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Abstract

Cell mobility plays a critical role in immune response, wound healing, and the rate of cancer

metastasis and tumor progression. Mobility within a three-dimensional (3D) matrix environ-

ment can be characterized by the average velocity of cell migration and the persistence

length of the path it follows. Computational models that aim to predict cell migration within

such 3D environments need to be able predict both of these properties as a function of the

various cellular and extra-cellular factors that influence the migration process. A large num-

ber of models have been developed to predict the velocity of cell migration driven by cellular

protrusions in 3D environments. However, prediction of the persistence of a cell’s path is a

more tedious matter, as it requires simulating cells for a long time while they migrate through

the model extra-cellular matrix (ECM). This can be a computationally expensive process,

and only recently have there been attempts to quantify cell persistence as a function of key

cellular or matrix properties. Here, we propose a new stochastic algorithm that can simulate

and analyze 3D cell migration occurring over days with a computation time of minutes, open-

ing new possibilities of testing and predicting long-term cell migration behavior as a function

of a large variety of cell and matrix properties. In this model, the matrix elements are gener-

ated as needed and stochastically based on the biophysical and biochemical properties of

the ECM the cell migrates through. This approach significantly reduces the computational

resources required to track and calculate cell matrix interactions. Using this algorithm, we

predict the effect of various cellular and matrix properties such as cell polarity, cell mechan-

oactivity, matrix fiber density, matrix stiffness, fiber alignment, and fiber binding site density

on path persistence of cellular migration and the mean squared displacement of cells over

long periods of time.
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Introduction

Cell migration through three-dimensional (3D) fibrous matrix environments is essential to a

number of biological processes including immune response and cancer metastasis [1–4]. Great

leaps have been made in understanding the forces that drive the migration of cells through 3D

environments [5–7]. Cell migration has been shown to strongly depend on the number of cell-

matrix adhesion sites [8], the mechanical activity of the cells [9], the stiffness of the cells [10],

the stiffness of the cell nucleus [11], the stiffness of the matrix [12], the porosity of the matrix

structure [12], matrix fiber density [8], matrix fiber alignment [13], presence of signaling mol-

ecules [14], and the presence of matrix modifying enzymes [15]. Numerous experimental and

theoretical studies describe the individual or combined influence these cellular and extracellu-

lar factors have on the mechanisms, energetics, and ultimately the rate of cell migration within

unique tissue environments [16–18]. However, the story describing cell migration is not com-

plete, and assimilation of how all these concomitant factors influence cell migration within a

given environment is necessary for a more comprehensive understanding. While the indepen-

dent effect of cell-matrix adhesion sites, matrix stiffness, matrix porosity, and the presence of

matrix restructuring or degrading enzymes on cell velocity is fairly well understood by now

[2], their combined effect on the velocity is hard to estimate and quantify based on available lit-

erature. In addition, the individual and combined effects of the above-mentioned parameters

on the persistence length of the migrating cell remain poorly characterized. The directional

persistence of the cell’s path is crucial in determining how far a cell can migrate within a cer-

tain matrix environment in a given amount of time and is as critical as the cell speed in pre-

dicting the time scales of key biological processes dependent on cell migration.

The idea that the path persistence of cell migration is an important cell mobility characteris-

tic is not new [19,20]. There are a few results available that quantitatively or qualitatively

describe the dependence of persistence length of cells migrating in 3D environments on factors

such as cell-matrix binding site density [8], matrix density [21], matrix fiber alignment [13,22],

matrix degrading enzymes [21,23], and cell polarity [24]. However, obtaining quantitative

results over a range of parameter values for a diverse set of factors, especially for 3D cell migra-

tion, is extremely tedious. Firstly, quantifying the path persistence of cells with high reliability

requires tracking the cells along a trajectory at least 8 to 10 times their persistence length. For

slow moving cells, this can be immensely time-consuming experimentally. Secondly, isolating

the effects of the various factors from one another to understand their individual role is a diffi-

cult task in biological experiments, as the factors can be interlinked in complex ways. This

complication can be solved by the use of computational models that can extract the effect of

individual parameters from within a large, interdependent parameter space over a wide range

of parameter values [16]. With this in mind, there have been recent attempts to use computa-

tional modeling to predict the persistence length of cell migration as a function of multiple cel-

lular and matrix properties. There are two main computational approaches that have been

explored for this purpose– 1) a cellular-potts based approach where the elements of the matrix

are placed on a 3D orthogonal lattice and the cell navigates through this grid space [23,25] and

2) an off grid model with matrix elements distributed randomly within a 3D space to recreate

the microscale architecture of the matrix and the cell navigating through this environment

based on its interactions with the matrix elements [26–28]. While a lattice-based model can

provide information regarding the influence of various matrix properties such as fiber density,

matrix porosity and to some extent fiber alignment, it is not an accurate description of the

matrix architecture. The matrix architecture that includes the number of crosslinks per fiber

and fiber angle along with fiber density and fiber alignment governs additional matrix proper-

ties such as stiffness [29] and influences cell polarity [30]. For this reason, off-lattice models
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can provide a more accurate and holistic model of cell migration in 3D environments but suf-

fer extensively from the high computing power required to keep track of cell interactions with

predefined and randomly oriented matrix elements. This can result in exceedingly long simu-

lation times to obtain reliable persistence length data.

Here, we present an off-lattice model for simulating cell migration in 3D environments,

where the matrix elements are not predefined, but stochastically generated to mimic the

microscale matrix architecture as required to update the current state of the migrating cell.

This reduces the need to compute the cell position and interaction with a large number of pre-

defined matrix elements and allows for rapid simulation of long timescale cell migration tra-

jectories. The model also incorporates a large number of previously developed microscale cell-

matrix interaction models and empirical relations between known interacting cell and matrix

properties from available literature. Using this multiscale, stochastic simulation approach, we

have developed an extremely detailed, versatile and fast simulation platform to predict the

migration of cells in 3D environments. We use this platform to predict the path persistence of

migrating cells as a function of a variety of individual cell and matrix properties.

Results

Follow the fiber model

The model describes cell migration using a “follow the fiber” strategy [3] based on the mesen-

chymal style of migration, summarized in Fig 1. The cell moves by crawling along supporting

matrix fibers that act as tracks to guide the cell. With this basic outline, we stochastically recre-

ate how a cell interacts with its environment and gain valuable insight into how changes to the

cell and its surroundings affect its overall motility.

At any given stage of this process, the cell exists in one of three distinct phases; outgrowth,

retraction, or contraction [27]. The cell enters the outgrowth phase after selecting a single fiber

from a set within its immediate surroundings. A pseudopod extends along the chosen fiber in

search of ligands distributed along the fiber’s length. If binding sites are too scarce, the cell

enters the retraction phase. Here the pseudopod retracts while the cell simultaneously selects a

new fiber and extends a new pseudopod along it, reentering the outgrowth phase. Retraction

can also occur spontaneously due to the random extension of a new pseudopod, the occur-

rence of which is based on the cell’s mechanoactivity. Pseudopod contraction causes the con-

traction phase to occur only when enough bonds form at the pseudopod tip. As the cell

contracts, it pulls itself the entire length of the pseudopod at a speed determined from the con-

tractile and friction forces experienced by the cell. Relocation then returns the cell to the out-

growth phase. In this model, we assume proteolytic action takes place at a constant rate during

the contraction phase and is parameterized by the viscous friction encountered by the cell dur-

ing motion. Binding sites along fibers, crosslinks between fibers, and fiber orientation are sto-

chastically generated around the cell as it migrates through 3D space (See methods for further

details). The cell’s position and phase are determined at 2 second intervals and the total simu-

lated time is at least 48 hours (S1A–S1D Fig and S2A–S2F Fig).

