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A B S T R A C T   

Dengue fever is a virus spread by mosquitoes that has no effective treatment or vaccination. Several dengue cases 
combined with the current COVID-19 pandemic, exacerbates this problem. Two proteins, NS5 methyltransferase 
and NS2B/NS3 primary protease complexes, are crucial for dengue viral replication and are the target sites for 
antiviral development. Thus, this study screened published literature and identified 162 marine fungus-derived 
compounds with active bioavailability. Following Lipinski’s rules and antiviral property prediction, 41 com-
pounds were selected for docking with NS5 methyltransferase and NS2B/NS3 protease (PDB ID: 6IZZ and 2FOM) 
to evaluate compounds that could stop the action of dengue viral protein complexes. To find the best candidates, 
computational ADME, toxicity, and drug target prediction were performed to estimate the potential of the multi- 
targeting fungal-derived natural compounds. Analyzing the result from 41 compounds, Chevalone E (− 13.5 kcal/ 
mol), Sterolic acid (− 10.3 kcal/mol) showed higher binding energy against dengue NS2B/NS3 protease; 
meanwhile, Chevalone E (− 12.0 kcal/mol), Brevione K (− 7.4 kcal/mol), had greater binding affinity against NS5 
methyltransferase. Consequently, this study suggests that Chevalone E is an effective inhibitor of NS5 methyl-
transferase and NS2B/NS3 protease. Ligand-based virtual screening from DrugBank was utilized to predict 
biologically active small compounds against dengue virus NS2B/NS3 major protease and NS5 methyltransferase. 
Both licensed medications, estramustine (DB01196) and quinestrol (DB04575), were found to be similar to 
Chevalone E, with prediction scores of 0.818 and 0.856, respectively. In addition, cholic acid (DB02659), aci-
tretin (DB00459), and mupirocin (DB00410) are similar to Sterolic acid, zidovudine (DB00495), imipenem 
(DB01598), and nadolol (DB01203) are similar to Brocazine A, and budesonide (DB01222) and colchicine 
(DB01394) are related to Brevione K. These findings suggest that these could be feasible dengue virus treatment 
options, meaning that more research is needed.   

1. Introduction 

Dengue virus (DENV) fever is the most common arthropod-borne 
viral disease in humans, affecting more than half of the world’s popu-
lation [1]. DENV of the Flaviviridae family is ubiquitous and has been 
reported in 953,476 cases in 2021 [2], the majority of which originated 
in Brazil, Peru, Vietnam, France, and the Philippines. Despite the 

significant disease burden caused by DENV, there is no approved anti-
viral therapy or vaccine that can be used to treat or prevent infection 
[3]. The DENV genome is formed of 11 kb single-stranded positive sense 
RNA that is structured as 50NCR-CprM-E-NS1-NS2A-NS2B-NS3-N-
S4A-NS4B-NS5-30NCR, where NCR is the noncoding region, C is the 
capsid, prM is the pre-membrane, E is the envelope, and NS is the 
nonstructural protein. Among these proteins, envelope glycoprotein, 
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Table 1 
List of selected bioactive compounds derived from sea water fungi with docked binding energy.  

Compound Name Compound Structure Origin 2FOM 6IZZ Reference 

Binding energy (kcal/mol) Binding energy (kcal/mol) 

Brocazine A Penicillium brocae MA-231 − 8.6 − 7.1 [39] 

Chevalone E Aspergillus similanensis sp. − 13.5 − 12.0 [40] 

Trichobotryside A Trichobotrys effuse DFFSCS021 − 7.5 − 5.9 [41] 

Engyodontiumone H Engyodontium album DFFSCS021 − 7.1 − 5.8 [42] 

Aspergillusone B Aspergillus sydowii PSU-F154 − 7.3 − 6.3 [43] 

Engyodontiumone F Engyodontium album DFFSCS021 − 6.9 − 5.9 [42] 

Stachybotrysin H Stachybotrys chartarum − 8.3 − 6.4 [44] 

Dehydrocurvularin Penicillium sp. SF-5859 − 7.5 − 6.3 [45] 

Aspergifuranone Aspergillus sp. − 8.3 − 6.0 [46] 

Penilactone A Penicillium crustosum − 7.4 − 6.1 [47] 

Sterolic acid Penicillium sp. − 10.3 − 7.0 [48] 

Brevione F Penicillium sp. − 9.0 − 7.1 [49] 

Engyodontiumone C Engyodontium album DFFSCS021 − 7.5 − 5.9 [42] 

Penipacid B penicillium paneum − 6.6 − 5.7 [50] 

Peaurantiogriseol A Penicillium aurantiogriseum 328# − 6.3 − 5.8 [51] 

Cladosin C Cladosporium sphaerospermum 2005-01-E3 − 7.0 − 5.9 [52] 

Cladosin F Cladosporium sphaerospermum − 6.7 − 6.4 [52] 

Cladosin G Cladosporium sphaerospermum − 6.0 − 5.8 [52] 

Penipacid A penicillium paneum − 6.9 − 6.7 [50] 

