flows and
interflows, which make it a critical research topic for clarifying the correlations of surface water
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quality and non-point source pollutants [4]. Previous studies have reported about the relationship
between water quality and the composition of land use types, such as cropland and urban, were
related with stream pollutants positively, while forest and grasslands that were less influenced by
anthropogenic activities had negative correlations [5,6]. The spatial configuration of landscapes
in the watershed played an important part in identifying hydrological processes, natural habitats,
energy flows, and nutrient cycles [7]. Thus, the variation of landscape is one of the main factors
affecting non-point pollution. A large numbers of landscape metrics, for example the quantification
of the landscape, have been developed to characterize landscape patterns and used for clarifying the
linkages between the landscape and the water quality [7–9]. Previous research usually correlated
surface water quality with either simple measures of land use types or landscape configuration in
a watershed. However, either of them are not comprehensive enough to indicate the influences of
land use management on water quality in a watershed. Therefore, conducting an analysis on the
relationships between water quality indicators and both watershed land use types and landscape
characteristics can produce a more comprehensive result. Generally, multivariate linear regression
(MLR) has widely been used to quantify the relationships between land use patterns and water quality
parameters, especially stepwise multiple regression [7,10,11]. However, classical regression approach
presents several problems when analysing the relationships between land use/landscape metrics and
water quality parameters. First, many land use types and landscape metrics are highly correlated,
which produces redundancies and leads to inaccurate results. Additionally, sample size (the number
of different study plots or individuals) should be larger than the number of predictors in order to
assure the significance of the regression analysis [12]. Thus, the application of technique such as partial
least-square regression (PLSR) can overcome the inherent limitations caused by classical multivariate
regression when handling multi-collinear and noisy data [13]. PLSR is a method to analyse the response
variable by using a set of independent variables having best predictive power [14]. The output of
PLSR is a combination and generalization of the principal component analysis (PCA) technique and
the multiple linear regression technique. PLSR can deal with variables that are highly collinear by
explicitly assuming dependency among the variables and evaluating the underlying structures and is
specifically suitable for cases in which the number of samples is less than the possible variables [15].

The Songhua River basin plays an important role in industry, agriculture and forestry. Intense
anthropogenic activities such as agricultural production and urbanization have long been affecting
the water quality of Songhua River. In order to obtain the goal of national water environment
treatment, the regionalization of freshwater ecological functions has been carried out in the eight major
watersheds in China including the Songhua River. The definition and method of water eco-functional
regionalization was first proposed by Omernik [16]. In the past few decades, many countries have
conducted their study on water eco-functional regionalization. Most states in the USA have already
completed the IV level water eco-functional regionalization. In addition, EU has established the
regionalization systems of different scales in the WFD, of which the macroscale eco-functional
regionalization is based on the similar descriptions of typology, biology and ecology. China started to
carry out the study on freshwater eco-functional regionalization during the Eleventh Five-year Plan
with the support of National Major Science and Technology Program for Water Pollution Control and
Treatment of China. It is of great importance to implement watershed management on the basis of
eco-functional regionalization. Thus, the objectives of this study are as follows: (1) analyse the spatial
and temporal distribution characteristics of the surface water quality in each eco-region; (2) quantify
the relationships between land use/landscape characteristics and water quality parameters using
PLSR in a sub-basin scale, and identify the main factors determining the water quality during normal
flow and high-flow periods in each eco-region [17].
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2. Materials and Methods

2.1. Study Area and Sampling Sites

The Songhua River Basin (41◦42′~51◦38′ N, 119◦52′~129◦31′ E) is located in the northeast of China
and is one of China’s seven major river basins. This river basin occupies a large part of Heilongjiang
Province, Jilin Province and the Northeastern part of Inner Mongolia Autonomous Region with an area
of 55.7 × 104 km2. The Songhua River Basin is a trans-boundary watershed consists of three sub river
basins: the Nenjiang River Basin in the North, the Second Songhua River Basin in the south, and the
lower Songhua River Basin (the mainstream of Songhua River) in the northeast. Trans-boundary
watershed is a watershed that crosses at least one political border, either border within a nation or an
international boundary. The Nenjiang River originates on Yihehuli Mountain in the Great Khingan
Mountains while the Second Songhua River originates at Tianchi Lake in the Changbai Mountains.
Then, the two rivers travel all the way down and meet in Songyuan in Jilin Province. With a gentle
slope and wide surface, the lower Songhua River carries the combined flow from Nenjiang and Second
Songhua rivers, flowing northwestward 939 km before entering the Amur River.

The Songhua River Basin lies within a north temperate monsoon climate zone, and the temperature
and rainfall varies significantly during the year, with the warmest month being July (20 ◦C~25 ◦C)
and the coldest January (−20 ◦C). Annual precipitation averages 500 mm, showing a spatial tendency
of higher in mountain area and lower in plain. 60~80% of the annual precipitation occurs from July
to September, and only 5% occurs from December to February [18]. The Songhua River Basin is an
important agricultural and industrial area in Northeast China. The dominant crops in the basin include
soybean, corn, sorghum, and wheat. Industries mainly include petrochemical, machine manufacturing
and paper making, distributed in the urban belt of main industrial cities like Harbin, Changchun,
and Jilin along Songhua River [19].

In order to eliminate the impact of land use patterns on water quality covered up by heterogeneous
natural environment elements, all 86 sampling sites were classified according to the level I water
eco-functional regionalization of Songhua river basin. This regionalization grouped the 86 study sites
into five different eco-regions: (1) mountainous normal flow (n = 10); (2) plain low-flow (n = 23); (3) hilly
high flow (n = 32); (4) mountainous high flow (n = 12); (5) plain normal flow (n = 9). The five eco-regions
were identified using a combination of climatic, hydrologic and topographic factors. The three factors
referred to annual temperature, elevation and multi-average runoff depth respectively. Figure 1 shows
the characteristics of the three factors. They were normalized and processed in ArcGis 10.2 (Esri,
Redlands, CA, USA) by using the cell statistics and raster calculator in the spatial analysis toolset [20].
The main environmental characteristics of these five eco-regions were shown in Table 1.

Figure 1. Distribution of environmental characteristics of Songhua River Basin.
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Table 1. Average values of the main environmental variables which characterize the five eco-regions.

Code Definition Location Altitude (m) Annual Mean
Temperature (◦C)

Runoff Depth
(mm)

Zone 1 Mountainous
Normal flow

Great Khingan
Mountain 559 −0.26 179

Zone 2 Plain low-flow Songnen Plain 182 0.36 45

Zone 3 Hilly high-flow
Second Songhua

and Songhua
river mainstream

332 0.23 303.77

Zone 4 Mountainous
high-flow Changbai Mountain 604 0.26 341.59

Zone 5 Plain normal flow Sanjiang Plain 174 0.32 177

2.2. Water Sampling and Analytical Methods

Water sampling was conducted monthly at 86 sites throughout the Songhua river basin in
high-flow season (July), normal flow season (September) in 2016 and in icebound season (March) in
2017 (Figure 2).

Figure 2. Locations of sampling sites in Songhua River Basin.

Forty-three of those sample sites are part of the local government’s long term monitoring
network (Table A1). Not all samples were collected during the icebound season as some of the
streams were frozen to the bottom. The water samples at each sites were sampled in polyethylene
bottles pre-rinsed three times with distilled water and kept below 4 ◦C for laboratory analysis.
Three samples were collected at each sampling site and a total of 256 samples were collected.
Twelve representative parameters were selected for measurement, which are important indicators
of water contamination influenced by anthropogenic activities. The parameters included pH,
electrical conductivity (EC, µs·cm−1), dissolved oxygen (DO, mg·L−1), chemical oxygen demand
(COD, mg·L−1), permanganate index (CODMn, mg·L−1), ammonia nitrogen (NH3-N, mg·L−1), nitrate
nitrogen (NO3-N, mg·L−1), total nitrogen (TN, mg·L−1), total phosphorus (TP, mg·L−1), fluoride
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(F−, mg·L−1), chloride (Cl−, mg·L−1), and sulfate (SO2−
4 , mg·L−1). The values of pH, DO and EC were

directly measured in situ with a multi-parameter water quality monitoring instrument (Thermo Fisher
Scientific, Waltham, MA, USA). The values of other parameters mentioned in the paper were analyzed
in the laboratory following the national standard methods [21]. Additionally, water samples except for
fluoride, chloride and sulfate analysis were acidified with sulfuric acid to adjust the pH < 2.

