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Abstract: Small-cell lung cancer (SCLC) is an aggressive malignant cancer that is classified into four
subtypes based on the expression of the following key transcription and co-transcription factors:
ASCL1, NEUROD1, YAP1, and POU2F3. The protein expression levels of these key molecules
may be important for the formation of SCLC characteristics in a molecular subtype-specific manner.
We expect that immunohistochemistry (IHC) of these molecules may facilitate the diagnosis of
the specific SCLC molecular subtype and aid in the appropriate selection of individualized treatments.
We attempted IHC of the four key factors and 26 candidate SCLC target molecules selected from
the gene expression omnibus datasets of 47 SCLC samples, which were grouped based on positive
or negative results for the four key molecules. We examined differences in the expression levels
of the candidate targets and key molecules. ASCL1 showed the highest positive rate in SCLC
samples, and significant differences were observed in the expression levels of some target molecules
between the ASCL1-positive and ASCL1-negative groups. Furthermore, the four key molecules were
coordinately and simultaneously expressed in SCLC cells. An IHC study of ASCL1-positive samples
showed many candidate SCLC target molecules, and IHC could become an essential method for
determining SCLC molecular subtypes.

Keywords: small-cell lung cancer; immunohistochemistry; ASCL1; NEUROD1; YAP1; POU2F3

1. Introduction

Neuroendocrine tumors account for approximately 20% of all lung cancers, and small-cell lung
cancer (SCLC) accounts for approximately 70% of all neuroendocrine tumors [1,2]. SCLC exhibits
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clinically aggressive malignant behavior. It is mainly a high-grade neuroendocrine cancer that is
characterized by rapid tumor growth, high vascularity, early metastasis, high sensitivity to radiotherapy
and chemotherapy, multidrug resistance, and the inactivation of TP53 and RB1 [3–5]. The main risk
factor for SCLC is smoking as more than 95% of SCLC patients are current or ex-smokers [3].
Surgical therapy for SCLC is not generally performed in the majority of patients diagnosed with
SCLC because of its rapid metastasis to the lymph nodes, the other lung, and organs; therefore,
the first-line treatment is mainly chemotherapy with or without radiation [6,7]. However, standard
chemotherapies for SCLC have been performed for a few decades, and these therapies have not
shown satisfactory effects on the prognosis of SCLC patients; therefore, it is necessary to identify
and develop novel therapeutic approaches to treat SCLC [8,9]. Recent clinical studies on the anti-PDL1
antibody atezolizumab for advanced SCLC reported no significant effects on patient prognosis [10]. To
develop more effective molecular targeted therapies, Rudin et al. recently proposed the classification
of SCLC into four molecular subtypes based on the expression of the following key transcription
and co-transcription factors: achaete-scute homologue 1 (ASCL1), neurogenic differentiation factor 1
(NEUROD1), yes-associated protein 1 (YAP1), and POU class 2 homeobox 3 (POU2F3) [11].

The use of immunohistochemistry (IHC) to diagnose neuroendocrine tumors, including SCLC,
is not crucial under the current WHO classification of lung cancer. The examination of hematoxylin
and eosin-stained slides is the primary method used to make diagnoses [12]. However, IHC can
discriminate between neuroendocrine and non-neuroendocrine tumors to determine cytological and tissue
diagnoses, for which the neuroendocrine markers synaptophysin, chromogranin A, and NCAM1, also
known as CD56, are very useful [13]. Recent studies have identified insulinoma-associated protein
1 (INSM1) as a sensitive and specific neuroendocrine marker for the diagnosis of all neuroendocrine
tumors including SCLC [14,15]. Ki67 and thyroid transcription factor 1 (TTF1) are also useful for
the differential diagnosis of SCLC [13]. Regarding the relationship between SCLC and neuroendocrine
features, small undifferentiated tumors in the lungs were originally referred to as oat-cell carcinoma
in the 1920s [16]. In the 1960s, Bensch et al. used electron microscopy to demonstrate that SCLC
contains neurosecretory-type granules in the cell cytoplasm [17]. Additionally, the development of
IHC and the identification of neuroendocrine markers provided support for the relationship between
neuroendocrine features and SCLC. IHC for SCLC using the neuroendocrine markers chromogranin A,
NCAM1, and INSM1 is regarded as an adjunctive tool.

SCLC was previously considered to be a “homogenous” cancer because of the highly frequent
inactivation of TP53 and RB1 [18,19]. However, SCLC had also been considered a “heterogeneous”
cancer with neuroendocrine features and morphological characteristics. Based on these characteristics,
SCLC cell lines are classified into two types: a “classic” subtype with typical morphology
and neuroendocrine-like features and a “variant” subtype with an atypical morphology [20,21].
Poirier et al. reported that the classic and variant subtypes correlate with the expression of the lineage
transcription factors ASCL1 and NEUROD1 [22]. ASCL1 is a neuroendocrine lineage master regulator
of the lungs, and NEUROD1 also contributes to the regulation of neuroendocrine cell development
in the lungs [22,23]. In contrast to classic SCLC, which strongly expresses ASCL1, variant SCLC
strongly expresses NEUROD1 [18]. The non-neuroendocrine subtype weakly expresses both ASCL1
and NEUROD1, while YAP1, a co-transcription factor activated by the HIPPO signal pathway,
and POU2F3, a transcription factor expressed by rare chemosensory cells called “tuft cells,” are both
strongly expressed by some variant types of SCLC [24,25]. At least one of the four key molecules
is expressed in SCLC cells, and Rudin et al. proposed a new model to categorize SCLC subtypes
based on the expression of the following molecules: ASCL1 (SCLC-A), NEUROD1 (SCLC-N), YAP1
(SCLC-Y), and POU2F3 (SCLC-P). The accumulation of information on SCLC resulted in it being widely
established as a heterogenous cancer. These four key molecules may contribute to the heterogeneity
of SCLC tumors; namely, tumor growth differences, prognosis, and chemotherapy resistance; thus,
these molecules have potential as new therapeutic targets [11]. Currently, it remains unclear whether
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IHC on ASCL1, NEUROD1, YAP1, and POU2F3 may be applied for the classification of SCLC
molecular subtypes.