(continued on next page) 
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Table 1 (continued ) 

Compound Name Compound Structure Origin 2FOM 6IZZ Reference 

Binding energy (kcal/mol) Binding energy (kcal/mol) 

Brevione K Penicillium sp. − 9.2 − 7.4 [48] 

Penicimutanin A Penicillium purpurogenum − 7.6 − 6.2 [53] 

Integric acid Xylaria sp. − 6.8 − 5.3 [54] 

Isoaspulvinone E Aspergillus terreus Gwq-48 − 8.1 − 6.7 [55] 

Purpurquinone B Penicillium funiculosum No. 8974 − 8.1 − 6.4 [55] 

Purpurquinone C Penicillium funiculosum No. 8974 − 7.8 − 6.5 [56] 

TAN-931 Penicillium funiculosum No. 8974 − 7.4 − 6.7 [57] 

Sorbicatechol A Penicillium chrysogenum PJX-17 − 8.1 − 6.2 [58] 

Tetrahydroaltersolanol C Alternaria sp. ZJ-2008003 − 8.6 − 6.2 [59] 

Acremeremophilane B Acremonium sp. − 7.0 − 5.6 [60] 

Chrysine B Penicillium chrysogenum SCSIO 41001 − 6.6 − 5.2 [61] 

lindgomycin Lingomycetaceae − 8.7 − 6.8 [62] 

Pseudaboydin A Pseudallescheria boydii − 6.6 − 6.5 [63] 

Aspochalasin V Aspergillus sp − 7.4 − 5.7 [64] 

Peaurantiogriseol C Penicillium aurantiogriseum 328# − 6.4 − 5.2 [51] 

Peaurantiogriseol D Penicillium aurantiogriseum 328# − 6.5 − 5.2 [51] 

Peaurantiogriseol E Penicillium aurantiogriseum 328# − 7.0 − 6.6 [51] 

(continued on next page) 
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NS3 protease, NS3 helicase, NS5 methyltransferase, and NS5 
RNA-dependent RNA polymerase have been proposed as potential 
therapeutic targets for dengue fever [4]. 

Antiviral research currently focuses on key viral enzymes associated 
with infection progression by inhibiting their biological activity directly 
or indirectly or by preventing the viral reproduction mechanism [5,6]. 
Several studies have revealed that NS2B/NS3 protease is one of the most 
commonly exploited targets for this purpose [7]. In addition, flavivirus 

proteases, such as NS2B/NS3, are required to initiate viral replication 
with infectivity [4]. Furthermore, DENV infection is reduced by 80% 
when cells are treated with peptide inhibitors of these protease enzymes 
[8]. Presumably, in the case of therapeutic purpose, inhibiting viral 
proteases is a well-known method of avoiding viral infection. HIV pro-
tease inhibitors are widely used in clinical practice to treat HIV infection 
[9]. Similarly, simeprevir [10] and sofosbuvir [11] have recently been 
approved for therapeutic use against hepatitis C virus protease and have 
also been established as the gold standard. As a result, targeting 
NS2B/NS3 proteases with drugs is a widespread technique for treating 
DENV. 

In recent years, marine fungi have been proven to be plentiful and a 
potential source of novel bioactive natural chemicals. Because most of 
these organisms exist in harsh environments, they can develop unique 
secondary metabolites. Metabolites are thought to represent the chem-
ical defense response of fungi competing for substrates [12]. The range 
of natural chemicals produced by marine fungi suggests that some of 
these substances could be used in clinical trials to develop anti-infective 
medications. 

Our study focused on using fungal bioactive compounds with potent 
antiviral activity against various known pathogenic viruses, such as 
influenza, hepatitis C virus, and herpes simplex virus, and as potential 
drug prototypes against DENV as a contribution to this global scientific 
endeavor. Thus, in this study, we used a systematic screening method to 
identify the top candidate for NS2B/NS3 and NS5 inhibitors of patho-
genic DENV. Furthermore, computerized absorption, distribution, 
metabolism, excretion, and toxicity (ADMET) were analyzed to predict 
the potential of these multi-targeting fungal natural compounds for lead 
optimization and drug discovery. 

2. Method and materials 

2.1. Protein dataset and binding site analysis 

X-ray crystallographic structures of nonstructural (NS) methyl-
transferase NS5 (PDB ID: 6IZZ) and NS2B/NS3 protease (PDB ID: 2FOM) 
were retrieved from the Protein Data Bank (PDB). Afterwards, active 
drug sites of two retrieved proteins were predicted using the Computed 
Atlas of Surface Topography of Proteins (CASTp) server for high- 
resolution crystal structures and binding pockets [13]. 

2.2. Protein and ligand preparation 

Before docking investigations, each protein was opened into the 

Table 2 
H-bond interactions of top 5 potential compounds derived from marine fungi 
against dengue NS2b/NS3 protease and NS5 methyl transferase inhibitor.   