Using this approach, we are able to rapidly simulate multiple days’ worth of cell migration

and generate tens of thousands of cell trajectories in a matter of hours. This allows us to ana-

lyze the complex relationships between independent and dependent variables and their overall

effect on cell migration. In the following sections, we first validate our model by comparing

our results for binding site density and fiber alignment to experimental observations. We then

use this model to predict cell speed, path persistence, and mean squared displacement as a

function of various cell and matrix properties.
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Effect of binding site density on cell migration

We compare the effect of binding site density predicted in this model to those observed experi-

mentally. In this simulation, binding sites are modeled as the number of individual binding

motifs embedded within a single ECM fiber. Fig 2 shows how the binding site density along a

Fig 1. Follow the fiber migration strategy. A) Cell chooses a fiber to crawl along. B) Cell searches for binding sites by

extending pseudopod along fiber. If it reaches a crosslink, it follows the intersecting fiber. C) If cell finds enough

binding sites it will contract and move along the direction of the extended pseudopod. After contracting, it will

continue searching along the same fiber, unless a secondary pseudopod begins to extend along a neighboring fiber. D)

If a growing pseudopod does not find enough binding sites along a particular fiber, it will retract and choose a new

fiber to search along.

https://doi.org/10.1371/journal.pone.0207216.g001

Fig 2. Effect of binding site density. Plots for vavg, Lp, μ, and α as a function of increasing binding site density A) Cell

speed B) Random motility coefficient C) Alpha D) Persistence length. Cgel = 3.7 mg/ml, ρfiber = 1.0 x 10−3 fibers/μm3,

AI = 0, and tsearch = 16s. Simulation time = 60 hrs. n = 20. Solid blue lines are polarized cells (◼), dashed red lines are

nonpolarized cells (●). Error bars represent ± SEM. Splines added to emphasize trends.

https://doi.org/10.1371/journal.pone.0207216.g002
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fiber affects cell migration, with gel concentration, fiber density, alignment index, and mean

pseudopod extension frequency held constant. Binding site density is linearly varied from 5 to

8 binding motifs per fiber monomer. The resulting cell trajectories are analyzed to get cell

speed, persistence length, and mean squared displacement as described in the methods

section.

We observe a biphasic relationship for cell speed with binding site density (Fig 2A), which

matches qualitatively to what has previously been seen experimentally [31]. Our model corrob-

orates the standard explanation for this biphasic trend, where at lower binding site densities

the cell often gets stuck searching for suitably large adhesion clusters required for outgrowth

and contraction. As binding site density increases and these clusters grow larger, the cell’s

velocity decreases as the friction due to binding site dissociation increases. Our model further

predicts that the increased binding site density also prevents longer pseudopod extensions,

thus decreasing the contraction force generated by the cell [32].

Persistence length also shows a biphasic relationship with binding site density (Fig 2B),

which quantitatively matches the experimental data from Burgess et al. [8]. They propose that

past the optimum cell-substratum adhesion, persistence length begins to decrease as the cell

becomes hyper adherent to the substrate at higher binding site densities. This results in com-

peting pseudopods that cause direction changes that bring about the lower persistence. Simi-

larly, our model shows that persistence length is greatest at intermediate binding site densities,

where the cell retracts less often and follows the supporting fiber for longer distances (S4 Fig).

However, as the binding site density increases, sufficient binding sites for contraction and for-

ward movement can be found readily, thereby decreasing the final extension length of the

pseudopod. This increases the total number of pseudopod extensions required to traverse the

distance between two neighboring crosslinks along a fiber, in turn increasing the likelihood of

a secondary pseudopod extension event before reaching the crosslink and thus lowering the

path persistence.

To complement cell speed and persistence length, we also characterize the random motility

coefficient, μ, as a measure of cell dispersion over longer periods of time and the exponent, α,

as a measure of anomalous diffusion. These values are quantified by fitting a curve to the mean

squared displacement described by hR2i = μτα. We find the random motility coefficient

matches the experimental data from Burgess et al. [8], both qualitatively and quantitatively

(Fig 2C). The biphasic dependence of the random motility coefficient on binding site density

comes from the contribution of both cell speed and persistence. The densities at which speed

and persistence are highest correspond to where the rate of cell dispersion is also greatest. The

alpha exponent increases from ~1.0 to 1.3, indicating that the cell’s migration becomes slightly

more super-diffusive as binding site density increases (Fig 2D). At lower densities, the cell gets

stuck more often, due to a lack of sufficient binding sites along the fiber. Whereas at higher

densities, reduction in the number of pseudopod retractions allows for comparatively longer

step lengths throughout the cell’s trajectory.

Cell polarity, defined by a preferential pseudopod extension at the front end of the cell, only

affects the position of the extending pseudopod on the cell’s membrane. This has no effect on

the cell’s instantaneous velocity or the time the cell is stuck at similar binding site densities.

This is consistent with experimental observation of 3D cell migration [33]. Persistence length

and the random motility coefficient show a slight increase for polarized cells. Cells that main-

tain their polarity follow a more persistent path due to fewer oscillations and directional

changes caused by new pseudopods extending from random regions of the cell membrane.

Because instantaneous cell speed is unaffected by cell polarity, the increase in the random

motility is solely due to the increased persistence length.
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Effect of fiber alignment on cell migration

To study the effect of fiber alignment, the alignment index is varied so that the angular devia-

tion of fibers along the alignment direction ranges from 20 degrees on average to completely

random. Enhanced cell migration due to aligned fibers has been observed experimentally

[13,22], and is often found in malignant tumors [22,34]. Our simulations show that a cell

polarity induced directional bias is essential for this trend to emerge. Without any such bias

the cell simply oscillates back and forth, limiting the cell’s long-term persistence(S5A Fig). A

similar behavior has been induced experimentally [24] by the disassembly of microtubules,

which are necessary for the regulated distribution of inhibitory signals of protrusions at the

trailing end of the cell. With our simulation, we observe oscillations with a similar periodicity

between 45–170 minutes in cells with no defined leading edge (S5B and S5C Fig).

We further find that fiber alignment predominately affects cell migration efficiency by act-

ing on the persistence length rather than cell speed. Cell speed shows a minor decrease for

both polarized and non-polarized cells (Fig 3A), due to a decrease in matrix stiffness with

lower crosslink densities. Fiber alignment has the greatest effect on persistence for polarized

cells (Fig 3B). As with persistence length, the random motility coefficient was consistently

higher for polarized cells (S6A Fig). Alpha was found to increase more for polarized cells,

again showing how oscillations affect the cell’s diffusivity (S6B Fig).

Multi-factor analyses

The main advantage of this model is its ability to simultaneously simulate a wide range of val-

ues for several independent factors and analyze their combined effect on cell motility. Here we

combine multiple independent variables to predict how they collectively influence cell speed,

persistence length, and mean squared displacement.