We initially examined the relationships among the four key molecules and their target molecules
using the gene expression omnibus dataset of Asian SCLC patients [26]. This public dataset showed
that some molecules exhibited a wide range of expression lesions in association with the four key
molecules. Therefore, we investigated the expression of target molecules associated with the four
key molecules in surgically resected SCLC samples. An integrated SCLC study that uses IHC to
investigate the relationship between these molecules has not yet been conducted; therefore, we
attempted to demonstrate the importance of IHC by evaluating the expression of these molecules.
The present study aimed to establish the utility of IHC for identifying SCLC molecular subtypes
and to assess the expression of these target molecules in resected SCLC samples. Differences in
the expression patterns among SCLC molecular subtypes may be associated with SCLC characteristics,
such as drug resistance and relapse. Therefore, in addition to gene expression levels, intracellular
and intranuclear protein expression levels may be important factors contributing to the identification of
SCLC characteristics among the molecular subtypes. Based on the potential use of these molecules as
molecular targeted therapies for SCLC, IHC may facilitate the diagnosis of SCLC molecular subtypes
and aid in the selection of appropriate individualized cancer treatments, which may be more effective
than chemotherapy.

2. Materials and Methods

2.1. Cell Lines and Xenotransplantation

Four SCLC cell lines (H209, H82, H526, and SBC3) were used in the experiments. H209 cells were
purchased from ATCC (Manassas, VA, USA), SBC3 cells were purchased from the Japan Collection
of Research Bioresources Cell Bank (Osaka, Japan), and H82 and H56 cells were generous gifts from
Dr. K. Hasegawa (Kyoto Pharmaceutical University, Kyoto, Japan). Cultured cells (1.0 × 106 cells)
were subcutaneously injected into Rag2(−/−); Jak3(−/−) mice (a generous gift from Prof. S. Okada,
Kumamoto University). After 4 weeks, the subcutaneous tumors that grew were removed and fixed
with 4% paraformaldehyde in a phosphate-buffered solution before being embedded in paraffin.
Paraffin-embedded sections were stained with hematoxylin and eosin and immunostained for ASCL1,
NEUROD1, YAP1, and POU2F3.

2.2. Western Blot (WB) Analysis

The SCLC cell lines were used for western blot (WB) analyses of the four key molecules. The primary
antibodies used for WB analysis are listed in Table 1. The membrane was washed and incubated with
a secondary antibody conjugated with horseradish peroxidase for 1 h, and the immune complex was
visualized with a chemiluminescence substrate (Amersham Pharmacia Biotech, Buckinghamshire, UK).

2.3. Tissue Samples

Tissue samples of SCLC (n = 47) resected at the Department of Thoracic Surgery of Kumamoto
University Hospital (Kumamoto, Japan) and the Department of Thoracic Surgery of National
Minami-Kyushu Hospital (Kagoshima, Japan) were used in the present study. Samples were
histologically diagnosed according to the WHO criteria [12]. Additional sections were used for
IHC. The present study followed the guidelines of the Ethics Committee of Kumamoto University
and National Minami-Kyushu Hospital on May 15, 2017 (Approval No. 342).

2.4. IHC

Formalin-fixed paraffin-embedded specimens were cut into 4-µm-thick sections and mounted onto
MAS-GP–coated slides (Matsunami Glass Ind., Osaka, Japan). After deparaffinization and rehydration,
sections were heated using an autoclave in 0.01 mol/L citrate buffer (pH 6.0, 7.0, or 9.0) for antigen
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retrieval. Antigen retrieval was not performed in POU2F3 staining. Sections were incubated with
0.3% H2O2 in absolute methanol for 30 min to block endogenous peroxidase activity. Sections were
incubated with 5% skim milk for 20 min to block nonspecific binding and were then incubated with
the primary antibody at 4 ◦C overnight or at room temperature for 70 min. This was followed by
a 1-h incubation period with the secondary antibody (En Vision+ System-HRP-Labeled Polymer; Dako
(Agilent, Carpinteria, CA, USA) and visualization with the Liquid DAB+ Substrate Chromogen System
(Dako). All slides were counterstained with hematoxylin for 30 s before dehydration and mounting.
The specificity of the immunolabeling of each antibody was examined using normal mouse IgG (Santa
Cruz Biotechnology, Dallas TX, USA) and normal rabbit IgG (Santa Cruz Biotechnology), and no
staining was observed.

Table 1. List and dilution of antibodies for IHC and the WB analysis

Antibody Manufacturer (Catalog no.) IHC WB

ASCL1 Abcam (ab213151) 1/300 1/1000
NEUROD1 Novus (NBP1-88661) 1/100 1/1000

YAP1 Santa Cruz (sc-376830) 1/80 1/1000
POU2F3 LifeSpan BioSciences (LS-B12579) 1/100 1/1000

CGA Santa Cruz (sc-13090) 1/100
SYP Leica (NCL-SYNP-299) 1/50

NCAM Leica (NCL-CD56-1B6) 1/50
INSM1 Santa Cruz (sc-271408) 1/200

NOTCH1 Cell Signaling (#3268) 1/200
NOTCH2 Cell Signaling (#4530) 1/200
NOTCH3 Abcam (ab23426) 1/100

SOX2 Santa Cruz (sc-365823) 1/400
SOX9 Millipore (AB5603) 1/1000

E-CADHERIN GeneTex (GTX100443) 1/100
VIMENTIN Santa Cruz (sc-6260) 1/100

TTF1 Santa Cruz (sc-13040) 1/100
FGFR1 Cell Signaling (#9740) 1/50
MYC Cell Signaling (#5605) 1/50
E2F1 Santa Cruz (sc-251) 1/200
E2F7 Thermo Fisher (PA550495) 1/200
BCL2 DAKO (MO887) 1/50
PDL1 Abcam (ab228415) 1/500
EZH2 Cell Signaling (#5246) 1/50

TEAD1 Cell Signaling (#12292) 1/70
RB1 Novus (NB100-82177) 1/100
P53 DAKO (DO-7) 1/100

P130 Abcam (ab6545) 1/300
DLL3 Cell Signaling (#71804) 1/50
HES1 LifeSpan (LS-C337570) 1/50
REST GeneTex(GTX37363) 1/400

IHC, immunohistochemistry; WB, Western blot.

2.5. IHC Analysis

Staining intensities and areas stained using IHC were scored according to a 4-tier system: 0 = no
intensity or a staining area less than 10%; 1 = weakly positive intensity and 10–50% SCLC tumor
cells stained; 2 = weakly positive intensity and > 50% SCLC tumor cells stained or strongly positive
intensity and 10–50% SCLC tumor cells stained; and 4 = strongly positive intensity and > 50% SCLC
tumor cells stained.
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2.6. Statistical Analysis

All statistical analyses were performed with R for Windows (Version 4.0.2; R Foundation for
Statistical Computing, Vienna, Austria). The Shapiro–Wilk test was used as the normality test. When
the data did not follow a normal distribution, the Mann–Whitney test was used to test for significance.
p values < 0.05 were considered to indicate a significant difference.