Fungi derived 
bioactive 
compound 

Binding 
energy 
(kcal/mol 

Conventional 
Hydrogen 
bonding 

Ligand binding 
amino acid with 
receptor 

Amino acid 
interaction: bond 
length (A) 

2FOM Chevalone E − 13.5 - GLY153 
Sterolic acid − 10.3 SER127: 2.42, 

LEU128: 2.03 
GLY153: 2.40, 
HIS51: 3.01 

SER127, 
LEU128, 
ASP129, 
TYR161, 
GLY153, HIS51 

Brevione K − 9.2 ARG54: 1.76 LEU76, TRP83, 
ASP152 

Brevione F − 9.0 GLY153: 2.45 TYR161, 
LEU128, 
PRO132 

lindgomycin − 8.7 GLY151: 2.37 ASP75, GLY151, 
TYR161 

61ZZ Chevalone E − 12.0 - LYS756, 
VAL785, 
TYR882 

Brevione K − 7.4 - ASP808, 
THR806, 
MET809, 
TYR883, 
CYS780 

Brocazine A − 7.1 TYR838: 2.75, 
ILE717: 2.92 

TYR838, 
GLY840, 
PRO837, ILE717 

Brevione F 7.1 - PRO829, 
GLY819 

Sterolic acid − 7.0 ALA757: 2.26, 
TRP803: 3.16 
GLU509: 3.04 

GLU509, 
GLY510, 
TRP803, 
ALA757, 
TYR752  

Table 1 (continued ) 

Compound Name Compound Structure Origin 2FOM 6IZZ Reference 

Binding energy (kcal/mol) Binding energy (kcal/mol) 

Peaurantiogriseol F Penicillium aurantiogriseum 328# − 6.0 − 5.0 [51] 

Phomazine B Phoma sp. OUCMDZ-1847vv − 7.3 − 6.1 [65] 

Penikellide A Penicillium sp. MA-37 − 7.5 − 5.5 [66] 

Resveratrodehyde A Alternaria spp − 7.7 − 6.5 [67] 

Speradine G Aspergillus oryzae − 7.7 − 6.9 [68]  
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Fig. 2. Graphical presentation of docked complex and ligand interaction with protein; (A) 6IZZ-Chevalone E; (B) 6IZZ-Brevione K.  

Fig. 1. Visualization of docked complex and ligand interaction with protein; (A) 2FOM-Chevalone E; (B) 2FOM-Sterolic Acid.  
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Discovery Studio (DS) Visualizer, and water molecules, original inhibi-
tor, and ligand compounds were removed to upgrade the protein’s 
structure. The required hydrogen atoms were then inserted, followed by 
optimization to ensure structural stability. The final compounds were 
then translated to PDBQT format using the AutoDockTools-1.5.6 
software. 

To prepare the ligand, we examined a wide range of natural bioactive 
chemicals derived from marine fungi that have previously been outlined 
in the literature [14,15]. Subsequently, 162 compounds were enrolled 
with ID numbers and chemical structures obtained from the PubChem 
database (Supplementary Table 1). We then refined the bioactive com-
pounds based on molecular weights between 350 and 500 (g/mol). Next, 
the biological potential of the selected compounds was predicted using 
the prediction service PassOnline server [16], which proposes the bio-
logical activity spectra of the compounds using the SMILES files of the 
structures. The likelihood of becoming active (pa) parameter was set to 
pa>0.3 for a better prediction against DENV. Finally, 41 substances 
were found to have antiviral properties. Then, each ligand’s SMILE file 
was converted to PDBQT format, loaded into the AutoDockTools-1.5.6 
software, and set up using the prepared ligand preparation tool for 
docking analysis. 

2.3. Active site prediction and molecular docking 

For molecular docking experiments, we used the default procedure in 

AutoDock tools 1.5.6 [17]. A grid box was created around the active site 
of DENV virus NS5 methyltransferase and NS2B/NS3 protease, as well as 
2FOM and 6IZZ, with the help of a DS Visualizer. In addition, we set the 
grid box at 40 × 40 × 40 points in the xyz-dimension, which equaled a 
grid box spacing of 0.3753, and fixed the coordinates of the x, y, and z 
centers as 0.387667, − 6.969833, and 12.141667 for NS2B/NS3; 
meanwhile, − 15.658143, − 19.544214, and 38.773643 for NS5. We 
employed the Lamarckian genetic algorithm with default parameters for 
docking simulations, which included 10 genetic algorithm runs. Using 
the DS Visualizer, we further investigated the molecule with the highest 
energy ranking for protein-ligand interactions. 

2.4. Drug profile analysis of top compounds 

Absorption, distribution, metabolism, and excretion (ADME) are the 
four key criteria that determine drug levels and kinetics of drug exposure 
in an organism’s tissues. These characteristics play a major role in the 
pharmacological activity and performance [18]. The SwissADME server 
was used to evaluate the ADME properties of the top five metabolites 
[19]. The blood-brain barrier (BBB) in the examined substances was 
calculated using the BOILED-Egg model [20]. 