Effect of collagen concentration on cell migration. The gel concentration of the collagen

matrix is a function of both the mean fiber diameter and fiber density (Eq 5). Experimentally,

these two parameters can be independently varied [35–38], but the majority of migration

assays only look at the overall effect of gel concentration, rather than the individual role of

either fiber diameter or density on cell motility [21,39]. Here we simulate the effect of these

two parameters by varying the fiber diameter and density independently, while keeping the gel

concentration within 0.5–6 mg/ml, Fig 4A. All other parameters are held constant in this

analysis.

Fig 3. Effect of fiber alignment. Plots for vavg and Lp as a function of increasing alignment index A) Cell speed B)

Persistence length. Cgel = 3.7 mg/ml, ρi = 6 sites/monomer, ρfiber = 1.0 x 10−3 fibers/μm3, and tsearch = 16s. Simulation

time = 48hrs. n = 20. Solid blue lines are polarized cells (◼), dashed red lines are nonpolarized cells (●). Error bars

represent ± SEM.

https://doi.org/10.1371/journal.pone.0207216.g003
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The biphasic trend for cell speed emerges as an effect of the fiber diameter, whereas increas-

ing fiber density only results in a minor decrease in cell speed. The strong dependence of the

biphasic trend on fiber dimeter is because the increased surface area of the fiber exposes the

cell to more binding sites embedded within the collagen monomers, thus increasing the num-

ber of bonds the cell forms with the underlying fiber. This biphasic trend with gel concentra-

tion has often been seen experimentally in 2D and 3D migration studies [40–42], and has been

attributed to the same balance between forward and rearward traction forces as with binding

site density. Our model shows that steric hindrances from increased fiber density have signifi-

cantly less effect on the overall migration. Persistence length and the random motility coeffi-

cient also show the same biphasic trend (Fig 4C and 4D) with increasing fiber diameter, which

can also be explained by the same effect seen with binding site density.

Effect of cell mechanoactivity on cell migration. We define cell mechanoactivity by the

frequency at which the cell spontaneously extends new pseudopods. Here we look at its effect

on cell motility at different binding site densities by varying the frequency of pseudopod exten-

sions from 0.06–0.5 s-1. Cell speed decreases with increasing extension frequency (Fig 5A),

with the greatest changes seen in cells migrating in ECMs with more moderate binding site

densities. Because the existing pseudopod retracts as the new one extends, the inverse of pseu-

dopod extension frequency, or the average search time, limits the length to which a pseudopod

can grow. These shorter pseudopods exhibit a weaker contractile force [32] (see methods), and

instantaneous velocity is reduced. Little change is observed in cell speed for cells migrating in

high binding site density ECMs because the higher density already limits the length of the

extending pseudopod. The same trend is seen with the random motility coefficient (S7 Fig).

Persistence length is also strongly influenced by the average pseudopod extension length. In

less adherent environments, less active cells have the opportunity to fully extend their pseudo-

pods, but as the cell becomes more active, the average extension length decreases. Therefore,

we observe that persistence length decreases as the mechanoactivity increases for cells migrat-

ing in these environments. At higher densities, the extension length of the pseudopod is

Fig 4. Effect of collagen concentration. Contour plots for gel concentration, vavg, Lp, and μ as a function of increasing

fiber diameter and density A) Gel concentration B) Cell speed C) Persistence length D) Random motility coefficient. ρi

= 6 sites/monomer, ρfiber = 1.0 x 10−3 fibers/μm3, AI = 0, and tsearch = 16s. Simulation time = 48hrs. n = 20. 10 contour

levels automatically chosen by MATLAB are used.

https://doi.org/10.1371/journal.pone.0207216.g004
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already limited, thus providing a relatively flat relationship similar to that of cell speed, Fig 5B.

The crossover of blue and yellow lines suggest that higher pseudopod extension frequency is

detrimental at lower binding site densities. This may explain the need for the mesenchymal to

amoeboid transition seen in some cancer cells. With these cells, amoeboid migration usually

prevails in an ECM of low stiffness with few adhesion sites [43,44], and can be brought about

by conventional chemotherapy, or treatment with integrin-blocking antibodies or protease

inhibitors [44,45]. By switching to amoeboid migration, cell migration is no longer dependent

on the binding site density, allowing the cell to maintain its migratory ability.

Motility phenotypes in multi-parameter space. Fig 6 illustrates the combined effect of

fiber alignment, fiber density, and fiber diameter on cell speed, persistence length, random

motility coefficient, and alpha. The scatter plots are obtained from using 3,000 simulated cells,

each with a different set of randomized initial conditions. Each point represents the average on

Fig 5. Effect of cell mechanoactivity. Plots for vavg, Lp, μ, and α as a function of increasing cell mechanoactivity A)

Cell speed B) Persistence length. Cgel = 3.7 mg/ml, ρfiber = 1.0 x 10−3 fibers/μm3, and AI = 0. Simulation time = 48hrs.

n = 20. Dotted red lines are 5.2 motifs/monomer (◼), solid blue lines are 6 motifs/monomer (●), dashed yellow lines

are 8 motifs/monomer (◆). Error bars represent ± SEM.

https://doi.org/10.1371/journal.pone.0207216.g005

Fig 6. Combined effect of fiber alignment, fiber density, and fiber diameter. A) combined effect on cell speed B)

combined effect on persistence length C) combined effect on random motility coefficient D) combined effect on alpha.

Color bars show corresponding value for each parameter. Each point is the average of 10 separate simulations.

https://doi.org/10.1371/journal.pone.0207216.g006
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10 separate simulations and colored according to its value. Simulations for all 30,000 trajecto-

ries were performed in parallel and completed in less than 4 hours. While these plots highlight

the trends seen above, they provide greater insight into how these trends may change with the

additional influence of other parameters. This analysis also underlines the main advantage of

our model, in that it can rapidly simulate tens of thousands of cells in a matter of hours to pre-

dict the combined effect of multiple variables on each measure of motility.

We then classify each point as either high or low motility based on the product of cell speed

and persistence length, and group each set into clusters. In Fig 7, it is visualized with only 3

parameters in 3D, but this technique can be extended to any number of parameters to be used

in the analysis. The blue points represent the cells in the top 85% of motility and the red points

represent the bottom 15% of motility. The line connecting the centroids of the separate clusters

indicates the fastest route to switch between high and low motility states, and its slope specifies

how much each parameter should be adjusted. Fig 7C and 7D show the fastest route to switch-

ing motility phenotype when one of the parameters is restricted to a narrow range of values.

This information can be extremely valuable for identifying cellular or extra-cellular targets to

rapidly alter cell motility in the presence of constraints on the degree to which biophysical

parameters can be controlled. This can also provide an estimate on the potential approach cells

might take in order to transition from one motility phenotype to another. The results in Fig 7

are specific to the other parameter values held constant in these simulations and are only rep-

resentative of a mesenchymal migration process. However, this tool can be applied to actual

experimental and clinical scenarios to better understand the interplay between multiple

parameters and help determine the smallest alterations necessary to transition between motil-

ity states.