2.3. Land Use and Landscape Metrics

The stream network and sub-basin boundaries were extracted from a digital elevation model
(DEM, 30 m × 30 m data) using the hydrology toolset in ArcGIS 10.2. As a result, there were a total of
144 sub-basins formed in the study area, 53 sub-catchments were selected to study the relationships
between land use patterns and water quality. Land use patterns were acknowledged to have little
change within 5 years. Thus we chose the land use data of Songhua river basin in 2015, which was
provided by Data Centre for Resource and Environmental Sciences, Chinese Academy of Sciences
(RESDC) (http://www.resdc.cn). The land use types were classified into six categories: (1) agricultural
land, mostly planted with corn, rice and soybean; (2) forest; (3) vegetated land; (4) water bodies,
including rivers, reservoirs and ponds; (5) urban areas, including residential, commercial and industrial
lands; and (6) unused land, including gravel, bare ground, and bare rock (Figure 3). The six land use
types were commonly used in previous studies and should all be considered to better understand the
land use pattern and its relationship with water quality in the Songhua River Basin [5,7,22]. In order
to investigate the relationships between landscape configurations and water quality, the landscape
metrics in 53 sub-catchments representing the patch size, shape, structure, and landscape diversity
were chosen at the landscape levels (Table 2). They have been commonly used in previous studies in
dealing with land use patterns in explaining water quality. In addition, these landscape metrics are
important in understanding the ecological functioning and human perception in a landscape [8,23,24].
FRAGSTATS 4.0 (University of Massachusetts: Amherst, MA, USA) was used to calculate the landscape
metrics based on land use data.

Figure 3. Land use distribution in Songhua River Basin.

http://www.resdc.cn
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Table 2. Land use and landscape metrics a used in this study.

Landscape Metrics (Abbreviation) Descriptions

Arable land (AR) Land use for crops cultivation, land mainly used for planting and beach
cultivated more than three years (unit: %)

Forest (FO) Including growing arbor, shrub, bamboo, mangrove and other young
afforested land.

Grassland (GR) Land use for herbaceous plant, coverage above 5% (unit: %)

Water (WA) Inland water area and land use for water conservancy facilities (unit: %)

Urban (UR) Residential area, industrial area and roads (unit: %)

Unused land (UN) Barren land, alkaline land, sand and waste land (unit: %)

Patch density (PD) Numbers of patches per unit area (number per 100 ha)

Largest patch index (LPI) Percentage of the landscape in the largest patch (unit: %)

Edge density (ED) Total length of all edge segments per hectare for the considered landscape
(unit: m/ha)

Landscape shape index (LSI) Provides a standardized measure of total edge or edge density that adjusts for
size of the landscape.

Contagion (CONTAG) Tendency of land use types to be aggregated (unit: %)

Interspersion and juxtaposition index (IJI) Based on patch adjacencies, not cell adjacencies like the contagion index.

Shannon’s diversity index (SHDI) Based on information theory; indicates the patch density in a
landscape (unitless)

Shannon’s evenness index (SHEI)
Minus the sum across all patch types, of the proportional abundance of each
patch type multiplied by that proportion, divided by the logarithm of the
number of patch types (unitless)

Aggregation index (AI)
Number of like adjacencies involving the corresponding land use type, divided
by the maximum possible number of like adjacencies involving the
corresponding land use type (unit: %)

a landscape metrics are calculated by FRAGSTATS 4.0.

2.4. Statistical Analysis

All the water quality data were tested for normality by eco-regions using the Shapiro-Wilk
test, since the number of sampling sites in each eco-region was below 50. Parameters not normally
distributed were log transformed to increase variable normality [25]. One-way analysis of variance
(ANOVA) with the post hoc Tukey’s test was used to compare water quality variations between
different eco-regions and seasons at significance level of p < 0.05. Boxplots of all sampling sites in
the five eco-regions for the 12 water quality parameters were performed to study their seasonal and
spatial variability. ArcGIS 10.2 was used to map the distributions of concentration of each water quality
parameter by spatial interpolation in order to better understand the variation of water quality among
sites. Besides water quality, one way ANOVA with the post hoc Turkey’s test was used to compare the
variance of landscape metrics between different eco-regions. Welch’s Anova test was also done in case
the heterogeneity of variance appears. Both ANOVA test were done at the significance level of p < 0.05.
The test of normality of the landscape metrics was done using the Shapiro-Wilk test initially.

The partial least square regression (PLSR) was used to explore the relationships between land
use patterns and water quality variations in different eco-regions and identify the key predictors for
degraded water quality. This was carried out by converting explanatory variables onto orthogonal
‘latent’ components, which stand for independent variables in a regression. The calculated latent
components in PLSR maximize the covariance between the response and explanatory variables through
the simultaneous decomposition of X and Y matrices of vectors. The PLSR models were performed in
SIMCA-P [26]. Cross-validation was the criterion used to determine the minimum number of latent
components needed to acquire the most predictive PLSR model.

Within SIMCA-P, Q2 (the fraction of the total variation of the dependent variables that can be
predicted by a component) stands for the cross-validation of components, when Q2 is larger than 0.5,
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the model is expected to introduce good predictive ability, while indicating no significance when Q2 is
smaller than 0.05. Q2 was computed using the equation below:

Q2 = 1.0− PRESS /SS (1)

where PRESS is the abbreviation for the predicted residual sum of squares, and SS stands for residual
sum of squares.

In the PLSR modelling, the variable importance in projection (VIP) is a criterion of estimating
which independent variables can elucidate the dependent variables most significantly. VIP is calculated
by the following equation:

VIPj =

{
p

m

∑
h=1

∑
k

R2(yk, th)w2
hj

/ m

∑
h=1

∑
k

R2(yk, th)

}1/2

(2)

In Equation (2), p is the number of independent variables, m represents the number of components
extracted from independent variables, k stands for the number of dependent variables, th represents
the components of independent variables, R2(yk,th) represents the square of regression coefficients of
yk and th, w2

hj is the weight of independent variables contributing to component th.
It is generally recognized that the independent variables with VIP values above 1 are of great

significance for dependent variables; variable with VIP values below 0.8 are of minor importance; it is
of medium significance when VIP values are between 0.8 and 1. The regression coefficients indicate
the direction and strength of the impact of each variable in the PLSR model [14]. In order to avoid
over fitting which leads to low statistical significance PLSR models for each response factors, not all
anthropogenic factors must be included in a PLSR model. Therefore, the following PLSR analysis
procedure was followed to obtain a most predictive model. Firstly, for each given water quality
parameter, all predictor variables were included in the model. Next, a series of new PLSR models were
conducted in which each new PLSR process was implemented with a variable excluded in order to
minimize the value difference between the explained variation in the response (R2) and the predictive
ability of the model (Q2) This procedure was repeated until as few predictors were remained [27].
Finally, the PLSR model with the largest Q2 was chosen as the optimal model. A test of collinearity of
the explanatory variables was done in prior of the application of PLSR method (Table A2).

3. Results

3.1. Characteristics of Water Quality

Spatial and seasonal variations of water quality parameters in five eco-regions were illustrated
by box-plots (Figure 4). Interpolation maps were illustrated by ArcGis 10.2 in order to help better
understanding the spatial variations of water contaminants (Figure A1). According to the one-way
ANOVA, all variables showed significant spatial differences among the five eco-regions (p < 0.05).
Most of the variables showed significant temporal differences between different seasons. Large pH
values often occurred in high-flow period, except in Zone 1 where high pH was found in normal
flow period. EC was found higher in icebound season in every eco-region, however there was no
significant difference between high-flow and normal flow period. The low concentrations of DO were
mostly observed in ice bound season in every eco region, except in Zone 4. The concentrations of
COD showed obvious temporal differences only in Zone 2 and Zone 5, large values were found in
high-flow period in Zone 2, while higher concentrations were observed in Zone 5 in normal flow
periods. The concentrations of CODMn were mostly found higher in high-flow periods, whereas low
concentrations were found in the ice bound season, and only Zone 5 presents large values in the mean
flow period. The concentrations of NH3-N were higher in ice bound season in every eco-region except
in Zone 1. NO3-N had large values in high-flow periods while it presented low values in normal flow
periods. The concentrations of TN were higher in the ice-bound season in every eco-region except for
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Zone 1. The values of F− didn’t show obvious temporal variations, while the concentrations of Cl−

and SO2−
4 varied in different periods among the five eco-regions.

Figure 4. Distribution patterns of water quality parameters during high-flow, normal flow and icebound
seasons in different eco-regions of the Songhua River Basin, China (The box represented 25th and 75th
percentiles; the small square represented mean; the line in box represented median; values above or
below whiskers were outliers). Zone 1–5 refers to the five eco-region listed in Table 1.