3. Results

3.1. Expression of Four Key Molecules in Representative SCLC Cell Lines

The expression of the key molecules in the representative SCLC cell lines was assessed. WB showed
that H209 cells only expressed ASCL1. H82 cells strongly expressed NEUROD1 and weakly expressed
POU2F3. H526 cells only expressed POU2F3, and SBC3 cells only expressed YAP1 (Figure 1A).
Xenotransplanted tumors originating from the four SCLC cell lines exhibited SCLC histological features
and positive staining for ASCL1 in H209 cell-derived tumors, NEUROD1 in H82 cell-derived tumors,
POU2F3 in H526 cell-derived tumors, and YAP1 in SBC3 cell-derived tumors (Figure 1B).

Figure 1. Example of the positive control of four key molecules by WB and IHC in SCLC samples.
(A) Example of the positive control of the four key molecules by WB in SCLC cell lines. ASCL1 was
strongly expressed in H209 cells. NeuroD1 was strongly expressed in H82 cells. Pou2F3 was strongly
expressed in H526 cells and weakly expressed in H82 and SBC3 cells. YAP1 was strongly expressed in
SBC3 cells. β-actin served as an internal control. (B) Example of the positive control of the four key
molecules in xenotransplanted tumor tissues from the four cell lines in mice by IHC. ASCL1 staining
was found in tumor cell nuclei of H209 cells. NeuroD1 staining was found in the tumor cell nuclei of
H82 cells. Pou2F3 staining with a diffuse cytoplasmic pattern was found in H82, H526, and SBC3 cells.
The Pou2F3 staining intensity was weak in H82 and SBC3 cells and strong in H526 cells. YAP1 was
stained with a membranous pattern in SBC3 cells. Scale bar = 50 µm.

3.2. ASCL1 Exhibited the Highest Positive Rate among the Four Key Molecules in SCLC

The IHC results of all molecules are summarized in Table 2. Among the four key molecules,
ASCL1 showed the highest positive rate (72.3%) in SCLC samples followed by POU2F3 (38.4%),
YAP1 (14.9%), and NEUROD1 (10.6%). ASCL1 showed moderate to strong expression in contrast
to the weak expression of NEUROD1, YAP1, and POU2F3. The neuroendocrine markers CGA, SYP,
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NCAM, and INSM1 showed positive rates of approximately 75–90% in resected SCLC samples. Among
the proteins tested, E2F7 showed the highest positive rate (100.0%), while MYC showed the lowest
(2.1%).

Table 2. Immunohistochemical results in SCLC.

Antibody Positive Rate (%)
Expression

Level

Low Medium High

ASCL1 72.3 17.6 67.6 14.7
NEUROD1 10.6 80.0 20.0 0

YAP1 14.9 57.1 42.9 0
POU2F3 38.4 66.7 20.0 13.3

CGA 74.5 34.2 28.6 37.1
SYP 87.0 7.5 35.0 57.5

NCAM 91.3 14.3 42.9 42.9
INSM1 83.0 12.8 33.3 53.8

NOTCH1 17.4 75.0 12.5 12.5
NOTCH2 53.2 32.0 68.0 0
NOTCH3 66.0 19.4 51.6 29.0

SOX2 89.4 33.3 45.2 21.4
SOX9 89.4 26.2 35.7 38.1

E-CADHERIN 80.9 39.5 42.1 18.4
VIMENTIN 6.4 0 100 0

TTF1 74.5 2.9 42.9 54.3
FGFR1 19.6 55.6 22.2 22.2
MYC 2.1 100 0 0
E2F1 11.1 60.0 40.0 0
E2F7 100 4.3 27.7 68.1
BCL2 78.7 24.5 40.5 35.1
PDL1 40.4 36.8 36.8 26.3
EZH2 85.1 30.0 60.0 10.0

TEAD1 80.0 47.2 47.2 5.6
RB1 42.2 68.4 31.6 0
P53 84.8 12.8 43.6 43.6
P130 57.4 18.5 77.8 7.4
DLL3 37.0 52.9 29.4 17.6
HES1 51.1 8.3 83.8 8.3
REST 19.1 11.1 88.9 0

3.3. Four Key Molecules Were Simultaneously Expressed in SCLC

ASCL1 exhibited coordinated expression with the three other key molecules in nearly 50% of
ASCL1-positive cases. POU2F3 showed a higher co-expression rate (32.4%) than NEUROD1 (8.8%)
and YAP 1 (11.8%) in ASCL1-positive cases (Table 3). The expression levels of these molecules in
ASCL1-positive cases were low (NEUROD1: 100.0%, YAP1: 75.0%, POU2F3: 63.6%). Simultaneous
expression of the four key molecules was frequently observed in SCLC samples (Table 4). The most
common expression pattern was ASCL1 alone (38.8%) followed by double positivity for ASCL1
and POU2F3 (18.4%), POU2F3 alone (10.2%), double positivity for ASCL1 and YAP1 (6.1%), YAP1 alone
(4.1%), and double positivity for ASCL1 and NEUROD1 (2.0%). Triple-positive (ASCL1, NEUROD1,
and POU2F3) or all-positive cases were also observed in the present study. Additionally, the expression
areas of each of the four key molecules were frequently shared. Similar staining patterns were observed
among ASCL1, NEUROD1, YAP1, and POU2F3 (Figure 2), particularly for NEUROD1 and YAP1,
NEUROD1 and POU2F3, and YAP1 and POU2F3 (Figure 3).
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Table 3. Co-expression of NEUROD1, YAP1, and POU2F3 in the ASCL1-positive SCLC group

Antibody Positive Rate (%)
Expression

Level

Low Medium High

NEUROD1 8.8 100 0 14.7
YAP1 11.8 75.0 25.0 0

POU2F3 32.4 63.6 18.2 18.2

Table 4. Combined expression of ASCL1, NEUROD1, YAP1, and POU2F3

Expression Pattern Percentage (%)

Single-positive ASCL1 only 38.8
POU2F3 only 10.2

YAP1 only 4.1
Double-positive ASCL1, POU2F3 18.4

ASCL1, YAP1 6.1
ASCL1, NEUROD1 2.0
NEUROD1, YAP1 2.0

NEUROD1, POU2F3 2.0
Triple-positive ASCL1, NEUROD1, POU2F3 2.0

All-positive 2.0
All-negative 12.2

Figure 2. IHC of the co-expression of ASCL1 and three key molecules in SCLC samples: Serial
section immunostaining for ASCL1 (A) and NEUROD1 (B). SCLC cell nuclei were positive for ASCL1
(A) and NEUROD1 (B). Serial section immunostaining for ASCL1 (C) and YAP1 (D). SCLC cell nuclei
were positive for ASCL1 (C), and the cytoplasm was positive for YAP1 (D). SCLC cell nuclei were
positive for ASCL1 (E), and the cytoplasm was positive for POU2F3 (F). Scale bar = 100 µm.