2.5. Toxicity, carcinogenicity, and mutagenicity prediction 

To predict toxicity, mutagenicity, and carcinogenic effects, canonical 

Fig. 3. Visualization of receptor-ligand hydrogen bond interaction(A) 2FOM-Chevalone E; (B) 2FOM-Sterolic Acid; (C) 6IZZ-Chevalone E; (D) 6IZZ-Brevione K.  

M. Hasan et al.                                                                                                                                                                                                                                  



Informatics in Medicine Unlocked 30 (2022) 100932

7

SMILES of the selected compounds that displayed predicted antiviral 
activity were uploaded to the pkCSM server [21] and proTox-ll data-
bases [22]. The toxicity was predicted using the toxicity mode in the 
pkCSM server, and the ProTox-ll server was used to assess carcinoge-
nicity and mutagenicity. By combining the molecular similarity, frag-
ment tendency, and fragment similarity approaches, this popular server 
effectively predicts numerous toxicity outcomes [23]. Based on the 
analysis of 2-dimensional (2D) similarity to substances with a known 
median lethal dose, the server also projected the oral toxicity (LD50). 
The list used for the prediction contained almost 38,000 different 
chemicals with known oral LD50 values in mice [24]. 

2.6. Prediction of drug target and available drug molecules from 
DrugBank 

The SwissTargetPrediction server was used to determine the poten-
tial macromolecular targets of the therapeutic candidates [25]. Based on 
a combination of 2D and 3D similarities with a library of 370,000 known 
bioactive chemicals on approximately 3000 proteins, the server makes 
predictions. Analyzing the homology screening of anticipated top drug 
candidates, the SwissSimilarity web tools were utilized to find possible 
therapeutic compounds against DENV virus NS5 methyltransferase and 
NS2B/NS3 protease. Using diverse methodologies, such as FP2 finger-
prints, electroshapes, and spectrophores [26], the server allows 
ligand-based virtual screening of several libraries of small compounds to 
locate authorized, investigational, or commercially accessible 

medications from DrugBank. 

2.7. Molecular dynamics simulations 

The iMOD server was used to analyze the structural dynamics of the 
best protein-ligand combination and to evaluate the stability of the 
structure by applying deformability analysis, which included the 
computation of the eigenvalues of the complexes [27,28]. This is a web 
server that can be customized and can generate complex deformability, 
variance, B-factor, covariance map data, and elastic network data. The 
deformability of a complex or protein is determined by its ability to 
deform at each amino acid residue [29]. The eigenvalue is equal to the 
energy difference required to bend a particular structure; therefore, the 
smaller the eigenvalue, the easier it is to deform the complex. The 
eigenvalue also represents the stiffness of the protein complex [30]. 

3. Results and discussion 

3.1. Analysis of drug surface hotspot and ligand binding pocket 

The drug surface hotspots of the selected NS5 methyltransferase and 
NS2B/NS3 protease with the ligand were investigated based on the 
structural conformation of the docked complexes. The ligand-binding 
patterns as well as the locations of the interacting residues are shown 
in Table 2. The positions of amino acids 127–161 were found to be 
crucial for NS2B/NS3 binding interactions (2FOM). Contrarily, the 

Table 3 
ADME properties of the best bioactive compounds derived from marine fungi.   

Compound Chevalone E Sterolic acid Brevione K Brocazine A 

Physicochemical Properties Molecular weight 414.58 484.58 434.52 452.5 
Num. heavy atoms 30 35 32 30 
Num. atom. heavy atoms 6 0 6 0 
Fraction Csp3 0.81 0.79 0.52 0.68 
Num. rotatable bonds 0 5 0 1 
Num. H-bond acceptors 4 7 5 7 
Num. H-bond donors 1 2 1 2 
Molar Refractivity 119.89 126.91 123.9 113.38 
TPSA 59.67 108.89 73.58 175.05 

Lipophilicity Log Po/w (iLOGP) 4.1 3.05 3.58 1.51 
Log Po/w (XLOGP3) 5.46 2.06 3.00 − 2.16 
Log Po/w (WLOGP) 5.27 2.91 5.58 − 1.69 
Log Po/w (MLOGP) 3.86 1.95 3.23 − 1.61 
Log Po/w (SILICOS-IT) 5.42 4.09 3.53 − 1.23 
Consensus Log Po/w 4.82 2.81 3.99 − 1.04 

Water Solubility Log S (ESOL) − 6 − 3.81 − 4.56 − 1.22 
Solubility 4.16E-04 7.47E-02 1.19e-02 2.73E+01 
Class 1.00E-06 1.54E-04 2.743–05 6.04E-02 
Log S (Ali) Moderately soluble Soluble Moderately soluble Very soluble 
Solubility − 6.47 − 3.98 − 4.21 − 0.99 
Class 1.40E-04 5.13E-02 2.68E-02 4.68E+01 
Log S (SILICOS-IT) 3.39E-07 1.06E-04 6.17E-05 1.03E-01 
Solubility Poorly soluble Soluble Poorly soluble Very soluble 