3.2. Land Use and Landscape Characteristics at Sub-Basin Scale

Figure 5 showed the distribution of land use for each sampling sites at sub-basin scale in 2015.
Arable land and forest were the dominant land use in Zone 1, ranging from 15.26% to 65.60% and
6.61% to 62.78% respectively. A relatively less proportion of urban land use was occurred in Zone 1,
except for S7 which occupied 7.52% of the sub-basin. Arable land was the dominant land use in Zone 2,
ranging from 14.13% to 86.28%. Zone 2 had a relatively larger proportion of urban land use with an
average of 4.06% and a maximum of 9.68%. However, the ratio of forest area was relatively lower than
other eco-regions with a maximum of 59.52%, while others were lower than 10%. Therefore Zone 2 was
obviously disturbed by anthropogenic activities. Arable land was the dominant land use in Zone 3,
ranging from 2.76% to 83.46%, with an average of 50.62%. Likewise, a significant amount of forest
was discovered in some of the sub-basins, ranging from 1.41% to 93.86% with an average of 38.96%.
The proportion of urban land use was the highest among the five zones, with an average of 5.16%
and a maximum of 15.26%. A large proportion of forest was observed in Zone 4, with an average of
64.94% and a maximum of 90.46%. The land use ratio of arable land ranked only second to forest, with
a maximum of 29.05%. The proportion of urban land use was lower than other eco-region with an
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average of 2.44%. The dominant land use in Zone 5 was arable land, ranging from 17.53% to 63.02%,
with an average of 54.95%. The ratio of forest in most of the sub-basins was lower than 30%, with an
average of 30%, the highest was 68.55% in S79. The average proportion of urban land use was 3.08%.

The dominant land use types in Songhua river basin were arable land and forest. It was observed
that sub-basins with a larger ratio of urban land had a lesser ratio of grassland and forest but a larger
ratio of arable land. This observation might indicate that urbanization on one hand had decreased the
amount of forest and grassland to support more living residents in the city, on the other hand retained
or even increased the amount of arable land for more food was needed.

Figure 5. Land use composition (%) in five eco-regions in Songhua River Basin, China.

According to the one-way ANOVA, most of the landscape metrics except for LSI and AI were
showed significant variations among the five eco-region (p < 0.05) (Table 3). The highest value of
PD (0.17/100 ha), LPI (78.77%), CONTAG (56.59%) and AI (81.29%) and the lowest value of PD
(0.04/100 ha), SHDI (0.84), SHEI (0.32) and ED (3.63 m/ha) were recorded in Zone 3. The highest value
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of ED (10.76 m/ha), LSI (27.22), IJI (73.84%) and SHDI (2.04) and the lowest value of LPI (10.61%),
LSI (2.76) and CONTAG (34.85%) were recorded in Zone 2. The highest value of SHEI (0.85) and the
lowest values of IJI (41.82%) were recorded in Zone1. The lowest value of AI (0.52%) was observed in
Zone 4.

Table 3. Descriptive statistics of landscape metrics in each eco-region in the Songhua River Basin.

Landscape Metrics Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 One-Way Anova

Mean Mean Mean Mean Mean p

PD (#/100 ha) 0.11 0.12 0.10 0.093 0.086 0.002 **
LPI (%) 29.90 37.38 43.82 50.39 25.30 0.007 **

ED (m/ha) 8.19 6.85 6.97 6.86 7.21 0.013 *
LSI 15.57 14.06 14.51 16.55 11.83 0.403

CONTAG (%) 50.79 51.74 55.33 56.59 47.26 0.037 *
IJI (%) 52.38 58.88 53.11 54.04 57.56 0.015 *
SHDI 1.44 1.49 1.38 1.32 1.64 0.040 *
SHEI 0.57 0.58 0.51 0.52 0.63 0.024 *

AI (%) 52.02 60.97 63.89 54.27 62.53 0.136

Abbreviation of landscape metrics are listed in Table 2. * means p < 0.05, ** means p < 0.01.

3.3. Linkages between Water Quality Parameters and Land Use, Landscape Metrics in Each Eco-Regions

The PLSR approach was applied to quantify the relationship between water quality and land
use/landscape metrics for each eco-region mainly in the high flow and normal flow seasons.
The ice-bound season was not included due to the little surface runoff. The summary of each optimal
PLSR models were provided in Table 4, including the R2 and Q2 of each model as well as the number
of components extracted in each model was to reach the minimum difference between R2 and Q2 and
a larger Q2. The value of Q2 should be larger than 0.5 to make the model predictive and significant.
As Table 4 shows, most of the optimal models for water quality parameters extracted two components
in both seasons, whereas certain models for water quality parameters extracted three components.
In addition, individual models for water quality parameters only extracted one component in some
eco-regions which leaded to low values of Q2. As we had observed, in Zone 1, Zone 2 and Zone 3,
the optimal model for SO2−

4 in high flow seasons and the models for Cl− in Zone 4 in both seasons,
as well as the model for Cl− in high flow season extracted only one component. This indicate that
increasing the number of components to the PLSR models cannot continually improve the explained
variance and leads to lower predictive ability (i.e., larger gap between model R2 and Q2 values),
the subsequent components are not strongly correlated with the residuals of the predicted variable [12].
Therefore, the models for SO2−

4 in Zone 1, Zone 2 and Zone 3 in high-flow season and the models
for Cl− in Zone 4 in both seasons and in Zone 5 in high-flow season were of low significance and
predictive power.

The regression coefficient (RC) and the variable importance for the projection (VIP) are intuitive
and comprehensive expressions of the relative importance of the variables when indicating how
important land use types and landscape metrics are to the specific water quality parameters.
Tables 5 and 6 illustrated the key variables (VIP > 1) of each optimal model with their regression
coefficients (RCs) in high-flow and normal flow seasons respectively. Tables A3 and A4 presented all
the regression coefficients of all the explanatory variables in each optimal model. The PLSR weights
can be used to better understand the quantitative relation between the explanatory variables and
response, because they are linear combinations of the original variables that define the scores. It is
another important symbol to indicate the importance of individual land use/landscape metrics to
water quality parameters. The weight plots illustrated the key predictors (VIP > 1) of each optimal
model and highlighted the predictors with the highest weights in each model (Figure 6).
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Table 4. Results from Partial Least Square regression analysis for water quality parameters in each eco-region.

Season
Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

Y R2 Q2 Component R2 Q2 Component R2 Q2 Component R2 Q2 Component R2 Q2 Component

High-flow

pH 0.53 0.51 2 0.58 0.56 2 0.54 0.52 2 0.58 0.56 2 0.54 0.52 2
EC 0.53 0.51 2 0.73 0.58 3 0.72 0.62 2 0.73 0.58 3 0.72 0.62 2
DO 0.88 0.60 3 0.72 0.69 3 0.73 0.60 2 0.72 0.69 3 0.73 0.60 2

COD 0.66 0.57 2 0.73 0.62 2 0.76 0.51 2 0.73 0.62 2 0.76 0.51 2
CODMN 0.63 0.68 2 0.63 0.51 2 0.64 0.58 2 0.63 0.51 2 0.64 0.58 2
NH3N 0.68 0.51 2 0.65 0.62 2 0.70 0.69 2 0.65 0.62 2 0.70 0.69 2
NO3N 0.71 0.65 2 0.63 0.57 2 0.75 0.59 2 0.63 0.57 2 0.75 0.59 2

TN 0.66 0.51 2 0.72 0.70 2 0.71 0.50 2 0.72 0.70 2 0.71 0.50 2
TP 0.73 0.66 3 0.71 0.71 2 0.77 0.51 2 0.71 0.71 2 0.77 0.51 2
F− 0.68 0.42 3 0.69 0.58 2 0.81 0.66 3 0.69 0.58 2 0.81 0.66 3
Cl− 0.68 0.55 3 0.49 0.11 1 0.54 0.32 1 0.49 0.11 1 0.54 0.32 1

SO2−
4 0.52 0.24 2 0.75 0.73 3 0.64 0.52 2 0.75 0.73 3 0.64 0.52 2

Normal flow

pH 0.70 0.52 2 0.59 0.51 2 0.64 0.60 3 0.59 0.51 2 0.64 0.60 3
EC 0.60 0.50 2 0.82 0.52 2 0.84 0.63 2 0.82 0.52 2 0.84 0.63 2
DO 0.76 0.59 2 0.79 0.57 2 0.64 0.59 2 0.79 0.57 2 0.64 0.59 2

COD 0.78 0.59 2 0.61 0.59 2 0.61 0.55 2 0.61 0.59 2 0.61 0.55 2
CODMN 0.63 0.53 2 0.63 0.52 2 0.68 0.63 2 0.63 0.52 2 0.68 0.63 2
NH3N 0.64 0.58 2 0.79 0.60 2 0.60 0.13 2 0.79 0.60 2 0.60 0.13 2
NO3N 0.77 0.69 3 0.72 0.21 2 0.93 0.59 2 0.72 0.21 2 0.93 0.59 2

TN 0.75 0.68 2 0.80 0.60 2 0.76 0.60 2 0.80 0.60 2 0.76 0.60 2
TP 0.78 0.80 2 0.73 0.78 2 0.89 0.53 3 0.73 0.78 2 0.89 0.53 3
F− 0.79 0.64 2 0.73 0.69 2 0.64 0.48 3 0.73 0.69 2 0.64 0.48 3
Cl− 0.87 0.74 3 0.47 0.24 1 0.84 0.59 3 0.47 0.24 1 0.84 0.59 3

SO2−
4 0.68 0.54 2 0.73 0.65 2 0.61 0.60 3 0.73 0.65 2 0.61 0.60 3
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Table 5. The relative importance of the key variables in the optimal models in high-flow season.