Incorporating temporal changes in matrix architecture

This model can be adapted to simulate dynamic environments with multiple cell types. We

demonstrate this by simulating a peculiar scenario—the migration of one cell type towards a

Fig 7. Cluster classification of high and low states of diffusion. Red spheres represent top 85% and bottom 15% of

diffusivity. A) diffusivity clusters over entire range of fiber alignment, fiber density, and fiber alignment B) diffusivity

clusters with restricted fiber density C) diffusivity clusters with restricted fiber diameter D) diffusivity clusters with

restricted fiber alignment. Each point is the average of 10 separate simulations.

https://doi.org/10.1371/journal.pone.0207216.g007
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stimulus, inadvertently reorganizing the surrounding matrix and causing a second cell type

that is inert to the stimulus to migrate away from the origin of the stimulus. In this example,

both cell types have the same mechanical interactions with the ECM, while only one of them

responds to the external stimulus by increasing its mechanoactivity towards the source of the

stimulus. Initially, the cells are spatially distributed as shown in Fig 8A, with the stimuli

responsive cells distributed evenly throughout the matrix, and the stimuli inert cells (blue)

clustered in a plane 100 μm away from the stimulus. As both these cell types migrate through

the matrix, they modify the local environment by degrading matrix fibers and reducing the

surrounding stiffness. Fig 8A–8D show how the stimuli responsive cells migrate towards the

stimulus, altering the matrix along their path and driving the inert cells to migrate from the

softened matrix into the surrounding stiffer regions.

Discussion

Predictions of cell motility

We have described above how the speed and persistence of cell migration varies as a function

of binding site density, fiber alignment, gel concentration, cell mechanoactivity, cell polarity,

and the combined effects of fiber alignment, fiber diameter, and fiber density. Moreover, we

believe this is the first statistically reliable prediction of cell persistence length for cell migra-

tion within physiologically relevant matrix environments (cell and matrix properties summa-

rized in Table 1). It is important to note that the cell motility trends shown here are limited to

a follow-the-fiber cell migration strategy within fibrous matrix environments. Additionally

only a small subset of parameter values are tested. Hence the trends generated cannot be gen-

eralized for all cell migratory behaviors. However, the equations or empirical relations we use

to govern the interdependence of the various factors on one another, as well as the rules for

pseudopod extension, retraction, or contraction are based on detailed theoretical formulations

or experimental observations described in literature. If additional evidence for more detailed

mechanisms of pseudopod driven motility is discovered in the future, the model can be modi-

fied to account for the altered rules by making only minor changes to the algorithm.

Fig 8. Cell-cell interaction. A) Initial cell position B) Cell position after 3 hrs C) Cell position after 6 hrs D) Cell

position after 12 hrs. Red cells are attracted to the gray square; blue cells are inert to signal.

https://doi.org/10.1371/journal.pone.0207216.g008
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Application to experimental analyses

The strength of the algorithm described here lies in its ability to simulate cell migration scenar-

ios occurring over large timescales with little computational cost. To couple this model with

specific experimental observations, one must identify the appropriate experimental parameter

space and relevant cell-matrix interaction rules specific to the cell type being studied. It is pos-

sible that measuring all the various cellular and matrix properties within a given experiment is

unfeasible. In these cases, the low computational cost of the model makes it possible to simu-

late a large variety of scenarios to find the parameter combinations that provide the best fit

between simulated and experimentally observed motility phenotype. This can then be used to

provide insight regarding specific cellular and extracellular properties as well as governing

cell-matrix interactions. Additionally, the model can then be used to determine long-term cell

migration behavior (difficult to track experimentally) within that experimental/clinical setup,

as well as identify targeted modifications of cell and matrix properties to alter cell motility

towards a desired phenotype.

Table 1. Model parameters.

Parameter Definition Value Sources

Acell Surface area of the cell (μm2) Calculated Ellipsoid Geometry

Apseudo Area of the pseudopod in contact with binding zone of local fiber (μm2) ~0.3 [53,54]

AI Fiber alignment index 0–0.99 [55]

Dfiber Diameter of ECM fiber (μm) 0.05–0.435 [56]

F0 Adhesion force for given nb (nN) Calculated Eq 1

Fmax Maximum force a cell can exert on its surroundings (nN) 0.01–10 [57–59]

kb Boltzmann’s constant (m2 kg s-2 K) 1.38 x 10−23

kecm Stiffness of the ECM (N/μm) 0.1 x 10−10–1 x 10−10 in vitro

0.1 x 10−7–10 x 10−10 in vivo

[42,60,61]

kgel Gel Stiffness (Pa) 30–6000 [29]

kI Stiffness of cell-ECM bond (nN μm-1) ~0.25 x 10−9 [62]

koff Cell-ECM unbinding rate under zero force conditions (s-1) 0.1–100 [61,63,64]

kon Cell-ECM binding rate (μm2/s) 10−5–10−3 [65,66]

Lfiber Length of ECM fiber (μm) > 10 [56]

nx Crosslink multiplier (crosslinks/fiber) 2.09–4.439 [29]

s Cell sphericity (ratio of an ellipsoidal cell’s minor to major axis) 0.1–1 [67]

T Temperature (K) 310

tsearch Average time a pseudopod will extend before retracting and a new one begins extending (s) 2–16 [9,68]

Vcell Volume of the cell (μm3) 1000–2000 [69]

vpseudo Pseudopod extension velocity (μm/s) ~0.45 [9]

η ECM viscosity (nN s μm-2) ~10−10 [60]

θa Average orientation angle of all fibers within the matrix (degrees) 0

n1=
2

Cell-ECM bond density at which the generated force is half of Fmax 100 [61]

ρfiber Fiber density of the ECM (fibers/μm3) > 0.002 [70]

ρgel Gel density for a given matrix (based on Dfiber and ρfiber) (mg/mL) 0.5–6 [21,22,27,55]

ρi Binding site density (motifs/ECM monomer) 0–25 [8]

ρmax Number of cell-ECM binding sites needed for pseudopod contraction 150–500 [27]

ρmin Minimum number of cell-ECM binding sites required for cell to extend pseudopod 50–250 [27]

ρX Crosslink density (crosslink/μm3) Calculated

ρXmax Maximum crosslinks/fiber when fibers are aligned randomly 4.439 [29]

σf Standard deviation of the average angle between fibers for a given AI (degrees) 0–70 [55]

ϕp Polarity angle of the cell (degrees) Calculated

https://doi.org/10.1371/journal.pone.0207216.t001
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Applications to treatment and motility manipulation

The large input parameter space that can be accounted for during these simulations makes the

model extremely well suited to study the combined effect of various cellular and extra-cellular

matrix properties in a controlled manner. An example of this is shown in Fig 6 where a 3

parameter space exploring various matrix properties is analyzed for cell migration behavior.

Fig 7 shows how this analysis can be used to determine the best strategies of altering matrix

properties to change the cell migration behavior. A similar analysis can be performed on an n-

parameter space including cellular and matrix mechanical properties, providing insight into

how these properties should be managed in vivo using existing methods to remodel or disrupt

the ECM structure[46–49] or modify cellular polarization [24], integrin expression [46,50], or

pseudopod protrusion frequency [51]. This versatility, incorporation of many possible cell-

matrix interaction parameters, and the ability to rapidly simulate long-term cell migration for

a large number of cells are the key strengths of the proposed algorithm and the described simu-

lation platform. Parameter sweeps for upwards of 50,000 different combinations and genera-

tion of trajectories of individual cells can be run in parallel on computing clusters within a

matter of hours. This ability to simulate cell migration in a diverse set of environments is of

great significance in studying biological processes such as cancer cell metastasis and will help

illuminate new targets and strategies for suppressing the migration of metastatic cancer cells.