Pharmacokinetics GI absorption High High High Low 
BBB permeant Yes No No No 
P-gp substrate No Yes No Yes 
CYP1A2 inhibitor Yes No No No 
CYP2C19 inhibitor No No No No 
CYP2C9 inhibitor No No Yes No 
CYP2D6 inhibitor No No No No 
CYP3A4 inhibitor No No Yes No 
Log Kp (skin permeation) − 4.95 − 7.79 − 6.87 − 10.59 

Druglikeness Lipinski 0 0 0 0 
Ghose 0 2 0 1 
Veber 0 0 0 1 
Egan 0 0 0 1 
Muegge 1 0 0 2 
Bioavailability Score 0.55 0.56 0.55 0.55 

Medicinal Chemistry PAINS 0 0 0 0 
Brenk 0 2 0 1 
Leadlikeness 2 1 1 1 
Synthetic accessibility 5.96 7.41 6.17 6.16  
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amino acids from positions 806 to 840 showed the interactions with NS5 
(6IZZ) protease. Additionally, CASTp was used to confirm the binding 
site residues of the two target proteins. 

3.2. The binding affinities of the ligands into NS2B/NS3 and NS5 active 
site 

The results of docking details were recovered after docking all the 
ligands with NS2B/NS3 protease and NS5 methyltransferase target in 
Table 1. The molecules that had the lowest binding energy of the 
docking score were considered the best molecules and had a higher 
binding affinity with the target receptors [31]. Moreover, the lower the 
stabilization energy of ligand binding to the receptor, the greater the 
potential of action was. To limit the probability of false-positive results, 
the ideal binding energy of marine fungal-derived compounds was 
compared with that of the approved clinical chemical treatments, and 
the binding energy in the screening criterion was amended to a negative 
value > − 5 kcal/mol [32] to reduce the risk of false-positive results. The 
four best components are presented in Table 2, and the docking scores of 
all the compounds are listed in Table 1. Out of 41 compounds, including 
Chevalone E (− 13.5 kcal/mol), Sterolic acid (− 10.3 kcal/mol), Brevione 
K (− 9.2 kcal/mol), Brevione F (− 9.0 kcal/mol), lindgomycin (− 8.7 
kcal/mol), Tetrahydroaltersolanol C (− 8.6 kcal/mol) showed higher 
binding energy against dengue NS2B/NS3 protease; meanwhile, Chev-
alone E (− 12), Brevione K (− 7.4 kcal/mol), Brocazine A (− 7.1 kcal/-
mol), Brevione F (− 7.1 kcal/mol), Sterolic acid (− 7.0 kcal/mol), and 
Speradine G (− 6.9 kcal/mol) had greater binding affinity against NS5 

methyltransferase of dengue virus. Contrastingly, Peaurantiogriseols 
compounds, Penikellide A, Resveratrodehyde A, Remeremophilane B, 
and Engyodontiumone H showed the lowest binding affinity against 
viral NS5 methyltransferase but had moderate binding affinity against 
viral NS2B/NS3 protease. 

In the previous study, the in-silico highest binding affinities of 
Artesunic acid and Homoegonol against the NS5 methyl transferase re-
ported as − 7.2 and − 7.1 kcal/mol [33], which refers the slightly higher 
binding affinity energy of our selected compounds (Chevalone E, Bre-
vione K, Brocazine A, and Brevione F). In another study were revealed 
that apigenin and luteolin phytocompounds showed the highest binding 
affinity (− 7.7 kcal/mol) against dengue NS2B/NS3 protease [34] that 
was dissimilar from our results we found more binding affinity − 13.5, 
-10.5, − 9.2 and − 9.0 kcal/mol for Chevalone E, Sterolic acid, Brevione 
K, Brevione F, respectively. In addition, [35] reported a lower binding 
affinity for phytocompounds based on the binding affinity of the 
above-listed compounds. The ligand-receptor interactions are shown in 
Figs. 1 and 2. 

3.3. Hydrogen bond analysis 

The complex interactions between NS2B/NS3 and NS5 with inhibi-
tory ligands were visualized using a DS Visualizer, and a hydrogen bond 
analysis was also performed. In the Table 2, the numbers of hydrogen 
bonds and residues implicated in hydrogen bond interactions were 
summarized. Chevalone E, Sterolic acid, Brocazine K, Brevione F, and 
lindgomycin are possible NS2B/NS3 inhibitor candidates with drug-like 

Fig. 4. ADME analysis of top four metabolites; (A) Chevalone E; (B) Sterolic Acid; (C) Brevione K; (D) Brocazine A.  
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properties and no toxicity, carcinogenicity, or mutagenicity. At the 
residues of SER127, LEU128, GLY153, and HIS51, Sterolic acid forms 
four hydrogen bonds, whereas only the ARG54 residue was formed in 
the case of Brocazine K. Moreover, Brevione F and Lindgomycin 
(GLY151: 2.37) showed that they could also be used as NS2B/NS3 in-
hibitors. Contrarily, at the residues TYR838 and ILE717, Brocazine A 
formed hydrogen bonds with viral NS5 methyltransferase. In addition, 
Sterolic acid had three hydrogen bonds interacting with the active site of 
NS5 methyltransferase at residues ALA757, TRP803, and GLU509. 