Y
Significant Predictors (A)

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

pH WA (0.645), UR (0.400),
SHEI (−0.299)

FO (−0.440), PD (0.079),
IJI (0.183) AR (−0.195), FO (0.207) GR (0.758), UN (−0.365) UN (−0.071), LPI (0.938)

EC GR (−0.138), UN (0.222),
SHDI (0.122) UR (0.362) AR (0.180), FO (0.152),

IJI (−0.179)
WA (−0.571), CONTAG (0.366),

AI (−0.220) AR (0.100), SHEI (−0.115)

DO FO (0.054), UR (−0.045),
LPI (0.208)

GR (0.280), UR (−0.210),
IJI (0.315)

AR (−0.235), FO (0.190),
IJI (0.188)

FO (0.067), GR (0.179),
PD (−0.058)

AR (−0.235), UR (−0.387),
LPI (−0.073)

COD LPI (−0.207), ED (0.264),
CONTAG (−0.171)

PD (0.080), IJI (0.081),
AI (−0.071)

AR (0.047), UN (0.181),
PD (0.053)

WA (−0.494), SHEI (−0.201),
AI (−0.248)

AR (−0.097), UR (0.126),
SHDI (0.116)

CODMn
AR (0.209), ED (0.322),

CONTAG (−0.172)
AR (0.163), GR (−0.401),

UN (0.539)
FO (0.266), WA (−0.371),

SHEI (−0.138)
FO (0.249), PD (0.347),

ED (0.376) FO (−0.024), UR (0.293)

NH3N GR (−0.367), SHEI (−0.291),
AI (−0.289)

LPI (−0.164), IJI (0.220),
SHDI (0.079)

AR (0.255), FO (−0.371),
LPI (−0.428)

FO (−0.291), PD (0.269),
ED (0.376) UN (0.249)

NO3N SHDI (0.259), AI (−0.231) GR (−0.243), LPI (0.254),
ED (0.341) UR (0.311), LPI (−0.335) UR (0.224), PD (0.245),

ED (0.175)
AR (0.289), GR (−0.135),

SHDI (0.287)

TN AR (0.253), GR (−0.750),
SHDI (0.396)

AR (0.547), PD (0.266),
IJI (−0.460) AR (0.204), FO (−0.209) FO (−0.299), ED (0.638) GR (−0.209), UR (0.451),

SHDI (0.793)

TP AR (0.207), ED (0.736),
CONTAG (−0.335)

GR (−0.245), UN (0.553),
SHDI (−0.357)

AR (0.278), FO (−0.275),
IJI (−0.137)

FO (−0.388), PD (0.349),
ED (0.468)

AR (0.267), LPI (−0.561),
SHDI (0.391)

F− SHEI (−0.790), AI (0.970) GR (−0.206), LPI (−0.146) AR (0.242), FO (−0.228),
UR (0.115) AR (0.225), GR (−0.168) WA (0.327), LPI (0.472),

LSI (0.410)

Cl− ED (0.307), IJI (0.588),
SHDI (−0.697) UR (0.478), IJI (0.588) AR (0.266), FO (−0.190),

UR (0.444)
UR (0.444), UN (0.585),

LSI (0.202) — —

SO2−
4

AR (0.340), WA (−0.462),
LSI (−0.206) — — — — GR (−0.322), WA (0.168) GR (−0.116), LSI (0.202)

Y means the response variables in the PLSR models; A means the regression coefficient; the key variables with the highest VIP values in the optimal models are in bold; “— —”means no
valid model was found for this water quality variable; Abbreviation of land use/landscape variables are listed in Table 2.
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Table 6. The relative importance of the key variables in the optimal models in normal flow season.

Y
Significant Predictors (A)

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

pH WA (0.655), UR (0.206),
LSI (−0.299)

GR (0.269), SHDI (0.174),
AI (0.575) AR (−0.189), FO (0.202) SHEI (0.234), AI (−0.236) UR (−1.167), UN (−1.715)

EC GR (−0.138), UN (0.302),
SHDI (0.171)

WA (−0.190), UR (0.254),
PD (0.163)

AR (249), FO (−0.269),
IJI (−0.189)

WA (−0.240), UR (0.220),
PD (0.241)

AR (0.228), LSI (0.188),
IJI (0.225)

DO AR (−0.216), FO (0.211),
UR (−0.332)

GR (0.192), UR (−0.198),
IJI (0.168)

AR (−0.223), FO (0.201),
IJI (0.117)

FO (0.064), GR (0.161),
PD (−0.124)

AR (−0.396), UR (−0.472),
LPI (0.235)

COD UR (0.306), ED (0.322),
CONTAG (−0.289) UR (0.300), AI (0.195) UN (0.372), SHEI (0.038) WA (−0.280), SHEI (−0.225),

AI (0.257)
AR (−0.217), UR (0.100),

SHDI (−0.123)

CODMn
ED (0.373),

CONTAG (−0.290) GR (−0.503), UN (0.694) LPI (0.168), SHEI (0.017),
AI (0.119)

FO (0.181), PD (0.292),
ED (0.291) FO (−0.187), UR (0.168)

NH3N UR (0.624), SHEI (−0.214),
AI (−0.153)

LPI (0.115), IJI (−0.190),
SHDI (−0.098) GR (0.587), LPI (−0.024) FO (−0.233), PD (0.287),

ED (0.331)
UR (−0.202), UN (0.225),

LSI (−0.195)

NO3N FO (−0.334), SHDI (0.235),
AI (−0.254)

UR (0.169), LPI (0.115),
ED (0.201) UR (−0.291), PD (0.188) UR (0.175), PD (0.235),

ED (0.229)
AR (0.599), GR (−0.347),

SHDI (0.370)

TN FO (−0.339), LPI (0.224),
CONTAG (0.224)

AR (0.230), PD (0.201),
IJI (−0.367) AR (0.316), GR (0.582) FO (−0.192), PD (0.349),

ED (0.435)
AR (0.705), GR (−0.329),

SHDI (0.397)

TP AR (0.317), ED (0.269),
CONTAG (−0.256)

UR (0.144), LPI (0.202),
SHDI (−0.087)

AR (0.278), FO (−0.213), IJI
(−0.121)

FO (−0.426), PD (0.391),
ED (0.448)

AR (0.495), LPI (−0.329),
SHDI (0.347)

F− PD (0.082), SHEI (−0.272),
AI (−0.253)

UR (0.225), UN (0.249),
LSI (0.197)

AR (0.310), FO (−0.274), UR
(−0.259) UR (0.040), GR (−0.359) AR (0.361), LPI (0.059),

LSI (0.091)

Cl− UN (0.409), IJI (0.641),
SHDI (0.962)

UR (0.429), SHDI (−0.388),
AI (−0.407) FO (−0.300), — — UR (0.395), LSI (0.049),

AI (0.101)

SO2−
4 — — LSI (−0.278), SHDI (−0.351),

AI (−0.259) WA (0.247), PD (−0.408) GR (−0.389), WA (0.320),
UR (0.189)

UR (−0.041), UN (−0.639),
LSI (0.319)

Y means the response variables in the PLSR models; A means the regression coefficient; the key variables with the highest VIP values in the optimal models are in bold; “— —”means no
valid model was found for this water quality variable; Abbreviation of land use/landscape variables are listed in Table 2.
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Figure 6. (a) Weight plots of the first and second PLSR components for individual water quality parameter
in the high-flow season, and (b) weight plots of the first and second PLSR components for individual
water quality parameter in the normal flow season. Land use/landscape variables with the highest VIP
values in each eco-region was in red and highlighted with boxes. Abbreviations for land use/landscape
metrics are listed in Table 2.
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In Zone 1, water quality variables were influenced mostly by landscape metrics during high-flow
and normal flow seasons. During high-flow season, only pH, EC, DO and SO2−

4 were most influenced
by land use metrics, of which the key variables with highest VIP values were WA UN, UR and AR
respectively. The key variables with the highest VIP values for other water quality contaminants
were mostly landscape metrics. ED was the most important predictor for COD, CODMn and TP,
while SHDI contributed the most to NO3-N, TN and Cl−. NH3-N appeared to be influenced the
most by SHEI, whereas AI was the most predictive variables of F−. During the normal flow season,
the most important predictors for pH and EC were the same as the high-flow season, while DO was
most influenced by FO instead of UR. The key variables with the highest VIP values for NH3-N and
NO3-N were UR and FO respectively. ED was the most important predictor for CODMn and TP, while
CONTAG contributed the most to COD. LPI, SHEI and IJI were the most important predictors for TN,
F− and Cl− respectively.