Future work

To summarize, we present an off-grid computational model that can simulate cell migration

over long time frames to accurately predict path persistence for cell migration in 3D environ-

ments. The defining feature of this model is that the matrix environment through which the

cell migrates is stochastically generated as needed to update the migration state of the cell (out-

growth, retraction, or contraction). That being said, one of the limitations of the model is that

the stochastic nature of the model does not allow for the cell to have a detailed memory of its

previous interactions with the matrix elements. This makes it difficult to analyze in detail the

cell driven remodeling of the surrounding matrix, and its subsequent effect on secondary cells

passing through the same space. We have explored a potential way to overcome this limitation

as described in the ‘incorporating temporal changes in matrix architecture’ section, where we

coarse grain the influence of individual cells migrating through a region by changing the aver-

age mechanical properties of that region over time. However, for future applications, a more

detailed change in matrix architecture can be incorporated and updated as cells pass through a

given localized region. For example, fiber density or alignment index can be made functions of

the spatial coordinates and these functions can be updated as cells migrate through these

regions. Also, in its current form, the simulations do not account for direct cell-cell interac-

tions. However, since the model simulates the state of each cell within the same time instant, if

two or more cells come within interaction range during a given instant, their states can be

updated accordingly.

We are currently working to incorporate various biophysical and biochemical intra- and

intercellular interactions within the current framework and aim for the future versions of the

algorithm to account for cell-cell interactions, mesenchymal to amoeboid transitioning, cell

death and division, and collective migration. Diffusion of signaling molecules that are known

to govern the mechanoactivity, integrin expression, or polarity of the cell can be incorporated

using a finite difference method to track local concentrations and adjust the cellular response

accordingly. Likewise, activation and deactivation of intra-cellular signaling pathways could be

implemented in a similar manner; however, since it is the mechanical cell-cell and cell-ECM

interactions that underlie migration in our model, only the downstream phenotypic changes
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to the cell would need to be added. Amoeboid migration can occur in an ECM of low stiffness

with few adhesion sites [43,44], and may be brought about by conventional chemotherapy, or

treatment with integrin-blocking antibodies or protease inhibitors [44,45]. Changes to the

model to account for this remain to be made, but could be added by disregarding the follow-

the-fiber scheme, stochastically generating a bleb of an average length in a random direction,

and, finally, assigning a force exerted by the cell on the matrix of sufficient magnitude required

to squeeze through a stochastically generated pore of random size in the direction of the

matrix. While these adaptions to the model are certainly feasible, more experimental evidence

is necessary to test the accuracy of their addition.

Methods

The central algorithm of our simulation is inherently based on the five-step process of mesen-

chymal cell migration [52]. We use these concepts to build a rule-based simulation that deter-

mines what stage of the process the cell is in and when, where, and how fast it will move within

a given time step. Several of the underlying factors governing this process are determined sto-

chastically from their corresponding probability density functions. For example, fiber diame-

ter, ligand distribution, and pseudopod protrusion frequency are some of the factors generated

stochastically. In this section, we will discuss how these parameters are determined, along with

the construction of the migration algorithm.

Stochastic migration algorithm

The flow chart for our simulation process is presented in Fig 9. In the chart, blue boxes repre-

sent the outgrowth phase, green boxes represent the contracting phase, and red boxes repre-

sent the retracting phase. The algorithm begins by defining the constant cell and matrix

parameters, calculating dependent variables, and setting the cell’s initial position and polarity.

After these initial conditions are set, the algorithm loops through the outgrowth and contrac-

tion or retraction phases described previously. Each loop of the process represents a single sim-

ulation time step and corresponds to a predefined period of actual time. The whole sequence is

iterated until the specified simulated time is reached, and then cell speed, persistence length,

and mean squared displacement are calculated from the cell’s trajectory. The major benefit of

this design is that each module of the three phases can easily be altered to account for specific

cell behavior or new experimental evidence. With this setup, we can analyze the combined or

individual influence of the input parameters on overall motility for almost any cell type in any

tissue as long as their specific attributes are known.

Defining cell and matrix properties

To analyze the cell’s migration characteristics, we vary binding site density, gel concentration,

pseudopod extension frequency, and fiber alignment within the range of their physiological

values, see Table 1. The methods used to describe the dependent and independent parameters

of our model are discussed in the following sections.

Total number of binding sites between an extending pseudopod and a matrix fiber.

The binding sites are modeled as binding motifs within the individual fibrils that make up the

matrix fibers. The simulated fibers are divided up into discrete elements of 10 nm in length dl,
into which the binding sites are distributed. To account for the reversible association-dissocia-

tion kinetics, we use a model developed by Litvinov et al. to define the probability that a bond

will be formed between the integrin receptor on the cell and the binding sites on the fibril [27].
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They came up with the following equation based on experimental data,

Pb ¼
kondmax

kondmax þ koff
1 � exp½� ðkondmax þ koff ÞT� ð1Þ
�

where kon is the association rate, koff is the dissociation rate, dmax is the maximum of the recep-

tor or ligand surface density, and T is the contact time between the ligand and the receptor.

Here, we define the contact time to be length of the pseudopod tip divided by the velocity at

which the pseudopod extends. For the range of parameters defined in the simulations, Pb is

approximately equal to
kondmax

kondmaxþkoff
.

Because the cell can only bind to surface peptides, we calculate the average number of bind-

ing sites within the surface area of a given fiber element. We assume the pseudopod touches

half the surface of a cylindrical fiber. The average number of binding sites within each discrete

element dl of the fiber probed by the extending pseudopod is then given by

nb ¼
PbZmZfrIDfp

2LtDt
dl ð2Þ

where ηm is the monomer packing fraction within each fibril and ηf fibril packing fraction

within each fiber, assumed to be 0.9 and 0.7 respectively. ρI is the number of binding sites per

fibril monomer, Df is the fiber diameter generated randomly from the mean diameter based

on the normal distribution with a standard deviation of 0.02 μm, and Lt and Dt are the length

Fig 9. Flow chart for migration algorithm. Blue boxes represent the outgrowth phase, green boxes represent the

contracting phase, and red boxes represent the retracting phase.

https://doi.org/10.1371/journal.pone.0207216.g009
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and diameter of a fibril monomer respectively. The exact number of binding sites in each fiber

element probed by the pseudopod tip is then determined stochastically from the Poisson dis-

tribution, with the mean of the distribution set equal to nb.
Matrix fiber alignment. An alignment index is used to describe how aligned each fiber is

with a default axis of alignment; where when AI = 0 the fibers are completely randomized, and

when AI = 1 they are parallel [55]. Except for when AI is zero, the angle each fiber makes with

the reference axis is assumed to follow a Gaussian distribution, with the standard deviation σf
of the fibers’ angle calculated by

sf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1642lnðAIÞ

p
ð3Þ

where AI is the alignment index. Each time a new fiber is generated, a random angle θf is gen-

erated using the normal distribution with σf as the standard deviation around a mean angle of

0 degrees with the axis of alignment. The direction vector of the fiber is then determined from

θf, a reference vector parallel to the axis of alignment vref, and the distance between fiber cross-

links L, illustrated in Fig 10A. L is defined by a random number generated from the exponen-

tial distribution, where 1ffiffiffiffi
rX3p is the mean length determined from the crosslink density, ρX. The

following equation is then used to calculate the fiber’s unit vector,

vf ¼
v1 þ v2

kv1 þ v2k
ð4Þ

where v1 ¼ Lcos yf
� �

vref
kvref k

and v2 ¼ Lsin yf

� �
vref�vrand
kvref�vrandk

. vrand is a randomly generated vector

used to compute the y and z components of v2. When AI is defined as zero, the components of

the direction vectors for the fibers are simply generated randomly using a uniform random

number generator.