Interestingly, despite the fact that Brevione K had a higher binding af-
finity, this combination was unable to form hydrogen bonds. Therefore, 
Brocazine A, with two hydrogen bonds, was found to be the best in-
hibitor of NS5 methyltransferase. The common interactions of the 
examined compounds, when compared to the original inhibitor, suggest 
that marine-derived fungal compounds Chevalone E, Sterolic acid, 
Brevione K, and Brocazine A (Fig. 3) could be potential inhibitors of 
NS2B/NS3 protease and NS5 methyltransferase. 

Table 4 
Toxigenicity, mutagenicity and carcinogenicity prediction of selected bioactive compounds.  

Bioactive compounds name Chevalone E Sterolic Acid Brevione F Brocazine A 

AMES toxicity No No No No 
hERG I inhibitor No No No No 
hERGII inhibitor No No No No 
Oral Rat Acute Toxicity (LD50) 2.122 2.541 2.664 3.486 
Oral Rat Chronic Toxicity (LOAEL) 0.891 1.437 1.477 1.983 
Hepatotoxicity No No No No 
Skin Sensitisation No No No No 
Minnow toxicity 1.015 0.973 0.25 5.734 
Mutagenicity Inactive (0.82) Inactive (0.80) Inactive (0.84) Inactive (0.69) 
Carcinogenicity Inactive (0.67) Inactive (0.54) Inactive (0.53) Inactive (0.69) 
Immunotoxicity Active (0.90) Active (0.97) Active (0.99) Active (0.64) 
Aryl hydrocarbon Receptor (AhR Inactive (0.96) Inactive (0.92) Inactive (0.92) Inactive (0.92) 
Androgen Receptor (AR) Inactive (0.88) Inactive (0.60) Inactive (0.63) Inactive (0.94) 
Androgen Receptor Ligand Binding Domain (AR-LBD) Inactive (0.86) Inactive (0.53) Inactive (0.52) Inactive (0.94) 
Aromatase Inactive (0.76) Inactive (0.58) Inactive (0.58) Inactive (0.90) 
Estrogen Receptor Alpha (ER) Inactive (0.72) Inactive (0.65) Inactive (0.65) Inactive (0.88) 
Estrogen Receptor Ligand Binding Domain (ER-LBD) Inactive (0.90) Inactive (0.90) Inactive (0.89) Inactive (0.92) 
Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma) Inactive (0.85) Inactive (0.85) Inactive (0.84) Inactive (0.89) 
Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element (nrf2/ARE Inactive (0.83) Inactive (0.93) Inactive (0.90) Inactive (0.87) 
Heat shock factor response element (HSE) Inactive (0.83) Inactive (0.93) Inactive (0.90) Inactive (0.87) 
Mitochondrial Membrane Potential (MMP) Inactive (0.56) Inactive (0.62) Inactive (0.52) Inactive (0.83) 
Phosphoprotein (Tumor Supressor) p53 Inactive (0.72) Inactive (0.58) Inactive (0.57) Inactive (0.84) 
ATPase family AAA domain-containing protein 5 (ATAD5) Inactive (0.95) Inactive (0.91) Inactive (0.92) Inactive (0.92)  

Fig. 5. Prediction of drug targets for (A) Chevalone E (B) Sterolic Acid, and (C) Brevione K.  
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3.4. In silico evaluation of drug likeness and ADME 

The ADME approach was used to analyze the drug-likeness of the top 
four compounds found in the marine-derived fungi. Forecasts were 
made using the SwissADME database. The likeness of the drug was 
demonstrated by five rules established by Lipinski. The molecular 
weight (MW) should be between 350 and 500 (g/mol), the number of 
hydrogen bond acceptors should be between (10), the number of 
hydrogen bond donors should be between (5), and the Log Po/w should 
be between 5 and 10 [36], with no more than one violation allowed. 
Chevalone E, Brevione K, and Sterolic acid had higher gastrointestinal 
absorption than Brocazine A. Furthermore, the BOILED-Egg model was 
used to compute BBB penetration, which demonstrated that none of the 
top medication candidates tested had BBB permeation. Each compound 
was water soluble to varying degrees, with Sterolic acid having the 

Table 5 
Predicted drug targets for Sterolic Acid, Brevione K, and Chevalone E.   