In Zone 2, land use metrics predominated in the key variables with the highest VIP values in
optimal models. During high-flow season, GR was the most important variables of the variations
of DO, CODMn, NO3-N, F− and Cl−, while IJI contributed the most to COD and NH3-N. FO, UR,
AR and UN were the most important predictors for pH, EC, TN and TP. During normal flow season, pH,
DO and CODMn were all most influenced by GR, whereas UR contributed most to EC, COD, NO3-N
and Cl−. Landscape metrics such as IJI, LSI and LPI were observed as the most important indicators of
the models (VIP > 1). Lower IJI contributed to higher NH3-N and TN; higher LPI dedicated to higher
TP, while LSI was positively correlated with F−, but negatively correlated with SO2−

4 .
In Zone 3, land use metrics contributed to more water quality variables than landscape metrics.

During high-flow season, all water quality parameters were most influenced by AR, except for pH,
CODMn and NO3-N. FO was the most important predictors for pH and CODMn, while LPI contributed
the most to NO3-N. During normal flow season, AI and PD were observed as the most important
predictors for CODMn and SO2−

4 , whereas other water quality parameters were most influenced by
land use metrics.

In Zone 4, during high-flow season, pH and SO2−
4 were most influenced by GR, whereas WA

contributed the most to EC and COD. FO was observed the most important predictor for DO and
CODMn, and was positively related to DO and CODMn. UR, AR and UN contributed most to NO3-N,
F− and Cl− respectively. The rest of the water quality parameters were most influenced by ED, which
was the only landscape metrics with the highest VIP values. During the normal flow season, landscape
metrics such as SHEI, ED and PD contributed more to water quality parameters than that in high-flow
season. SHEI was the most important variable for pH and COD; ED contributed more to NH3-N and
TP; NO3-N and TN was impacted most by PD. Other water quality parameters were contributed most
by land use metrics. The most important predictor for DO and CODMn was FO which was the same as
high-flow season. UR contributed the most to EC and SO2−

4 , while F− was most influenced by GR.
In Zone 5, during the high-flow season, AR was the most significant predictor for DO, NO3-N

and TP; CODMn and NH3-N were most impacted by UR and UN respectively. The rest of the water
quality parameters were influenced by landscape metrics in most cases. SHDI contributed most to
COD and TN, while F− and SO2−

4 were most impacted by LSI; LPI and SHEI was the most significant
predictors for pH and EC respectively. During the normal flow season, F− was most influenced by LSI,
whereas pH and Cl− were contributed most by UR. FO and UN were the most significant predictors
for CODMN and SO2−

4 respectively. Other water quality parameters were most influenced by AR.
It should be noted that all the predictors in the final optimal model were to some extent correlated

with the specific water quality parameter. However only predictors with VIP values above 1 were
considered to be of major importance. Overall, it was observed that the key variables with highest
VIP values of the optimal models were spatially and temporally different. In addition, landscape
metrics contributed more in Zone 2, Zone 3 and Zone 4, while land use metrics dominated in the other
two eco-regions.



Int. J. Environ. Res. Public Health 2018, 15, 1872 16 of 29

4. Discussion

4.1. Key Land Use Types Predicting Water Quality

Many studies have reported that agricultural and urban land uses contribute to degrading water
quality in adjacent aquatic systems, whereas vegetated areas such as grassland and forest have a
positive contribution to water quality [6,28]. The results of this study were generally consistent with
such previous findings. However not all water quality parameters in each eco-region showed a strong
relationship with agricultural land use and urban land use.

In the high-flow season, although arable land was not always the variable with the highest VIP
values in the optimal models of water quality indicators, it was predictive and associated with most
water quality variables in each eco-region mainly in Zone 3 and Zone 5. Arable land was positively
correlated with organic matter and some of the nutrients, while it correlated negatively with DO. This
indicated that arable land actually served as a source for pollution in these eco-regions. Previous
studies had noted that arable land had a positive impact on degraded water quality due to agricultural
activities, such as fertilizer and pesticide application as well as livestock raising, which were often the
major non-point source [4]. Forest was found to be closely related to most water quality variables than
other land use types in Zone 4. It was identified that forest was positively correlated with DO and
CODMn during both seasons, while negatively correlated with NH3-N, TN and TP. It was unexpected
that higher forest land use contributed to higher CODMn, which to some extent contradicted previous
research. Therefore, a possible speculation of this phenomenon is that the increase of forest would
cause the accumulation of refractory organic matter derived from decaying plant material, afterwards
flows into the surface water with overland runoff [29–31]. In addition, the terrain in Zone 4 is steeper
than that in other eco-region which means that higher slope exists in this region. Previous study
claimed that with an increasing slope, higher water flow rates would contribute to soil erosion and to
the rates of particulate matter that picks up pollutants [32]. Although the dominant land use type in
Zone 2 was arable land, the land use type contributed the most to the water quality in this region came
out to be grassland. A negative relationship was identified between grassland and CODMn, NO3-N,
TP and F−, while DO was found positively correlated with grassland, which indicated the fixation
and absorption effects of grassland for pollutants in overland runoff [5]. However the concentrations
of non-point source pollutants, such as CODMn and TN in Zone 2 were relatively high among the
5 eco-regions and was appeared to be related positively with arable land. This suggested that effect of
grassland in decontaminating overland runoff has been weaken, even in upstream of the sub-basin.
The main leading might be the looseness of surface soil structure caused by intensive grazing, which
had been discovered frequently throughout our field survey. In addition, Zone 2 was known as the
black soil area, the rich humus in the soil contributed to the increase of CODMn and TN in surface
water, especially in rainy season.

In the normal flow season, arable land was no longer the variable associating with the most
water quality parameters in Songhua River Basin. Forest and urban land use had become the main
predictors for water quality in some eco-regions such as Zone 1 and Zone 4. This phenomenon should
be attributed to the decrease of precipitation, which reduced the volume of overland runoff generated
by arable land. Another reason might be the first flush effects in storm events, which made surface
runoff pollutants entering rivers more apparently in high flow season than that in other seasons [33].
Thus, fewer non-point pollutants was transported into surface water in normal flow season. However,
forest was known to have the ability of intercepting the degraded water and filtering out nutrients.
Thus forest land uses became one of the most influential factors towards the concentration of nutrients.
Urban land use revealed its contribution to COD and NH3-N indicated that the water quality in
Zone 1 was polluted by possible point sources mainly from domestic and industrial sewage since
these pollution sources mostly distributed in built-up areas [5,7,32]. TN was the only water quality
parameter that was dominated by arable land in Zone 2, while others were contributed mostly by
grassland and urban land use. Indicating that point sources were more likely to be the major source of
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water contamination compared to that in high-flow season as urban areas was mostly covered with
impervious surface and the drainage was continually routed to wastewater treatment plants and then
discharged to local rivers as point sources [34].

4.2. Key Landscape Metrics Predicting Water Quality

Anthropogenic activities not only influence the composition of land use, but also change the
landscape pattern. Previous studied had indicated that non-point source pollution loading, including
soil erosion, sediment, and nutrient runoff, in rural watersheds was closely relevant to the landscape
structure [35]. For example, a previous study had reported that landscape metrics consistently
explained a 65% to 86% of the total variation in nutrients and suspended sediment to stream [36].
Landscape pattern metrics have been developed through the use of spatial tools, in order to attain
the goal of quantification land use patterns and understand spatial heterogeneity and landscape
structure [37].

In this study, degraded water quality was positively related with landscape fragmentation metrics
such as PD and ED and was negatively related with LPI in most eco-regions. Previous studies have
reported that PD and ED showed positive relationships with TN, TP, COD, and BOD concentrations
in reservoirs in South Korea which was dominated by vegetated areas [7]. That was consistent with
what it was found in this study, especially in Zone 1 and Zone 4, which are both mountainous regions
with large proportions of forest. The value of PD and ED increased when growing numbers of small
patched land cover types appeared in the watershed. The degree of forest fragmentation could be
reflected by PD and ED [13]. Therefore, highly fragmented forest might not function efficiently to
increase the permeation and decrease overland runoff and erosion from agricultural and urbanized
areas, consequently let pollutants, sediments and nutrients flowed into the surface water without
efficient interception.