3.4. Candidate Target Molecule Expression in ASCL1-Positive and ASCL1-Negative Samples

To assess the expression of candidate target molecules in SCLC by IHC, we attempted to stain
resected SCLC samples for 26 target molecules other than ASCL1, NEUROD1, YAP1, and POU2F3.
Resected SCLC samples were grouped by a positive or negative result for ASCL1, NEUROD1, YAP1,
and POU2F3, and differences in the expression of the candidate target molecules were compared
between the ASCL1-positive and ASCL1-negative groups, NEUROD1-positive and NEUROD1-negative
groups, YAP1-positive and YAP1-negative groups, and POU2F3-positive and POU2F3-negative groups.
The candidate target molecule expression associated with ASCL1 expression is summarized in Table 5.
Significant differences were observed in the expression of CGA, SYP, NCAM, INSM1, NOTCH3,
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SOX2, VIMENTIN, TTF1, FGFR1, EZH2, TEAD1, P53, and DLL3 between the ASCL1-positive
and ASCL1-negative groups (p < 0.05). The expression of neuroendocrine markers (CGA, SYP, NCAM,
and INSM1) and SOX2, TTF1, EZH2, TEAD1, and DLL3 was slightly stronger in the ASCL1-positive
group than in the ASCL1-negative group, whereas the expression of NOTCH3, FGFR1, VIMENTIN,
and P53 was slightly weaker.

Figure 3. IHC of the co-expression of key molecules other than ASCL1 in SCLC samples. Serial section
immunostaining for NEUROD1 (A) and YAP1 (B): SCLC cell nuclei were positive for NEUROD1
(A), and the cytoplasm was positive for YAP1 (B). Serial section immunostaining for NEUROD1
(C) and POU2F31 (D): SCLC cell nuclei were positive for NEUROD1 (C), and the cytoplasm was
positive for POU2F3 (D). The cytoplasm of SCLC cells was positive for YAP1 (E) and POU2F3 (F).
Scale bar = 100 µm.

Table 5. Candidate target molecular expression in ASCL1-positive and ASCL1-negative samples.

Antibody
ASCL1-Positive ASCL1-Negative p-Value

Low Medium High Low Medium High

CGA 20.6 20.6 38.2 30.8 30.8 0 0.02235
SYP 8.8 35.3 55.9 0 16.7 33.3 0.00731

NCAM 5.9 35.3 47.1 33.3 33.3 16.7 0.00563
INSM1 5.9 41.2 47.1 23.1 7.7 7.7 0.000001108

NOTCH3 17.6 32.4 8.8 0 38.5 46.2 0.00628
SOX2 29.4 38.2 26.5 30.8 46.2 0 0.02425

VIMENTIN 0 0 0 0 23.1 0 0.00631
TTF1 2.9 41.2 47.1 0 7.7 23.1 0.00131

FGFR1 5.9 2.9 2.9 25.0 8.3 8.3 0.04615
EZH2 23.5 55.9 11.8 30.8 38.5 0 0.01039

TEAD1 31.3 50.0 6.3 53.8 7.7 0 0.00136
P53 12.1 39.4 27.3 7.7 30.8 61.5 0.00623

DLL3 27.3 15.2 6.1 0 0 7.7 0.01203

3.5. Candidate Target Molecule Expression in NEUROD1-Positive and NEUROD1-Negative Samples

The candidate target molecule expression associated with NEUROD1 expression is summarized in
Table 6. Significant differences were detected in the expression of E-CADHERIN, E2F1, RB1, and P53 between
the NEUROD1-positive and NEUROD1-negative groups (p < 0.05). The expression of E-cadherin, E2F1,
RB1, and P53 was slightly stronger in the NEUROD1-positive group than in the NEUROD1-negative group.
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Table 6. Candidate target molecular expression in NEUROD1-positive and NEUROD1-negative samples.

Antibody
NEUROD1-Positive NEUROD1-Negative p-Value

Low Medium High Low Medium High

E-cadherin 0 40.0 60.0 35.7 33.3 9.5 0.00535
E2F1 20.0 20.0 0 5.0 2.5 33.3 0.03138
RB1 40.0 60.0 0 26.8 7.3 16.7 0.00123
P53 0 0 100 12.2 41.5 29.3 0.00854

3.6. Candidate Target Molecule Expression in YAP1-Positive and YAP1-Negative Samples

The candidate target molecule expression associated with YAP1 expression is summarized in
Table 7. Significant differences were observed in the expression of TTF1, E2F1, and P53 between
the YAP1-positive and YAP1-negative groups (p < 0.05). The expression of P53 was slightly stronger in
the YAP1-positive group than in the YAP1-negative group, whereas the expression of TTF1 and E2F7
was slightly weaker.

Table 7. Candidate target molecular expression in YAP1-positive and YAP1-negative samples.

Antibody YAP1-Positive YAP1-Negative p-Value
Low Medium High Low Medium High

TTF1 0 28.6 0 2.5 32.5 47.5 0.00434
E2F7 14.3 57.1 28.6 2.5 22.5 75.0 0.01398
P53 0 14.3 85.7 12.8 41.0 28.2 0.00826

3.7. Candidate Target Molecule Expression in POU2F3-Positive and POU2F3-Negative Samples

The candidate target molecule expression associated with POU2F3 expression is summarized
in Table 8. Significant differences were observed in the expression of INSM1 and HES1 between
the POU2F3-positive and POU2F3-negative groups (p < 0.05). The expression of INSM1 and HES1 was
slightly stronger in the POU2F3-positive group than in the POU2F3-negative group.

Table 8. Candidate target molecular expression in POU2F3-positive and POU2F3-negative samples.