New fibers are only generated when a cell retracts a pseudopod or reaches a crosslink. After

retraction, a new fiber is selected from a number of randomly generated fibers based on the

direction of an external chemical signal or the cell’s polarity and sphericity, Fig 10B. The num-

ber of randomly generated fibers at this point is determined from a Poisson distribution, with

the mean set equal to the fiber density multiplied by the cell’s volume, while their angle distri-

bution is as described above. The cell is in contact with this set of fibers, and after retracting an

existing pseudopod, it can select any fiber in this set to extend a new pseudopod along. At a

crosslink, only one new fiber is generated for the cell’s extending pseudopod to follow along.

Fig 10. Stochastic fiber generation and selection. A) New fiber selection shown for fiber selection in event of a

crosslink. The new fiber’s direction is determined from its length L, the angle θf it makes with the axis of alignment vref,
and the cross product between vref and vrand. B) In the event of a new pseudopod, multiple fibers (black and green) are

stochastically generated around the cell. The cell then selects the fiber (green) that most closely follows a defined signal

gradient or the cell’s extension vector (see pseudopod extension direction section).

https://doi.org/10.1371/journal.pone.0207216.g010
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Gel concentration. Cell migration assays are typically made using a collagen scaffold

comprised of collagen I hydrogel of varying concentrations [22,55,71]. In our simulation, we

vary gel concentration as a function of fiber diameter and fiber density so that it falls within

the ranges of those used in experimental cell migration studies [21,22,27,55]. The matrix in

our simulation represents type I collagen fibers, consisting of hierarchical levels of monomers

and fibrils bundled together to form thicker fibers. The given gel concentration is calculated

from the average size of the surrounding fibers, which is determined from the molecular

weight of tropocollagen and an assumed monomer packing fraction (ηm) of 0.9 and fibril pack-

ing fraction (ηf) of 0.7. This conversion can be reduced to the following equation,

Cg ¼
DfZmZfrFmtLF

Dt
2ðLt þ 0:067Þð6:022� 108Þ

ð5Þ

where Df is the fiber diameter, Dt is the diameter of a single tropocollagen, ρF is the fiber den-

sity, LF is the average length of an individual fiber, and mt is the molecular mass of a tropocol-

lagen. This equation also accounts for the 67 nm gap between the ends of tropocollagen

molecules [56]. The diameter of fibers in a given matrix is assumed to be normally distributed,

and we use this mean value to stochastically set the diameter of the cell’s selected fiber.

Other fibrillar matrix elements, such as fibronectin or laminin, may be used in place of col-

lagen by modifying the relevant parameter values (i.e. stiffness, diameter, length, crosslink den-

sity, etc.). Likewise, synthetic polymers that form fibrillar structures can also be used, as long

as they can be functionalized with binding sites. Matrices composed of a mixture of fibrillar

elements such as Matrigel would require additional variability in the stochastic generation of

fibers contacting the cell. The follow the fiber strategy currently employed in this model does

not allow for matrices that are not comprised of fiber elements, but could be modified to sim-

ply have the cell search random directions for binding sites stochastically distributed through-

out the matrix.

Pseudopod extension frequency. Pseudopod extension frequency relates to the mechan-

oactivity of the cell and is defined by the inverse of the average time between pseudopod exten-

sions. In our model, we vary this time from 2 to 16 seconds [9,68]. Every time a new

pseudopod begins extending, the existing pseudopod begins to retract [72] and the cell

searches for binding sites along a new fiber using the extending pseudopod. The time at which

a new pseudopod begins to extend is set by a random number generated from an exponential

random distribution with the given mean time between pseudopod extensions. The time

between extensions limits the length that a pseudopod can grow, with a maximum allowable

time of 32 seconds. With the pseudopod extension velocity set to 0.45 μm/s, this effectively

limits the extension length to 14.4 μm. This time is tracked from the beginning of the extension

of a new pseudopod and is incremented every time step the cell is in the outgrowth phase. It is

then reset any time a new pseudopod begins extending due to retraction or contraction.

Cell sphericity. To calculate the cell’s sphericity, we assume it is dependent on the direc-

tion of the fibers surrounding the cell, the number of bonds between the cell and the surround-

ing fibers, and the stiffness of both the cell and the ECM, Fig 11. To simplify the deformation

of the cell, the direction in which the cell is elongated is defined by the average direction of

each of the fibers touching the cell. This elongation vector is then used to define the direction

of the cell’s major axis and subsequently its front and rear poles.

The cell is modeled as a prolate or oblate ellipsoid depending on the alignment of the sur-

rounding fibers. The angles between the elongation vector and the surrounding fibers deter-

mine the ratio between the major and minor axes of the ellipsoid, which is defined by the
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following equation,

a0

b0

¼

Pn
i¼1

cosðyiÞPn
i¼1

sinðyiÞ
ð6Þ

where
a0

b0
is the ratio between the cell’s major and minor axes, θi is the angle between the elonga-

tion vector and each surrounding fiber, and n is the number of surrounding fibers. a0 and b0

are then corrected to account for binding site strength and both cell and ECM stiffness.

Assuming the volume of the cell remains constant, the length of the cell’s major and minor

axis can be calculated using the following equations,

a ¼
3Vcell

4p

ðkcell þ keqÞ
a0

b0

� �
keq þ kcell

0

@

1

A

1
3

ð7Þ

b ¼
3Vcell

4pa2
ð8Þ

where a is the axis parallel to the elongation vector, b is the axis perpendicular to the elonga-

tion vector, Vcell is the volume of the cell, kcell is the cell’s stiffness, and keq is the equilibrium

stiffness of the bonds between the cell and the ECM defined by,

keq ¼
nbkIkecm

nbkI þ kecm
ð9Þ

where nb is the number of bonds between the cell and the ECM, kI is the bond stiffness, and

kecm is ECM stiffness. Here we assume the bonds and ECM behave as Hookean springs, with

the bonds in parallel with each other and in series with the ECM.

Fig 11. Cell sphericity. A) deformation of soft cell in stiff matrix B) deformation of a stiff cell in a soft matrix. The

yellow line represents the cells previous fiber, the black lines are the surrounding fibers, and the red line is the

elongation vector, ve.

https://doi.org/10.1371/journal.pone.0207216.g011
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The sphericity of the cell is then used to define where along the cell membrane a new pseu-

dopod will extend, defined by the following equation,

s ¼
ffiffiffi
p3
p
ð6VcellÞ

2=
3

Acell
ð10Þ

where Vcell is the volume of the cell and Acell is the cell’s surface area.