Target Common 
name 

UniProtKB ID Target Class Probability 

Sterolic 
Acid 

Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 ATP2A1 O14983 Hydrolase 0.1106122 
Subtilisin/kexin type 7 PCSK7 Q16549 Protease 0.1106122 
Isoleucyl-tRNA synthetase IARS P41252 Enzyme 0.1106122 
Proto-oncogene c-JUN JUN P05412 Transcription factor 0.1106122 
Protein kinase C alpha PRKCA P17252 Kinase 0.1106122 
Cyclooxygenase-2 PTGS2 P35354 Oxidoreductase 0.1106122 
Glutathione S-transferase Mu 1 GSTM1 P09488 Enzyme 0.1106122 
Protein kinase C epsilon PRKCE Q02156 Kinase 0.1106122 
Cytochrome P450 19A1 CYP19A1 P11511 Cytochrome P450 0.1106122 
LanC-like protein 2 LANCL2 Q9NS86 Unclassified protein 0.1106122 
Proteinase-activated receptor 2 F2RL1 P55085 Family A G protein-coupled 

receptor 
0.1106122 

Voltage-gated potassium channel subunit Kv1.3 KCNA3 P22001 Voltage-gated ion channel 0.1106122 
Transient receptor potential cation channel subfamily V member 4 (by 
homology) 

TRPV4 Q9HBA0 Voltage-gated ion channel 0.1106122 

Integrin alpha-4/beta-1 ITGB1 ITGA4 P05556 
P13612 

Membrane receptor 0.1106122 

Zinc finger protein GLI1 GLI1 P08151 Transcription factor 0.1106122 
Brevione K Voltage-gated potassium channel subunit Kv1.5 KCNA5 P22460 Voltage-gated ion channel 0.106542926 

Protein farnesyltransferase FNTA FNTB P49354 
P49356 

Enzyme 0.106542926 

11-beta-hydroxysteroid dehydrogenase 1 HSD11B1 P28845 Enzyme 0.106542926 
C–C chemokine receptor type 5 CCR5 P51681 Family A G protein-coupled 

receptor 
0.106542926 

Steroid 5-alpha-reductase 1 SRD5A1 P18405 Oxidoreductase 0.106542926 
Steroid 5-alpha-reductase 2 SRD5A2 P31213 Oxidoreductase 0.106542926 
Cytochrome P450 19A1 CYP19A1 P11511 Cytochrome P450 0.106542926 
Phosphodiesterase 10A (by homology) PDE10A Q9Y233 Phosphodiesterase 0.106542926 
Telomerase reverse transcriptase TERT O14746 Enzyme 0.106542926 
Orexin receptor 2 HCRTR2 O43614 Family A G protein-coupled 

receptor 
0.106542926 

Orexin receptor 1 HCRTR1 O43613 Family A G protein-coupled 
receptor 

0.106542926 

Glucocorticoid receptor NR3C1 P04150 Nuclear receptor 0.106542926 
Kinesin-like protein 1 KIF11 P52732 Other cytosolic protein 0.106542926 
PI3-kinase p110-alpha subunit PIK3CA P42336 Enzyme 0.106542926 
MAP kinase p38 alpha MAPK14 Q16539 Kinase 0.106542926 

Chevalone E 11-beta-hydroxysteroid dehydrogenase 1 HSD11B1 P28845 Enzyme 0.106165761 
Cytochrome P450 17A1 CYP17A1 P05093 Cytochrome P450 0.106165761 
Serotonin 2b (5-HT2b) receptor HTR2B P41595 Family A G protein-coupled 

receptor 
0.106165761 

Androgen Receptor (by homology) AR P10275 Nuclear receptor 0.106165761 
Adrenergic receptor alpha-2 ADRA2C P18825 Family A G protein-coupled 

receptor 
0.106165761 

Glucocorticoid receptor NR3C1 P04150 Nuclear receptor 0.106165761 
Estrogen receptor alpha ESR1 P03372 Nuclear receptor 0.106165761 
Serotonin transporter SLC6A4 P31645 Electrochemical transporter 0.106165761 
Testis-specific androgen-binding protein SHBG P04278 Secreted protein 0.106165761 
Cytochrome P450 19A1 CYP19A1 P11511 Cytochrome P450 0.106165761 
Phosphodiesterase 10A PDE10A Q9Y233 Phosphodiesterase 0.106165761 
Voltage-gated potassium channel subunit Kv1.3 KCNA3 P22001 Voltage-gated ion channel 0.106165761 
Estrogen receptor beta ESR2 Q92731 Nuclear receptor 0.106165761 
Peroxisome proliferator-activated receptor gamma PPARG P37231 Nuclear receptor 0.106165761 
Tyrosine-protein kinase FYN FYN P06241 Kinase 0.106165761  

Table 6 
Predicted drug targets for Chevalone E, Sterolic acid, Brevione K, and Brocazine 
A.  

Metabolites Screening 
method 

Drug 
bank id 

Name Score Status 

Chevalone 
E 

Electroshape DB01196 Estramustine 0.818 Approved 
Spectrophores DB04575 Quinestrol 0.856 Approved 

Sterolic 
acid 

FP2 DB00410 Mupirocin 0.73 Approved 
Electroshape DB02659 Cholic Acid 0.89 Approved 
Spectrophores DB00459 Acitretin 0.84 Approved 

Brevione K Electroshape DB01394 Colchicine 0.85 Approved 
Spectrophores DB01222 Budesonide 0.89 Approved 

Brocazine 
A 

FP2 DB00495 Zidovudine 0.865 Approved 
Electroshape DB01203 Nadolol 0.864 Approved 
Spectrophores DB01598 Imipenem 0.860 Approved  
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Fig. 6. Molecular dynamics simulation analysis, deformability: (A) Chevalone E − NS2B/NS3 protease, (B) Chevalone E − NS5 methyltransferase; Bfactor: (C) 
Chevalone E − NS2B/NS3 protease, (D) Chevalone E − NS5 methyltransferase; and stability (eigen value): (E) Chevalone E − NS2B/NS3 protease, (F) Chevalone E −
NS5 methyltransferase. 