Antibody POU2F3-Positive POU2F3-Negative p-Value
Low Medium High Low Medium High

INSM1 13.3 13.3 66.7 12.5 33.3 25.0 0.044
HES1 6.7 53.3 6.7 4.2 29.2 0 0.04094

4. Discussion

Approximately 70% of SCLC specimens show ASCL1 expression, and approximately 15% of
SCLC specimens show NEUROD1 expression [22,27]. YAP1 expression is very rare (2%) in SCLC [28],
while POU2F3 expression has been detected in 12% of SCLC samples using tissue microarrays [25].
In the present study, ASCL1 was expressed in approximately 70% of the resected SCLC samples,
NEUROD1 in approximately 10%, YAP1 in approximately 15%, and POU2F3 in approximately 40%.
The proportions of ASCL1- and NEUROD1-positive cases in the present study were consistent with
previous findings [22,27], whereas those of YAP1- and POU2F3-positive cases were higher than
previously reported [25,28]. This increase found in the present study may be attributed to differences
in the IHC method, the quality of sections, and the antibodies used. Furthermore, the expression levels
of YAP1 and POU2F3 in SCLC cells may change more easily than those of ASCL1 and NEUROD1.

The present results showed that SCLC did not always express one of the key molecules
(Tables 3 and 4). Among the resected SCLC samples, 50% expressed one specific key molecule,
while several co-expression patterns were observed in the other 50%. In some cases, the combinations
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of ASCL1 and POU2F3 or NEUROD1 and POU2F3 were doubly positive, and it was not possible
to group cases based on SCLC molecular subtypes using IHC. Therefore, the four key molecules in
SCLC were shown to have several expression patterns, and SCLC samples may not all be matched
to molecular subtypes. A more detailed method for IHC needs to be developed to more accurately
differentiate SCLC molecular subtypes using the microscopic differences in protein expression.

Regarding positive areas, Figure 2 shows that the ASCL1-positive regions in SCLC specimens
correspond to NEUROD1-, YAP1-, or POU2F3-positive regions. Figure 3 also shows that
the NEUROD1-positive regions in SCLC samples correspond to YAP1- and POU2F3-positive regions, as
YAP1-positive regions correspond to POU2F3-positive regions. These results suggest that the four key
molecules are coordinately and simultaneously expressed in SCLC cells. The co-expression of the four key
molecules in SCLC samples suggests an interaction among these molecules. A recent study reported that
SCLC-expressing ASCL1 shifted to the expression of NEUROD1 and YAP1 following the activation of
MYC [29]. The expression of NEUROD1 and YAP1 in ASCL1-positive regions indicates a contemporary
shift from ASCL1 to other key molecules, and these changes may be closely associated with the transition
of SCLC molecular subtypes. Significant differences were observed in the expression of several proteins
between the ASCL1-positive and ASCL1-negative groups. ASCL1-positive SCLC may be classified as
the classic subtype, which has the typical morphology with neuroendocrine features. Neuroendocrine
features were more prominent in the ASCL1-positive group than in the ASCL1-negative group. In
the ASCL1-positive group, INSM1 exhibited the most sensitive expression compared with CGA,
SYP, and NCAM. The POU2F3-positive group appeared to correspond to the non-neuroendocrine
group of SCLC based on the significant decrease observed in INSM1 expression. INSM1 is a highly
sensitive and specific marker of neuroendocrine differentiation [14,15], and a strong correlation between
the expression of ASCL1 and INSM1 in neuroendocrine differentiation has been reported [30–32].
NEUROD1-positive SCLC is another neuroendocrine subtype of SCLC; however, no significant
differences in the expression of general neuroendocrine markers between the NEUROD1-positive
and NEUROD1-negative groups were noted. Therefore, NEUROD1 protein expression does not appear
to play an important role in the expression of neuroendocrine features in SCLC. Similarly, no or slight
differences were observed in the expression of general neuroendocrine markers between the YAP1-
and POU2F3-positive, non-neuroendocrine, and non-expression groups.

Significant differences were observed in the expression of some proteins, excluding neuroendocrine
markers, between the ASCL1-positive and ASCL1-negative groups. The expression of SOX2, TTF1, EZH2,
DLL3, and TEAD1 was significantly upregulated in the ASCL1-positive group. SOX2 is a transcriptional
regulator of neuroendocrine differentiation [31,33], and TTF1 is expressed in club, alveolar type II,
and bronchial neuroendocrine cells [34]. A previous study reported that the expression of EZH2
promoted the progression of SCLC by suppressing the TGF-β-SMAD-ASCL1 pathway [35], while
the expression of DLL3 was positively correlated with that of ASCL1 in SCLC [36]. These molecules,
excluding TEAD1, may be expressed in ASCL1-positive SCLC, which is supported by the results of
this study. TEAD1 may contribute to the promotion of tumorigenesis via the YAP/TAZ signaling
pathway; however, few studies have examined the relationship between ASCL1 and TEAD1 [37]. In
contrast, the expression levels of NOTCH3, FGFR1, VIMENTIN, and P53 were significantly decreased in
the ASCL1-positive group. Notch signaling suppresses neuroendocrine differentiation and is inactivated
in most SCLC cases; therefore, the Notch family may be inactive in the classic SCLC subtype [38–41].
FGFR1 and its ligands have therapeutic potential as new treatments for SCLC [42]. FGFR1 overexpression
in SCLC may lead to new FGFR1 inhibitor therapy, but the FGFR1 expression in the ASCL1-positive
group was decreased. Thus, these findings suggest that a new FGFR1 inhibitor therapy may not be
useful for some patients with ASCL1-positive SCLC.

The expression of some proteins significantly differed between the ASCL1-positive group and the
NEUROD1-, YAP1-, and POU2F3-positive groups. Nevertheless, the immunoreactivity of RB1 and P53
was significantly stronger in the NEUROD1-positive group than in the NEUROD1-negative group.
Similarly, the immunoreactivity of P53 was significantly stronger in the YAP1-positive group than
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in the YAP1-negative group. RB1 and P53 tumor suppressor gene alterations and high mutational
burden frequently occur in SCLC [4,18,26,38,43]. The inactivation of these tumor suppressor genes in
SCLC is common [18] and frequently occurs in ASCL1-positive SCLC. It currently remains unclear
why areas of RB1 and P53 immunoreactivity were observed in the NEUROD1- and YAP1-positive
groups. The mutation regions in these suppressor oncogenes do not always lose antibody-recognition
sites, and their positive immunoreactivity may have occurred in the present study.