The CONTAG metric reflects the level of aggregation of land use types. Generally, a low CONTAG
metric value means that land use types are highly fragmented, while a high value of CONTAG
represents an aggregated landscape [38]. In this study, CONTAG was observed to be negatively
related with non-point pollutants in the mountainous normal flow region (Zone 1) in both high-flow
and normal flow seasons. Previous research had reported that in streams non-point pollutants are
mainly derived from soil erosion and sediment yield [13]. Thus the CONTAG metric might be a
factor contributing to soil erosion and sediment yield, especially in mountainous areas. In addition,
intensive soil erosion occurred in the eastern part of the mountainous normal flow region. Thus, land
use management in this region should focus on the aggregation of land use types in order to reduce
in-stream non-point pollutants.

The AI metric represents the degree of physical connectedness and aggregation of land use
within watersheds, and it is higher when land uses are more clustered and aggregated. In this study,
the AI metric contributed to more water quality parameters in the normal flow season, and a negative
relationship was identified between AI and water quality in two seasons. Therefore, degraded water
quality usually occurs in watersheds with scattered land uses and plentiful land use patches.

The IJI metric represents the degree to which patch types are interspersed (not necessarily
dispersed); lower values represent landscapes with poorly interspersed patch types (i.e., uneven
distribution of patch type adjacencies), whereas higher values characterize landscapes in which the
patch types are well distributed (i.e., equally adjacent to each other). The IJI metric was a more effective
indicator for water quality parameters in high-flow season, which was positively correlated with COD,
nutrients, F− and Cl−, while negatively correlated with DO. This suggested that human activities
might disperse patches and therefore increase the potential of contaminants flowing into the river.

The LSI metric is an alternative to patch shape indices based on the average patch characteristics,
which measures the perimeter-to-area ratio for landscape as a whole [38]. The higher the index
indicates the more complex of the patches in the landscape. In this study, the LSI metric was an
effective indicator for water quality variables of F−, Cl− and SO2−

4 in high-flow season in Zone 1,
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Zone 4 and Zone 5, and pH, EC and NH3-N were found positively related to LSI in normal flow
season in Zone 1 and Zone 5, besides F− and SO2−

4 . This suggested that the shape of the patches in the
landscape contributed more to anions concentration. Higher LSI indicates more edges presented in a
landscape, which leads to negative impacts on water quality.

The SHDI and SHEI are diversity metrics influenced by richness and evenness respectively.
Richness refers to the present patch type’s number; evenness refers to the distribution of area among
different types [38]. Larger values of SHDI and SHEI imply greater landscape diversity. Although
SHDI and SHEI were not always the predictors with the highest VIP, they were both positively
correlated with degraded water quality in the two seasons. The SHDI metric indicated more water
quality variables in each eco-region than SHEI, except in Zone 3 and Zone 4 which only SHEI was
observed contributing to water quality variables. This suggested that the degradation of water quality
is likely to occur when the number of land use types increased and when different land use types are
distributed homogenously.

4.3. Importance of an Eco-Functional Regionalization Land Use Pattern Impacts

The results of this study demonstrated that the key predictors and seasonal variations of the
optimal models of each eco-region were considerably different (Tables 4–6). It was reported in previous
researches that the relationship between land use pattern and water quality to some extent was
influenced by regional differences because the gradients of anthropogenic land use were frequently
overlapped on an underlying gradient in primitive characteristics of natural terrain [39]. For instance,
urban areas often located in flat land instead of mountainous region because the former is more likely
to develop rapidly. This is consistent with the results in our study that a relatively high proportion of
urban areas generally appears in the plain catchments. Allan emphasized that anthropogenic land uses
often covary with natural landscape, a factor that can result in overestimation of land use influence on
river water quality. In this study, the five eco-regions were classified based on an analysis involving
climatic, hydrologic and topographic factors. The relationships between land use patterns and water
quality were analyzed without the disturbance of natural terrain since each eco-region has the similar
topographic features. The results showed that the significant predictors of water quality parameters in
each eco-region were apparently different. In addition, previous study had proposed that landscape
heterogeneity within a large river basin might bring in model errors which implied the influences of
agricultural lands in hilly watersheds might be covered up by strong influence of urban areas in the
plain watersheds [11]. This indicated the importance of regional basis when exploring the relationship
between land use patterns and stream water quality. Statistical models should be conducted on a
relatively homogenous region in accordance to natural terrain, climatic and hydrological condition in
order to get a reliable result. In addition, it also meets the requirement of the Chinese government that
the watershed environment should be administrated based on the eco-functional regionalization.

4.4. Model Performance and Limitations

Multicollinearity among various land use/landscape metrics is one of the obstacles when
establishing precise relationship between land use patterns and stream water quality. PLSR is of great
advantage in this study because it is particularly conducive when the number of predictive indicators
is similar to or higher than the number of observations and/or there is strong collinearity among
the predictors [12]. Additionally, the PLSR methodology to some extent excludes the confounding
relationships among both the independent and dependent variables and encourages a more impartial
view of the contribution of land use patterns to stream water pollutants [27]. Therefore, this approach
could be applied to the investigation of water contamination in other watersheds.

The method used in this study has some limitations. First, the water quality data during the
low-flow and snowmelt period was not collected. Some researchers have claimed that a low-flow
period should also be involved in the analysis, as farming activities such as sowing and fertilization
occur frequently during this period, which causes negative impacts on river water quality [4,5]. As for
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the snowmelt period, some researchers take it into account when studying the watersheds located in
cold-climate regions, as nutrient export produced by snowmelt runoff may differ significantly from
runoff during storm events [25,40]. Thus, it is desirable to involve in situ sampling in low-flow and
snowmelt period when investigating the relationships between land use patterns and water quality
in the Songhua River basin in order to better understand the temporal variability in the watershed
located in cold climate region and with intense agricultural activities. Second, some of the models
were of low predictive power within the five eco-regions. such as the models (Q2 < 0.5) of SO2−

4 in
Zone 1, Zone 2 and Zone 3 in high-flow season and the models of Cl− in Zone 4 in both seasons
and in Zone 5 in high-flow season. This indicated that the variations of SO2−

4 and Cl− might not be
exclusively explained by land use and landscape metrics. This was consistent with some previous
studies claiming that road density and geology characteristics could also contribute to the variation
of ions besides land use patterns [10,41]. Therefore, further researches are inevitable to include other
non-land use variables to build empirical models in order to obtain a higher predictive accuracy and
confidence level.

5. Conclusions

The results of this study demonstrated that water contamination of the Songhua River basin in
China presented high temporal and spatial variations within the five eco-regions. A partial least square
regression (PLSR) approach was applied in exploring the relationships between land use patterns
and specific water pollutants during both high-flow and normal flow seasons on a watershed scale.
The results suggested that in different eco-regions, water quality parameters were influenced by
different land use/landscape metrics. Arable land was observed a predictive variable contributing
to degraded water quality mainly in hilly high flow region (Zone 3) and plain normal flow region
(Zone 5), indicating that agricultural activities were the main factor contributing to degraded water
quality in regions with a relative higher runoff depth and lower altitude. Grassland influenced most
water quality parameters in the plain low flow region (Zone 2), suggesting the effect of intensive
grazing in plain areas. Forest was observed to be negatively related to degraded water quality in
mountainous high flow regions (Zone 4), indicating the importance of forest in mountainous areas.
Landscape metrics were predictive variables contributing to degraded water quality in each eco-region
during both hydrological seasons. The water quality degradation in both seasons were positively
related to landscape metrics of patch density (PD), edge density (ED), landscape shape index (IJI),
interspersion juxtaposition index (LSI), Shannon’s diversity index (SHDI) and Shannon’s evenness
index (SHEI), and negatively associated with largest patch index (LPI), contagion (CONTAG) and
aggregation index (AI). Additionally, PD and ED were observed to have major impacts on water
quality contaminants, particularly in mountainous high flow region (Zone 4), which indicated the
fragmentation of forest may not function effectively to decrease overland runoff and consequently
let pollutants flow into the river; the landscape metrics of CONTAG was observed to be related to
non-point pollutants in mountainous normal flow region (Zone 1) which suggested the correlations
between CONTAG and soil erosion and sediment yield; LSI was found an effective indicator for anions
in Zone 1, Zone 4 and Zone 5 mainly in high flow season; SHDI metric indicated more water quality
variables in each eco-region than SHEI, except in Zone 3 and Zone 4 which only SHEI was observed to
contribute to water quality variables. Indicating the variation of landscape heterogeneity contributed
to the degradation of water quality in all eco-regions. The results of our study suggested that natural
environmental factors such as topography, climate and hydrology may have some impacts on how
land use patterns correlate with water quality. Thus, analyzing the relationships between land use
patterns and water quality on an eco-functional regionalization basis is considerable. Therefore, further
studies are needed to explore how the characteristics of eco-regions affect the casual relationship
between land use patterns and water quality.
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Appendix A

Table A1. The details of all the sampling sites with WGS 84 coordinates.