Fig. 7. Molecular dynamics simulation analysis: co-variance map: (A) Chevalone E − NS2B/NS3 protease; (B) Chevalone E − NS5 methyltransferase; and elastic 
network: (C) Chevalone E − NS2B/NS3 protease and (D) Chevalone E − NS5 methyltransferase. 
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highest solubility (Table 3). Therefore, these molecules can be used to 
mimic the effects of drugs (Fig. 4). 

3.5. Toxicity, carcinogenicity and mutagenicity prediction 

Acute toxicity, hepatotoxicity, carcinogenicity, mutagenicity, 
immunotoxicity, and toxicity targets were explored as the toxicity 
endpoints. The results revealed that Chevalone E and Brevione K fell in 
the category of toxicity class 4, while Sterolic acid and Brocazine A 
showed toxicity levels of 1 and 3, respectively (the lower the class, the 
higher the toxicity). The estimated LD50 for Chevalone E, Sterolic acid, 
Brevione K, and Brocazine A, were 1600, 34, 1255, and 75 mg/kg, 
respectively. The toxicity characteristics in (Table 4) depict the level of 
confidence in the positive toxicity results compared to the class average. 
No unfavorable effects such as tumorigenicity, mutagenicity, irritation, 
or reproductive consequences were observed for any of the compounds. 

3.6. Prediction of drug targets, available drug molecules from DrugBank 
and molecular dynamics simulation 

Molecular target investigations are required to uncover the pheno-
typical side effects or possible cross-reactivity caused by their actions. 
This is the first step in determining the viability of using the drug in 
future in vitro and in vivo experiments [37]. As a result, Fig. 5 shows the 
top 25 findings generated by SwissTargetPrediction [38] for Chevalone 
E (NS2B/NS3 and NS5 inhibitor), Sterolic acid (NS2B/NS3 inhibitor), 
and Brevione K (NS2B/NS3 and NS5 inhibitor). The target sites that the 
chemical could bind to were largely protease and enzyme (13.3%) for 
Sterolic acid, nuclear receptor (33.3%) for Chevalone E, and enzyme 
(26%) for Brevione K (Table 5). 

Ligand-based virtual screening was used to predict biologically 
active small molecules against NS2B/NS3 protease and NS5 methyl-
transferase of dengue from DrugBank. Estramustine (DB01196) and 
Quinestrol (DB04575), both licensed medications, were similar to 
Chevalone E, with prediction scores of 0.818 and 0.856, respectively. 
Furthermore, the results revealed that cholic acid (DB02659), acitretin 
(DB00459), and mupirocin (DB00410) are similar to Sterolic acid; 
zidovudine (DB00495), imipenem (DB01598), and nadolol (DB01203) 
are similar to Brocazine A; and Budesonide (DB01222) and Colchicine 
(DB01394) are similar to Brevione K (Table 6). These findings indicate 
that these could be viable therapeutic candidates for DENV infection, 
implying that further research is needed. In addition, based on molec-
ular dynamics modeling, the best complexes for NS5 methyltransferase- 
Chevalone E and NS2B/NS3 protease-Chevalone E showed satisfactory 
eigenvalues with structural stability. The maximal eigenvalue of the 
NS2B/NS3 protease-Chevalone E complex was 2.866006e-04, compared 
to 7.701529e-05 for the NS5 methyltransferase-Chevalone E complex, 
showing great flexibility and difficulty in deformation (Fig. 6 and Fig. 7). 

4. Conclusions 

Currently, there are no specific treatments for dengue. Although few 
studies have been conducted to develop dengue vaccines, this process 
has a great deal to be accomplished. As a result, scientists are currently 
looking for inhibitors to block DENV’s key methyltransferase and pro-
tease, NS5 and NS2B/NS3, which are involved in viral replication, as 
targets for next-generation therapeutic development. On the contrary, 
marine fungi have proven to be a rich and promising source of novel 
bioactive natural compounds and may be able to suppress viral NS5 and 
NS2B/NS3 activities. In this study, the primary viral protease was 
docked against marine-derived chemicals. In addition, drug-like char-
acteristics, toxicity, carcinogenicity, and mutagenicity were predicted 
using in silico ADME analysis. Analyzing the results, our study suggests 
that Chevalone E, Sterolic acid, Brevione K, and Brocazine A found in 
marine-derived fungi are the best NS5 and NS2B/NS3 inhibitors. The 
predicted drug based on the ligand estramustine, cholic acid, acitretin, 

colchicine, and zidovudine could be exploited and developed as an 
alternative or complementary therapy for the treatment of dengue virus. 
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