Additionally, significant differences were observed in the expression of E2F1 and E2F7 in
the NEUROD1- and YAP1-positive groups. E2F1 is a member of the E2F family and promotes
epithelial-mesenchymal transition (EMT), which is associated with SCLC invasion and metastasis [44].
The positive rate of E2F1 expression in all SCLC samples was lower than other protein expression rates
but was higher in the NEUROD1-positive group than in the NEUROD1-negative group. E2F7 may be
a transcriptional repressor of cell proliferation and exhibited the highest positive rate (100%) in all
SCLC samples. It also plays a role in tumor development.

No significant differences were observed in the expression of MYC among any of the groups.
The MYC family comprises MYC, L-MYC, and N-MYC, and MYC may be amplified in approximately
20% of SCLC cases [45]. A recent study reported that MYC promotes a temporal shift in SCLC molecular
subtypes from ASCL1→NEUROD1→YAP1 [29]. Notably, MYC may play an important role in changes
in SCLC molecular subtypes that are associated with chemotherapy resistance and new treatment
development. We expected the expression of MYC to increase in the NEUROD1- and YAP1-positive
groups and to decrease in the ASCL1-positive group. However, no or only slight differences were
observed in the expression of MYC in our SCLC samples.

5. Conclusions

The positive expression rates of ASCL1 and NEUROD1 in our SCLC samples were similar to
those found in previous reports [22,27]. The expression of the target molecules in the ASCL1-positive
group was consistent with previous findings [31,33–42]. As half of the candidate ASCL1-target
molecules selected from the gene expression omnibus dataset showed significance in the IHC study of
the ASCL1-positive samples, IHC could be a useful method for detecting candidate target molecules
for the four key molecules. We found that the four key molecules are coordinately and simultaneously
expressed in SCLC cells. However, the positive rates of YAP1 and POU2F3 in our SCLC samples were
not consistent with those previously reported [25,28]. Moreover, the majority of the candidate target
molecules examined were not significantly expressed in NEUROD1-, YAP1- and POU2F3-positive
samples. However, further improvements in the classification of SCLC by IHC are expected, and IHC
could become an essential method for the determination of the molecular subtypes of SCLC.
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10. Horn, L.; Mansfield, A.; Szczȩsna, A.; Havel, L.; Krzakowski, M.; Hochmair, M.; Huemer, F.; Losonczy, G.;
Johnson, M.; Nishio, M.; et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung
cancer. N. Engl. J. Med. 2018, 379, 2220–2229. [CrossRef]

11. Rudin, C.; Poirier, J.; Byers, L.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.; Johnson, J.; Lehman, J.;
MacPherson, D.; et al. Molecular subtypes of small cell lung cancer: A synthesis of human and mouse model
data. Nat. Rev. Cancer. 2019, 19, 289–297. [CrossRef]

12. Travis, W.; Brambilla, E.; Nicholson, A.; Yatabe, Y.; Austin, J.; Beasley, M.; Chirieac, L.; Dacic, S.; Duhig, E.;
Flieder, D.; et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic,
Clinical and Radiologic Advances since the 2004 Classification. J. Thorac. Oncol. 2015, 10, 1243–1260.
[CrossRef] [PubMed]

13. Thunnissen, E.; Borczuk, A.; Flieder, D.; Witte, B.; Beasley, M.; Chung, J.; Dacic, S.; Lantuejoul, S.; Russell, P.;
den Bakker, M.; et al. The Use of Immunohistochemistry Improves the Diagnosis of Small Cell Lung Cancer
and Its Differential Diagnosis. An International Reproducibility Study in a Demanding Set of Cases. J. Thorac.
Oncol. 2017, 12, 334–346. [CrossRef] [PubMed]

14. Mukhopadhyay, S.; Dermawan, J.; Lanigan, C.; Farver, C. Insulinoma-associated protein 1 (INSM1) is
a sensitive and highly specific marker of neuroendocrine differentiation in primary lung neoplasms: An
immunohistochemical study of 345 cases, including 292 whole-tissue sections. Mod. Pathol. 2019, 32, 100–109.
[CrossRef] [PubMed]

15. Fujino, K.; Motooka, Y.; Hassan, W.; Ali Abdalla, M.; Sato, Y.; Kudoh, S.; Hasegawa, K.; Niimori-Kita, K.;
Kobayashi, H.; Kubota, I.; et al. Insulinoma-associated protein 1 is a crucial regulator of neuroendocrine
differentiation in lung cancer. Am. J. Pathol. 2015, 185, 3164–3177. [CrossRef]

16. Barnard, W. The nature of the “oat celled” sarcoma of the mediastinum. J. Pathol. Bacteriol. 1926, 29, 241–244.
[CrossRef]

17. Bensch, K.; Corrin, B.; Pariente, R.; Spencer, H. Oat-cell carcinoma of the lung. Its origin and relationship to
bronchial carcinoid. Cancer 1968, 22, 1163–1172. [CrossRef]

18. George, J.; Lim, J.; Jang, S.; Cun, Y.; Ozretia, L.; Kong, G.; Leenders, F.; Lu, X.; Fernández-Cuesta, L.;
Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [CrossRef]

https://seer.cancer.gov/csr/1975_2014/
http://dx.doi.org/10.1200/JCO.2005.04.4859
http://dx.doi.org/10.1126/science.aag0299
http://www.ncbi.nlm.nih.gov/pubmed/27811275
http://dx.doi.org/10.1038/nrc.2017.87
http://www.ncbi.nlm.nih.gov/pubmed/29077690
http://dx.doi.org/10.1007/s11912-010-0120-5
http://www.ncbi.nlm.nih.gov/pubmed/20632219
http://dx.doi.org/10.1634/theoncologist.2009-0298
http://dx.doi.org/10.1055/s-0031-1272873
http://dx.doi.org/10.2174/1389450117666160502152331
http://dx.doi.org/10.1080/14737140.2018.1453361
http://dx.doi.org/10.1056/NEJMoa1809064
http://dx.doi.org/10.1038/s41568-019-0133-9
http://dx.doi.org/10.1097/JTO.0000000000000630
http://www.ncbi.nlm.nih.gov/pubmed/26291008
http://dx.doi.org/10.1016/j.jtho.2016.12.004
http://www.ncbi.nlm.nih.gov/pubmed/27998793
http://dx.doi.org/10.1038/s41379-018-0122-7
http://www.ncbi.nlm.nih.gov/pubmed/30154579
http://dx.doi.org/10.1016/j.ajpath.2015.08.018
http://dx.doi.org/10.1002/path.1700290304
http://dx.doi.org/10.1002/1097-0142(196811)22:6&lt;1163::AID-CNCR2820220612&gt;3.0.CO;2-L
http://dx.doi.org/10.1038/nature14664


Diagnostics 2020, 10, 949 13 of 14

19. Collisson, E.; Campbell, J.; Brooks, A.; Berger, A.; Lee, W.; Chmielecki, J.; Beer, D.; Cope, L.; Creighton, C.;
Danilova, L.; et al. Comprehensive molecular profiling of lung adenocarcinoma: The cancer genome atlas
research network. Nature 2014, 511, 543–550.