Number of Sampling Sites
WGS 84 Coordinates of Sampling Sites

Long Term Monitoring Sites
E N

S1 123.78 50.55 Y
S2 123.44 47.96 Y
S3 122.80 47.75 Y
S4 123.46 48.09 Y
S5 124.71 49.49 Y
S6 125.18 49.18 N
S7 125.10 49.12 Y
S8 124.75 48.91 Y
S9 125.51 49.66 N

S10 125.45 49.41 N
S11 122.26 45.92 Y
S12 123.43 46.78 Y
S13 123.6833 46.78333 N
S14 123.86 46.296 Y
S15 123.9167 47.36667 N
S16 126.1054 48.52878 N
S17 125.9574 48.56711 Y
S18 124.53 48.48 Y
S19 124.55 48.23333 N
S20 124.5654 48.36458 Y
S21 125.89 48.0044 N
S22 126.193 48.04149 Y
S23 124.4421 47.5309 Y
S24 124.7294 45.72 N
S25 124.6469 45.43639 Y
S26 124.83 45.16222 Y
S27 124.9833 45.48333 N
S28 125.7 45.335 Y
S29 126.5388 45.75979 N
S30 126.718 45.93 Y
S31 126.72 45.82 Y
S32 126.4161 46.14218 Y
S33 125.357 43.938 Y
S34 125.35 43.85 Y
S35 125.445 44.60313 N
S36 125.6886 44.78805 N
S37 126.1887 44.67113 N
S38 126.0658 44.9 Y
S39 126.48 44.4 Y
S40 126.49 44.31 N
S41 126.9139 46.00074 N
S42 127.0134 45.40921 N
S43 127.0644 44.90426 N
S44 127.3369 46.89167 N
S45 128.1474 45.91833 N
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Table A1. Cont.

Number of Sampling Sites
WGS 84 Coordinates of Sampling Sites

Long Term Monitoring Sites
E N

S46 128.6019 47.03444 N
S47 128.8589 47.8175 N
S48 127.873 47.04286 Y
S49 129.3558 48.63694 N
S50 129.4394 46.27222 N
S51 129.5733 46.00361 N
S52 129.58 46.33 N
S53 129.5836 44.53089 Y
S54 129.6389 46.73056 N
S55 129.6722 44.76579 N
S56 130.1581 47.95028 N
S57 128.7394 45.81808 Y
S58 125.3035 44.85627 Y
S59 125.6758 44.76854 Y
S60 125.9005 43.80154 Y
S61 125.7791 44.08246 Y
S62 125.6749 43.56837 Y
S63 126.033 43.30054 Y
S64 127.2599 43.63825 Y
S65 126.43 44.05 Y
S66 126.61 43.78 Y
S67 129.0161 44.06063 N
S68 128.7372 43.75558 N
S69 127.8495 47.11137 N
S70 126.8446 43.11292 N
S71 126.86 43.12 Y
S72 126.1254 42.69658 Y
S73 127.22 42.73 Y
S74 126.98 43.12 Y
S75 128.09 42.36 N
S76 127.7632 42.04037 N
S77 130.5433 46.01944 Y
S78 130.5839 47.28806 N
S79 129.9136 46.64694 N
S80 130.6878 47.03167 N
S81 131.7489 47.23389 N
S82 132.51 47.7 N
S83 132.4581 47.66139 N
S84 132.46 47.724 Y
S85 131.0789 47.67972 N
S86 130.933 45.8141 Y

“Y” means the sample site belongs to long-term monitoring program, while “N” means the sample site is newly
setted in this study.
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Table A2. Correlation matrix of the land use and landscape metrics and population density used in the PLSR analysis a.

Metrics b AR FO GR WA UR UN PD LPI ED LSI CONTAG IJI SHDI SHEI AI

AR 1
FO −0.903 1
GR −0.231 −0.048 1
WA 0.219 −0.486 0.045 1
UR 0.621 −0.527 −0.365 0.096 1
UN 0.015 −0.254 0.290 −0.025 −0.220 1
PD 0.310 −0.434 0.239 0.158 0.332 0.202 1
LPI −0.252 0.395 −0.216 −0.280 −0.161 −0.215 −0.468 1
ED 0.196 −0.278 0.284 −0.005 0.206 0.181 0.742 −0.710 1
LSI −0.078 0.126 −0.029 −0.383 0.099 0.201 0.048 −0.276 0.434 1

CONTAG −0.133 0.368 −0.231 −0.488 −0.08 −0.282 −0.630 0.828 −0.732 −0.112 1
IJI 0.011 −0.248 0.098 0.547 −0.015 0.283 0.386 −0.502 0.172 −0.167 −0.708 1

SHDI 0.227 −0.379 0.181 0.245 0.194 0.295 0.502 −0.872 0.722 0.404 −0.831 0.545 1
SHEI 0.084 −0.298 0.184 0.470 0.042 0.232 0.505 −0.663 0.522 −0.101 −0.856 0.696 0.669 1

AI 0.022 0.012 −0.161 0.045 −0.021 −0.042 −0.406 0.166 −0.393 0.121 0.276 −0.086 −0.131 −0.620 1
a The bold-faced numerical values indicate a significant relationship at a level of p < 0.01. b Abbreviations for land use and landscape metrics are listed in Table 2.
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Table A3. Values of regression coefficients from PLSR models describing the relationships between land
use/landscape metrics and individual water quality parameters in high flow seasons in each eco-region.

pH EC DO COD CODMn NH3N NO3N TN TP F− Cl− SO 2−
4

Zone 1 (N = 10)
AR 0.173 0.165 0.209 0.253 0.207 0.107 −0.006 0.340
FO 0.006 −0.146 0.054 −0.199 −0.541 0.044
GR −0.138 −0.367 −0.217 −0.750 −0.393
WA 0.645 0.064 −0.462
UR 0.400 −0.045 0.098 0.378 −0.323
UN 0.222 0.029 0.278 0.205 0.190 0.301
PD 0.036 0.059 0.336 −0.094
LPI 0.087 0.076 0.208 −0.207 −0.151 −0.045
ED −0.173 0.264 0.246 0.186 0.736 0.307
LSI −0.605 0.338 −0.206

CONTAG 0.170 −0.171 −0.172 −0.201 −0.335 −0.523
IJI 0.184 −0.076 0.052 0.708 0.588

SHDI 0.122 −0.097 −0.052 0.259 0.396 −0.477 −0.697
SHEI −0.299 0.009 −0.291 −0.184 −0.790 −0.139

AI 0.261 −0.289 −0.231 1.101 0.970 −0.153

Zone 2 (N = 23)
AR 0.163 0.067 0.547 0.007 — —
FO −0.440 0.047 0.164 −0.034 — —
GR 0.231 0.280 −0.065 −0.401 −0.103 −0.243 −0.245 −0.206 — —
WA −0.106 −0.029 — —
UR 0.362 −0.210 0.176 0.478 — —
UN 0.539 0.125 0.553 0.301 — —
PD 0.079 −0.017 0.080 −0.191 −0.033 0.266 0.249 — —
LPI 0.053 −0.164 0.254 0.228 −0.146 — —
ED −0.105 −0.054 −0.068 −0.001 0.341 0.247 0.307 — —
LSI −0.054 — —

CONTAG 0.059 0.033 — —
IJI 0.183 0.315 0.081 0.220 −0.460 0.588 — —

SHDI 0.023 −0.060 −0.113 0.079 −0.368 −0.357 — —
SHEI 0.052 −0.044 −0.342 — —

AI −0.071 — —

Zone 3 (N = 32)
AG −0.195 0.180 −0.235 0.047 0.255 0.204 0.278 0.242 0.266 — —
FO 0.207 −0.152 0.190 −0.065 0.266 −0.371 −0.209 −0.275 −0.228 −0.190 — —
GR −0.029 — —
WA −0.371 −0.153 — —
UR 0.311 0.061 0.115 0.444 — —
UN 0.181 0.085 — —
PD 0.053 — —
LPI −0.105 −0.073 0.169 −0.428 −0.335 0.100 — —
ED 0.062 −0.121 0.012 0.382 — —
LSI 0.168 0.180 −0.111 0.202 — —

CONTAG 0.106 −0.076 0.123 0.003 0.097 — —
IJI −0.179 0.188 0.224 −0.137 −0.104 — —

SHDI 0.022 −0.099 0.063 −0.044 0.041 −0.099 — —
SHEI −0.138 −0.239 −0.107 −0.127 — —

AI −0.048 −0.376

Zone 4 (N = 12)
AG −0.037 0.225 0.266 0.233
FO 0.067 0.249 −0.291 −0.299 −0.388 −0.140 −0.189
GR 0.758 0.179 −0.168 −0.322
WA −0.571 −0.494 −0.153 0.168
UR 0.216 0.224 0.444
UN −0.365 0.187 0.004 0.391 0.268 0.585
PD −0.058 0.347 0.269 0.245 0.349 0.367
LPI 0.086 −0.054
ED 0.057 0.376 0.319 0.175 0.638 0.468 0.382
LSI 0.098 0.222 −0.234 0.322 0.202