Pseudopod extension direction. The pseudopod of a completely spherical cell is assumed

to randomly extend anywhere on its surface–as opposed to a limited arc centered about the

major axis of a more ellipsoid cell. This arc is determined from the extension angle defined by,

Yex ¼ 180s2 ð11Þ

The extension vector is randomly defined within this region and later used to determine

the cell’s choice of fiber. In our model, after retraction the cell selects the fiber that most closely

follows its extension vector. We add a bias to simulate polarization of cell, by giving protru-

sions a 80% chance to occur on the leading edge of the cell to simulate microtubule mediation

of pseudopod inhibitory signals in the rear of the cell [24]. A polarized cell will follow the

newly selected fiber along the acute angle to its previous direction 80% of the time, whereas a

non-polarized cell will only follow the acute angle 50% of the time.

Matrix fiber cross-link density. Fiber crosslink density ρX is calculated using the fiber

alignment and fiber density. The number of intersections per unit length of fiber is assumed to

be a function of the fiber alignment and is calculated by,

nX ¼
LfiberrXmaxyf

rXmax þ 4:55
ð12Þ

where Lfiber is the fiber length ρXmax is the maximum number of crosslinks per μm when the

fibers are randomly aligned [29]. The fiber crosslink density is then determined by multiplying

nX by the fiber density.

Matrix stiffness. Gel stiffness is calculated using the bilinear relationship from Lin et al.
[29],

Egel ¼
1039:9nX � 1992:9; nX < 3:5crosslinks=mm

5247:9nX � 16274; nX � 3:5crosslinks=mm
ð13Þ

(

Stiffness of the extra-cellular matrix kecm is then derived by converting gel stiffness to N/μm by

multiplying Egel with a characteristic distance (~ 100 nm to 1 μm which corresponding to the

thickness of an extending pseudopod [53,73]).

Model simulation

The central algorithm underlying our simulation is shown in Fig 9. The random seed for the

simulation is set using the simulation’s file name amended with a timestamped suffix. Depen-

dent and independent parameters are initialized as described above, and the cell’s initial posi-

tion and polarity are set. A random number of local fibers are stochastically generated, and the

distance to the next fiber intersection is set. Each of the fibers generated is then checked against

the cell’s polarity, and the fiber with the minimum angle with the cell’s extension vector is

selected. This fiber is divided into elements of length dl, and binding sites are distributed into

each element using another Poisson distribution with the mean number of bindings given by

Eq 1. At this step, the time until a secondary pseudopod will extend is also set.
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The cell then enters the outgrowth phase in search of clusters of adhesion sites along the

fiber [27]. In this phase, the cell sequentially examines each element along the fiber and forms

bonds with the binding sites located within. Outgrowth will continue as long as a minimum

number of stable bonds ρmin forms along the fiber, but stop if a new pseudopod begins extend-

ing or if not enough bonds are formed [9,68]. Should the pseudopod encounter a fiber inter-

section, a new fiber at a stochastically determined angle is generated and the pseudopod

follows the acute angle between the old and the new fiber with a 99% likelihood.

If during the outgrowth phase the cell does not find enough binding sites or a new pseudo-

pod begins extending, the cell enters the retracting phase [9,27]. In this phase, the cell immedi-

ately stops searching along its current path and extends a pseudopod in a new direction. To

replicate the higher distribution of protrusion inhibitory signals in the rear of the cell [24], the

cell is given a 20% chance of reversing its direction based on the cell’s polarity any time it

retracts an existing pseudopod. New fibers are generated around the cell and a new fiber is

selected using the rules described above. The cell will then return to the outgrowth phase as

the new pseudopod begins extending.

The pseudopod can only contract once it finds a cluster of binding sites greater than ρmax

and forming a stable bond strong enough to withstand the acto-myosin contractile force [8].

The effective force that the cell experiences is calculated assuming the cell protrusion and the

extra-cellular matrix (ECM) fiber network behave as Hookean springs, which is a standard

model for force generation by pseudopods [7,74]. For a given cell protrusion of length l0 and a

protrusion spring constant kcell, the force needed to maintain connection to the ECM can be

written as,

F0 ¼ kcelll0 ð14Þ

We assume F0 is dependent on the number of bonds nb formed between the pseudopod and

the ECM and can be described as a simple hill equation type function with coefficient 1. This

relationship can be expressed as,

F0 ¼
Fmax

P
l0
nb

P
l0
nb þ n1=2

ð15Þ

This is a standard assumption that has been used previously to describe bond density depen-

dent force generation in pseudopods [55,74]. Here n1/2 is the number of bonds at which the

pseudopod generates half its maximum possible force Fmax. Because this force and the pseudo-

pod length are known, the spring constant for the protrusion can be written as,

kcell ¼
F0

l0
ð16Þ

As the pseudopod extends into the ECM and forms bonds at its tip, it forms a two spring in

series system. Assuming that the spring constant of the ECM is given by kECM, the effective

spring constant of this two-spring system can be calculated from the following equation,

�k ¼
kcellkECM

kcell þ kECM
ð17Þ

From this, the effective force on the system can be given by,

F ¼ �kl0 ð18Þ

A stochastic algorithm for accurately predicting path persistence of cells migrating in 3D matrix environments

PLOS ONE | https://doi.org/10.1371/journal.pone.0207216 November 15, 2018 19 / 27

https://doi.org/10.1371/journal.pone.0207216


Substituting from above, we get the following equation,

F ¼
F0kECMl0

F0 þ kECMl0
ð19Þ

With this, the instantaneous velocity is calculated by dividing this force by the total friction,

vi ¼
F

ðfv þ fbÞ
ð20Þ

where fv and fb are the drag forces due to viscous friction and bond dissociation [73], respec-

tively. fv is calculated from the following equations,

fv ¼ 6pZbK 0 ð21Þ

where η is the viscosity of the ECM, b is the equatorial semi-axis of the cell, and K0 is a shape

factor defined by the Eq 21 for the motion of a prolate ellipsoid along the semi-axis,

K 0 ¼
4

3
b

2
� 1

� �

ð2b2 � 1Þ

ðb2 � 1Þ
1=

2

ln bþ ðb
2
� 1Þ

1=
2

h i
� b

b ¼
b
a

� �

ð22Þ

and Eq 22 for the motion of an oblate ellipsoid,

K 0 ¼
4

3
b

2
� 1

� �

bðb2 � 1Þ

ðb2 � 1Þ
1=

2

tan� 1 ðb
2
� 1Þ

1=
2

h i
þ b

b ¼
a
b

� �
ð23Þ

Drag forces due to bond dissociation is calculated by,

fb ¼ nbr
kECMkI

ðkECM þ kIÞkoff
expð
� kteff kI
nbrkBT

Þ ð24Þ

kteff ¼
F0kECM

2l0
3

ðF0kECMl0Þ
2

ð25Þ

where nbr is the number of bonds at the rear of the cell, koff is the bond dissociation rate, kI is

the stiffness of each individual bond, and kteff is the effective equivalent of temperature T times

the Boltzmann constant kB. The distance the cell moves during each time step dt is then calcu-

lated by,

d ¼ dt
R l

0
vdl
R l

0
dl

ð26Þ

The cell’s x, y, and z positions are logged at every 2 second time steps. Once the simulation

is completed, we analyze the random walk characteristics of the cell trajectories for a given set

of initial conditions, and calculate cell speed, path persistence, and root mean squared dis-

placement. The average speed is calculated by fitting a line to the distance traveled vs time

computed at 10 equally spaced time points over the entire simulation time. This velocity

includes all the phases of cell migration including outgrowth and retraction which are non-

motile phases and is the true measure equivalent to the experimentally measured cell migra-

tion speed [21].
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Persistence calculation. Path persistence length LP is determined by using a non-linear

least squares regression to fit a nonlinear curve to the following equation;

hR2i ¼ 2LP
2 L

LP
� 1þ e�

L
LP

� �

ð27Þ

hR2i is calculated by averaging the squared displacement between the ends of non-overlapping

contours of length L that make up the total path. This value is then plotted against increasing

contour lengths L up to 60 μm in length. The maximum length is fixed in order to eliminate

any variance between slow and fast migrating cells.