20. Gazdar, A.; Carney, D.; Russell, E.; Sims, H.; Bunn, P.; Minna, J.; Baylin, S.; Guccion, J. Establishment of
Continuous, Clonable Cultures of Small-Cell Carcinoma of the Lung Which Have Amine Precursor Uptake
and Decarboxylation Cell Properties. Cancer Res. 1980, 40, 3502–3507.

21. Carney, D.; Gazdar, A.; Bepler, G.; Guccion, J.; Marangos, P.; Moody, T.; Zweig, M.; Minna, J. Establishment
and Identification of Small Cell Lung Cancer Cell Lines Having Classic and Variant Features. Cancer Res.
1985, 45, 2913–2923.

22. Borromeo, M.; Savage, T.; Kollipara, R.; He, M.; Augustyn, A.; Osborne, J.; Girard, L.; Minna, J.; Gazdar, A.;
Cobb, M.; et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors
and Regulate Distinct Genetic Programs. Cell Rep. 2016, 16, 1259–1272. [CrossRef] [PubMed]

23. Borges, M.; Linnoila, R.; Van De Velde, H.; Chen, H.; Nelkin, B.; Mabry, M.; Baylin, S.; Ball, D. An achaete-scute
homologue essential for neuroendocrine differentiation in the lung. Nature 1997, 386, 852–855. [CrossRef]
[PubMed]

24. McColl, K.; Wildey, G.; Sakre, N.; Lipka, M.; Behtaj, M.; Kresak, A.; Chen, Y.; Yang, M.; Velcheti, V.; Fu, P.; et al.
Reciprocal expression of INSM1 and YAP1 defines subgroups in small cell lung cancer. Oncotarget 2017, 8,
73745–73756. [CrossRef] [PubMed]

25. Huang, Y.; Klingbeil, O.; He, X.; Wu, X.; Arun, G.; Lu, B.; Somerville, T.; Milazzo, J.; Wilkinson, J.;
Demerdash, O.; et al. POU2F3 is a master regulator of a tuft cell-like variant of small cell lung cancer. Genes
Dev. 2018, 32, 915–928. [CrossRef]

26. Jiang, L.; Huang, J.; Higgs, B.; Hu, Z.; Xiao, Z.; Yao, X.; Conley, S.; Zhong, H.; Liu, Z.; Brohawn, P.; et al.
Genomic Landscape Survey Identifies SRSF1 as a Key Oncodriver in Small Cell Lung Cancer. Plos Genet.
2016, 12, e1005895. [CrossRef]

27. Ikematsu, Y.; Tanaka, K.; Toyokawa, G.; Ijichi, K.; Ando, N.; Yoneshima, Y.; Iwama, E.; Inoue, H.; Tagawa, T.;
Nakanishi, Y.; et al. NEUROD1 is highly expressed in extensive-disease small cell lung cancer and promotes
tumor cell migration. Lung Cancer 2020, 146, 97–104. [CrossRef]

28. Ito, T.; Matsubara, D.; Tanaka, I.; Makiya, K.; Tanei, Z.; Kumagai, Y.; Shiu, S.; Nakaoka, H.; Ishikawa, S.;
Isagawa, T.; et al. Loss of YAP1 defines neuroendocrine differentiation of lung tumors. Cancer Sci. 2016, 107,
1527–1538. [CrossRef]

29. Ireland, A.S. MYC Drives Temporal Evolution of Small Cell Lung Cancer Subtypes by Reprogramming
Neuroendocrine Fate. Cancer Cell. 2020, 38, 60–78.e12. [CrossRef]

30. Tenjin, Y.; Kudoh, S.; Yamada, T.; Matsuo, A.; Sato, Y.; Ichimura, T.; Kohrogi, H.; Sakagami, T.;
Ito, T. Achaete-scute complex-induced Wnt11 regulates neuroendocrine differentiation, proliferation
and E-CADHERIN expression in small cell lung cancer and Wnt11 regulates small-cell lung cancer biology.
Lab Invest. 2019, 99, 1622–1635. [CrossRef]

31. Tenjin, Y.; Matsuura, K.; Kudoh, S.; Usuki, S.; Yamada, T.; Matsuo, A.; Sato, Y.; Saito, H.; Fujino, K.;
Wakimoto, J.; et al. Distinct transcriptional programs of SOX2 in different types of small cell lung cancers.
Lab Invest. 2020, 1–14. [CrossRef]

32. Kudoh, S.; Tenjin, Y.; Kameyama, H.; Ichimura, T.; Yamada, T.; Matsuo, A.; Kudo, N.; Sato, Y.; Ito, T.
Significance of Achaete-Scute Complex Homologue 1 (ASCL1) in pulmonary neuroendocrine carcinomas;
RNA sequence analyses using small cell lung cancer cells and Ascl1-induced pulmonary neuroendocrine
carcinoma cells. Histochem. Cell Biol. 2020, 153, 443–456. [CrossRef]

33. Rudin, C.; Durinck, S.; Stawiski, E.; Poirier, J.; Modrusan, Z.; Shames, D.; Bergbower, E.; Guan, Y.; Shin, J.;
Guillory, J.; et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in
small-cell lung cancer. Nat. Genet. 2012, 44, 1111–1116. [CrossRef] [PubMed]

34. La Rosa, S.; Chiaravall, A.; Placidi, C.; Papanikolaou, N.; Cerati, M.; Capella, C. TTF1 expression in normal
lung neuroendocrine cells and related tumors: Immunohistochemical study comparing two different
monoclonal antibodies. Virchows Arch. 2010, 457, 497–507. [CrossRef] [PubMed]