CONTAG −0.366 0.014 −0.146 −0.132 −0.184
IJI −0.202

SHDI 0.316 0.249 −0.171
SHEI −0.121 0.371 −0.201 −0.246 −0.215 −0.167

AI −0.220 0.298 −0.248 0.081 −0.012 −0.376

Zone 5 (N = 9)
AR 0.100 −0.235 −0.097 0.097 0.289 0.267 — —
FO −0.024 −0.023 — —
GR −0.135 −0.209 −0.160 — — −0.116
WA 0.092 0.131 0.056 0.327 — —
UR −0.387 0.126 0.293 0.451 0.235 — — 0.105
UN −0.071 0.249 — —
PD −0.100 −0.103 — —
LPI 0.938 −0.073 −0.137 −0.182 −0.314 −0.561 0.472 — —
ED −0.068 0.119 — —
LSI 0.152 0.113 0.410 — — 0.202

CONTAG 0.104 0.023 −0.012 — —
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Table A3. Cont.

pH EC DO COD CODMn NH3N NO3N TN TP F− Cl− SO 2−
4

IJI 0.154 — — 0.133
SHDI 0.235 0.287 0.116 0.287 0.793 0.391 — —
SHEI −0.115 0.022 −0.034 — —

AI −0.090 −0.133 −0.016 — —

The key predictors with the VIP values above 1 in the optimal models are in bold; “— —” means no valid model
was found for this water quality variable; Abbreviation of land use/landscape variables are listed in Table 2.

Table A4. Values of regression coefficients from PLSR models describing the relationships between
land use/landscape metrics and individual water quality parameters in normal flow seasons in
each eco-region.

pH EC DO COD CODMn NH3N NO3N TN TP F− Cl− SO 2−
4

Zone 1 (N = 10)
AR 0.085 0.167 −0.216 −0.297 0.317 0.040 — —
FO −0.043 −0.159 0.211 −0.128 −0.050 −0.334 0.339 −0.023 −0.075 — —
GR −0.138 0.259 0.025 — —
WA 0.655 0.282 0.221 −0.237 0.138 −0.392 — —
UR 0.206 0.081 −0.332 0.306 0.624 −0.006 −0.073 0.066 — —
UN 0.302 −0.182 0.409 — —
PD −0.046 −0.036 0.066 0.288 −0.009 0.077 0.082 1.024 — —
LPI 0.160 0.184 −0.217 0.251 0.431 −0.100 — —
ED −0.089 −0.169 0.322 0.373 −0.229 −0.215 0.269 −0.220 — —
LSI −0.299 −0.079 0.076 −0.299 0.132 0.094 0.019 — —

CONTAG −0.289 −0.290 0.166 0.224 −0.256 0.216 0.841 — —
IJI 0.235 −0.013 0.066 0.245 0.170 0.103 −0.078 0.641 — —

SHDI 0.243 0.171 −0.055 0.235 0.041 0.097 0.962 — —
SHEI 0.098 −0.184 −0.120 −0.214 −0.076 −0.272 −0.904 — —

AI 0.321 0.032 −0.140 −0.086 −0.153 −0.254 −0.026 −0.253 — —

Zone 2 (N = 23)
AR 0.230 −0.023 0.240
FO 0.076 −0.151 0.189
GR 0.269 0.192 −0.136 −0.503 −0.073 0.165 −0.058 −0.062
WA 0.249 −0.190 0.169 −0.119 −0.203 −0.039
UR 0.254 −0.198 0.300 0.111 −0.111 0.169 −0.098 0.225 0.429
UN −0.397 −0.127 0.694 0.083 0.344 0.144 0.249 −0.238
PD −0.028 0.163 −0.057 −0.113 −0.008 0.192 0.201 0.043 −0.265
LPI −0.186 −0.099 0.020 0.115 0.115 0.202 −0.176
ED 0.003 0.013 −0.013 −0.055 0.025 0.201 0.212 0.003 0.069
LSI 0.214 0.197 −0.28

CONTAG −0.083 0.046 −0.058 0.035 0.056 0.058 0.094
IJI −0.048 0.168 −0.161 −0.190 −0.367 −0.157

SHDI 0.174 0.085 −0.069 −0.098 −0.053 −0.087 −0.388 −0.35
SHEI −0.289 0.056 0.046 −0.024 −0.219 −0.073 0.210

AI 0.575 0.195 0.050 0.249 0.007 −0.407 −0.259

Zone 3 (N = 32)
AR −0.189 0.249 −0.223 0.136 −0.049 0.316 0.278 0.310
FO 0.202 −0.269 0.201 −0.147 0.095 −0.178 −0.213 −0.274 −0.300
GR 0.587 0.582 0.191 0.134
WA −0.190 −0.013 0.247
UR −0.123 −0.291 −0.259
UN 0.152 0.372 0.112
PD −0.181 −0.193 0.188 −0.181 −0.408
LPI −0.104 0.009 −0.114 0.153 0.168 −0.024 −0.180 −0.037 −0.020 0.120 −0.107
ED 0.054 −0.065 0.014
LSI 0.069

CONTAG −0.082 0.135 −0.065 0.007 0.024 0.320 0.169 0.100 0.112
IJI 0.093 −0.189 0.117 −0.234 −0.328 −0.121

SHDI 0.078 0.049 0.087 0.025 −0.049 0.307 0.144 0.042 −0.045 0.206
SHEI 0.086 −0.111 0.081 0.038 0.017 −0.291 −0.032 −0.129 −0.107

AI −0.029 0.018 −0.039 0.119 0.015

Zone 4 (N = 12)
AR 0.062 0.074 0.038 0.004 0.062
FO −0.036 0.064 −0.181 −0.233 0.192 −0.426 0.069
GR −0.124 −0.020 0.161 0.188 −0.359 −0.389
WA −0.240 −0.280 −0.198 −0.102 0.320
UR 0.220 −0.126 0.125 0.017 0.175 0.023 0.040 0.189
UN −0.054 0.205 −0.160
PD 0.044 0.241 −0.12 0.130 0.292 0.287 0.235 0.349 0.391 −0.05
LPI 0.026 −0.092 0.065 −0.057 −0.053 −0.018 −0.065 −0.135
ED 0.028 0.232 −0.098 0.112 0.291 0.331 0.229 0.435 0.448 −0.050
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Table A4. Cont.

pH EC DO COD CODMn NH3N NO3N TN TP F− Cl− SO 2−
4

LSI 0.142 −0.045 0.194 −0.170 −0.153
CONTAG −0.027 −0.125 0.073 −0.109 −0.256 −0.227 −0.051 −0.111 −0.227 −0.230 0.009

IJI 0.316 −0.203 −0.224
SHDI −0.056 0.057 0.057 0.014 −0.007 0.149
SHEI 0.234 −0.239 −0.225 −0.150

AI −0.236 0.257 0.051

Zone 5 (N = 9)
AR 0.228 −0.396 −0.217 0.599 0.705 0.495 0.361 −0.344
FO 0.033 −0.018 −0.187 −0.051 −0.151 0.103 −0.023 0.178
GR −0.038 0.058 0.037 −0.347 −0.329 −0.014 −0.082 −0.026
WA 0.057 0.015 0.078 −0.049 −0.058
UR −1.167 −0.472 0.100 0.168 −0.202 0.135 −0.065 −0.298 0.395 −0.041
UN −1.715 −0.204 0.225 −0.469 −0.467 0.191 −0.639
PD −0.420 0.005 0.176 −0.016 0.038 0.022 −0.083
LPI 0.130 0.235 −0.153 −0.084 −0.329 0.059 0.147
ED −0.039 0.064 0.079 0.030 0.146 −0.016 −0.114 0.118
LSI 0.188 −0.195 0.199 0.091 0.049 0.319

CONTAG 0.059 −0.002 −0.071 0.103 0.025 0.064 0.121
IJI −0.434 0.225 0.098 −0.156 0.011 0.023 −0.006 −0.026

SHDI 0.180 −0.123 0.370 0.397 0.347 0.086 0.022
SHEI −0.056 −0.036 0.080 −0.229 −0.023 −0.035 −0.232

AI 0.081 −0.058 −0.072 −0.063 0.035 0.101 −0.011

The key predictors with the VIP values above 1 in the optimal models are in bold; “— —” means no valid model
was found for this water quality variable; Abbreviation of land use/landscape variables are listed in Table 2.
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Figure A1. Cont.
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Figure A1. Spatial variations of water quality parameters during different seasons in Songhua
River Basin.
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