Mean squared displacement. Mean squared displacement is used to determine the ran-

dom motility coefficient μ and exponent α by fitting the trajectory data to the following equa-

tion;

hR2i ¼ mta ð28Þ

where R is the displacement between time t and t + τ. As with Lp, hR2i is calculated using non-

overlapping segments for the given lag time τ [20]. Mean squared displacements are calculated

for lag times up to 1/8th of the simulation time. The goodness of fit for these values is then vali-

dated by obtaining the coefficient of determination r2 using MATLAB’s curve fitting toolbox.

Simulating cell mediated matrix degradation. We can incorporate cell mediated degra-

dation by locally updating the ECM stiffness in a region of space that a cell has passed through.

We indirectly simulate cell-cell interactions by accounting for how cells degrade the extracellu-

lar matrix they pass through and alter its stiffness by cleaving the crosslinks between fibers. We

assume the number of crosslinks broken is constant and proportional to the number of cells

that passed through a given volume of the ECM (V = 25x25x25 μm3). At the start of the con-

traction phase for a given cell, we calculate the new number of crosslinks with the following

equation,

nX ¼ 2:09þ
2:439

0:2Ncells þ 1
ð29Þ

where 2.09 is the minimum number of possible crosslinks and 4.529 is the maximum to repre-

sent the range given by Lin et al [29]. Ncells is the number of cells that pass through the volume

V around the cell. We then use this new value of nX to determine the stiffness of the ECM sur-

rounding the cell according to Eq 13 as well as the average distance between the crosslinks

along the fibers.

Cluster analysis of motility phenotypes. In order to analyze the combined influence of

multiple parameters on cell motility, we perform a cluster analysis to classify states of high and

low motility. The parameters selected in this analysis are fiber alignment, fiber density, and

fiber diameter. We simulate 3,000 individual cells, with the value of their initial input parame-

ters randomly chosen from within its physiological range. Cell migration for each input

parameter set is repeated 10 times, giving a total of 30,000 simulations. Values for cell speed

and persistence length are calculated in the same way as the individual parameter simulations

and multiplied (vLp) to obtain an effective diffusion coefficient for the migrating cells.

In order to classify the cell migration data into high and low motility phenotypes we use the

top and bottom 15th percentile of calculated diffusion coefficients. We use this analysis to

determine the shortest route to altering cell motility phenotype from the high to the low motil-

ity. This is done by identifying the line joining the centroids of the two motility phenotype

clusters. Motility phenotype clusters and their centroids are obtained using a standard k-

means clustering algorithm. The line connecting the centroids between clusters of high and
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low diffusion is then used to indicate the fastest path between the two states. As this is a binary

classification, this path indicates the discrete changes that should be made to either enhance or

inhibit cell migration, rather than a continuous pathway that will allow for modulated

influence.

Supporting information

S1 Fig. Convergence analysis for simulation time. A) Simulation time vs. cell speed B) Simu-

lation time vs. persistence length C) Simulation time vs. r2 for velocity prediction of fast and

slow-moving cells. D) Simulation time vs. r2 for persistence length prediction of fast and slow-

moving cells. ρi = 5.2 sites/monomer for 5 μm/hr, ρi = 5.75 sites/monomer for 45 μm/hr, and

ρi = 7 sites/monomer for 9 μm/hr. Cgel = 3.7 mg/ml, ρfiber = 1.0 x 10−3 fibers/μm3, AI = 0, and

tsearch = 16s for all simulations. n = 20. Error bars represent ± SEM. Smoothing splines added

to emphasize trends.

(TIF)

S2 Fig. Convergence and curve fitting analysis for time step. A) Time step vs. cell speed B)

Time step vs. persistence length C) Time step vs. random motility coefficient D) Time step vs.

r2 for cell speed prediction E) Time step vs. r2 for persistence length prediction F) Time step

vs. r2 for MSD. ρi = 6 sites/monomer, Cgel = 3.7 mg/ml, ρfiber = 1.0 x 10−3 fibers/μm3, AI = 0,

and tsearch = 16s for all simulations. n = 20. Error bars represent ± SEM. Smoothing splines

added to emphasize trends.

(TIF)

S3 Fig. Algorithm efficiency. Time to simulate cell migration vs. simulated time and number

of cells. A) Time to simulate a single cell. B) Time to simulate a given number of cells at 12 h,

24 h, and 48 h. 12hrs is shown in blue, 24 h is shown in red, and 48 is shown in green.

(TIF)

S4 Fig. Binding site density vs. time spent in each phase. Blue line is retracting phase, red

line is contracting phase, yellow line is outgrowth phase. Optimum migration occurs where

time spent in outgrowth and contracting phases is equal.

(TIF)

S5 Fig. Trajectories of polarized and nonpolarized cell in aligned matrix. A) Blue trajectory

is polarized cell, red trajectory is nonpolarized cell. Axes units are in μm. B) Comparison of

displacement in the direction of fiber alignment vs. time for polarized and nonpolarized cells.

C) Comparison of average velocity in the direction of fiber alignment vs. time for polarized

and nonpolarized cells. Velocity is averaged over 5 minute intervals and then fit with a

smoothing spline. AI = 0.8, Cgel = 3.7 mg/ml, ρi = 5.4 sites/monomer, ρfiber = 1.0 x 10−3 fibers/

μm3, and tsearch = 16s. Simulation time = 12hrs.

(TIF)

S6 Fig. Random motility coefficient and alpha vs. fiber alignment. Plots for μ, and α as a

function of increasing alignment index A) Random motility coefficient. b) Alpha. Cgel = 3.7

mg/ml, ρi = 6 sites/monomer, ρfiber = 1.0 x 10−3 fibers/μm3, and tsearch = 16s. Simulation

time = 48hrs. n = 20. Solid blue lines are polarized cells (◼), dashed red lines are nonpolarized

cells (●). Error bars represent ± SEM.

(TIF)

S7 Fig. Random motility coefficient vs. cell mechanoactivity. Cgel = 3.7 mg/ml, ρfiber = 1.0 x

10−3 fibers/μm3, and AI = 0. Simulation time = 48hrs. n = 20. Dotted red lines are 5.2 motifs/
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monomer (◼), solid blue lines are 6 motifs/monomer (●), dashed yellow lines are 8 motifs/

monomer (◆). Error bars represent ± SEM.

(TIF)

S1 File. Model Optimization for Predication Accuracy and Processing Time. A brief

description of how the simulation time step was determined to optimize prediction accuracy

and processing time. Additionally, the speed of simulations as a function of the number of dif-

ferent scenarios simulated in parallel is determined.

(DOCX)
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