35. Murai, F.; Koinuma, D.; Shinozaki-Ushiku, A.; Fukayama, M.; Miyaozono, K.; Ehata, S. EZH2 promotes
progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov. 2015, 1, 15026.
[CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.celrep.2016.06.081
http://www.ncbi.nlm.nih.gov/pubmed/27452466
http://dx.doi.org/10.1038/386852a0
http://www.ncbi.nlm.nih.gov/pubmed/9126746
http://dx.doi.org/10.18632/oncotarget.20572
http://www.ncbi.nlm.nih.gov/pubmed/29088741
http://dx.doi.org/10.1101/gad.314815.118
http://dx.doi.org/10.1371/journal.pgen.1005895
http://dx.doi.org/10.1016/j.lungcan.2020.05.012
http://dx.doi.org/10.1111/cas.13013
http://dx.doi.org/10.1016/j.ccell.2020.05.001
http://dx.doi.org/10.1038/s41374-019-0277-y
http://dx.doi.org/10.1038/s41374-020-00479-0
http://dx.doi.org/10.1007/s00418-020-01863-z
http://dx.doi.org/10.1038/ng.2405
http://www.ncbi.nlm.nih.gov/pubmed/22941189
http://dx.doi.org/10.1007/s00428-010-0954-0
http://www.ncbi.nlm.nih.gov/pubmed/20694477
http://dx.doi.org/10.1038/celldisc.2015.26
http://www.ncbi.nlm.nih.gov/pubmed/27462425


Diagnostics 2020, 10, 949 14 of 14

36. Furuta, M.; Sakakibara-Konishi, J.; Kikuchi, H.; Yokouchi, H.; Nishihara, H.; Minemura, H.; Harada, M.;
Yamazaki, S.; Akie, K.; Fujita, Y.; et al. Analysis of DLL3 and ASCL1 in Surgically Resected Small Cell Lung
Cancer. Oncologist 2019, 24, e1172–e1179. [CrossRef] [PubMed]

37. Zhou, Y.; Huang, T.; Cheng, A.; Yu, J.; Kang, W.; To, K. The TEAD family and its oncogenic role in promoting
tumorigenesis. Int. J. Mol. Sci. 2016, 17, 138. [CrossRef] [PubMed]

38. Meder, L.; König, K.; Ozretic, L.; Schultheis, A.; Ueckeroth, F.; Ade, C.; Albus, K.; Boehm, D.;
Rommerscheidt-Fuss, U.; Florin, A.; et al. NOTCH, ASCL1, p53 and RB alterations define an alternative
pathway driving neuroendocrine and small cell lung carcinomas. Int. J. Cancer 2016, 138, 927–938. [CrossRef]

39. Motooka, Y.; Kudoh, S.; Fujino, K.; Sato, Y.; Suzuki, M.; Ito, T. Pathobiology of Notch2 in lung cancer.
Pathology 2017, 49, 486–493. [CrossRef]

40. Hassan, W.; Yoshida, R.; Kudoh, S.; Motooka, Y.; Ito, T. Evaluation of role of Notch3 signaling pathway in
human lung cancer cells. J. Cancer Res. Clin. Oncol. 2016, 142, 981–993. [CrossRef]

41. Hassan, W.; Yoshida, R.; Kudoh, S.; Hasegawa, K.; Niimori-Kita, K.; Ito, T. Notch1 signaling controls cell
proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer 2014, 85, 131–140.

42. Schultheis, A.; Bos, M.; Schmitz, K.; Wilsberg, L.; Binot, E.; Wolf, J.; Büttner, R.; Schildhaus, H. Fibroblast
growth factor receptor 1 (FGFR1) amplification is a potential therapeutic target in small-cell lung cancer.
Mod. Pathol. 2014, 27, 214–221. [CrossRef]

43. Centonze, G.; Biganzoli, D.; Prinzi, N.; Pusceddu, S.; Mangogna, A.; Tamborini, E.; Perrone, F.; Busico, A.;
Lagano, V.; Cattaneo, L.; et al. Beyond traditional morphological characterization of lung neuroendocrine
neoplasms: In silico study of next-generation sequencing mutations analysis across the four world health
organization defined groups. Cancers (Basel) 2020, 12, 2753. [CrossRef] [PubMed]

44. Wang, T.; Chen, X.; Qiao, W.; Kong, L.; Sun, D.; Li, Z. Transcription factor E2F1 promotes emt by regulating
ZEB2 in small cell lung cancer. BMC Cancer. 2017, 17, 719. [CrossRef] [PubMed]

45. De Cássia, S.; Alves, R.; Meurer, R.; Roehe, A. MYC amplification is associated with poor survival in small
cell lung cancer: A chromogenic in situ hybridization study. J. Cancer Res. Clin. Oncol. 2014, 140, 2021–2025.
[CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1634/theoncologist.2018-0676
http://www.ncbi.nlm.nih.gov/pubmed/31068386
http://dx.doi.org/10.3390/ijms17010138
http://www.ncbi.nlm.nih.gov/pubmed/26805820
http://dx.doi.org/10.1002/ijc.29835
http://dx.doi.org/10.1016/j.pathol.2017.05.005
http://dx.doi.org/10.1007/s00432-016-2117-4
http://dx.doi.org/10.1038/modpathol.2013.141
http://dx.doi.org/10.3390/cancers12102753
http://www.ncbi.nlm.nih.gov/pubmed/32987854
http://dx.doi.org/10.1186/s12885-017-3701-y
http://www.ncbi.nlm.nih.gov/pubmed/29115924
http://dx.doi.org/10.1007/s00432-014-1769-1
http://www.ncbi.nlm.nih.gov/pubmed/25012251
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Cell Lines and Xenotransplantation 
	Western Blot (WB) Analysis 
	Tissue Samples 
	IHC 
	IHC Analysis 
	Statistical Analysis 

	Results 
	Expression of Four Key Molecules in Representative SCLC Cell Lines 
	ASCL1 Exhibited the Highest Positive Rate among the Four Key Molecules in SCLC 
	Four Key Molecules Were Simultaneously Expressed in SCLC 
	Candidate Target Molecule Expression in ASCL1-Positive and ASCL1-Negative Samples 
	Candidate Target Molecule Expression in NEUROD1-Positive and NEUROD1-Negative Samples 
	Candidate Target Molecule Expression in YAP1-Positive and YAP1-Negative Samples 
	Candidate Target Molecule Expression in POU2F3-Positive and POU2F3-Negative Samples 

	Discussion 
	Conclusions 
	References

