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ABSTRACT 

Background: Point-of-care ultrasonography (POCUS) enables access to cardiac imaging 

directly at the bedside but is limited by brief acquisition, variation in acquisition quality, and lack 

of advanced protocols. 

Objective: To develop and validate deep learning models for detecting underdiagnosed 

cardiomyopathies on cardiac POCUS, leveraging a novel acquisition quality-adapted modeling 

strategy.  

Methods: To develop the models, we identified transthoracic echocardiograms (TTEs) of 

patients across five hospitals in a large U.S. health system with transthyretin amyloid 

cardiomyopathy (ATTR-CM, confirmed by Tc99m-pyrophosphate imaging), hypertrophic 

cardiomyopathy (HCM, confirmed by cardiac magnetic resonance), and controls enriched for the 

presence of severe AS. In a sample of 290,245 TTE videos, we used novel augmentation 

approaches and a customized loss function to weigh image and view quality to train a multi-

label, view agnostic video-based convolutional neural network (CNN) to discriminate the 

presence of ATTR-CM, HCM, and/or AS. Models were tested across 3,758 real-world POCUS 

videos from 1,879 studies in 1,330 independent emergency department (ED) patients from 2011 

through 2023. 

Results: Our multi-label, view-agnostic classifier demonstrated state-of-the-art performance in 

discriminating ATTR-CM (AUROC 0.98 [95%CI: 0.96-0.99]) and HCM (AUROC 0.95 [95% 

CI: 0.94-0.96]) on standard TTE studies. Automated metrics of anatomical view correctness 

confirmed significantly lower quality in POCUS vs TTE videos (median view classifier 

confidence of 0.63 [IQR: 0.44-0.88] vs 0.93 [IQR: 0.69-1.00], p<0.001). When deployed to 

POCUS videos, our algorithm effectively discriminated ATTR-CM and HCM with AUROC of 
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up to 0.94 (parasternal long-axis (PLAX)), and 0.85 (apical 4 chamber), corresponding to 

positive diagnostic odds ratios of 46.7 and 25.5, respectively. In total, 18/35 (51.4%) of ATTR-

CM and 32/57 (41.1%) of HCM patients in the POCUS cohort had an AI-positive screen in the 

year before their eventual confirmatory imaging. 

Conclusions: We define and validate an AI framework that enables scalable, opportunistic 

screening of under-diagnosed cardiomyopathies using POCUS.
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INTRODUCTION 

Point-of-care ultrasonography (POCUS) enables cardiac phenotyping at the point-of-care as a 

direct extension of the physical exam,1 and is increasingly used as an adjunctive diagnostic tool 

across outpatient clinics, emergency rooms and inpatient facilities.2,3 Nonetheless, POCUS 

studies often adopt an opportunistic approach with incomplete protocols and place less emphasis 

on image quality or anatomical accuracy compared to standard transthoracic echocardiograms 

(TTE).4 Consequently the generated videos and images are rarely used for reasons beyond 

addressing acute medical questions.  

With the expanding use of handheld and portable technologies and algorithms that can 

assist novice operators in acquiring standard echocardiographic views,5 there is a growing 

realization that POCUS imaging represents a missed window for detecting potentially 

modifiable, chronic cardiac disease. Further to quantifying left ventricular function or ruling our 

acute, life-threatening findings, the acquired POCUS data may, in theory, enable the 

opportunistic screening of underdiagnosed cardiomyopathies such as hypertrophic 

cardiomyopathy (HCM),6–8 or transthyretin amyloid cardiomyopathy (ATTR-CM),9,10 effectively 

discriminating these from controls or other conditions associated with left ventricular 

hypertrophy, such as aortic stenosis (AS).11–14 In fact, it is known that only a minority (10-20%) 

of these cases are identified clinically,6,7,11,15–17 with disparities in outpatient diagnosis and care 

disproportionately affecting individuals from lower socioeconomic classes and racial/ethnic 

minorities.18–20  

In the recent years, echocardiography has benefited from advances in computer vision 

and medical artificial intelligence (AI) which not only provide automated summaries of routine 

TTE studies, but also augment our ability to phenotype cardiovascular pathology,21–27 with 
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improved accuracy relative to standard workflows.28,29 Nevertheless, such AI algorithms are 

almost invariantly developed and validated using videos acquired by expert technicians and 

interpreted by board-certified readers and are not adapted for use with POCUS studies and their 

unique challenges. 

Here, we define and implement a framework for POCUS-adapted video-based AI 

models, demonstrating their ability to efficiently detect under-diagnosed cardiomyopathies from 

real-world POCUS videos acquired over a decade across the emergency rooms of a large hospital 

system. Our approach harnesses the availability of large TTE repositories and incorporates a 

range of natural and synthetic augmentation methods to simulate off-axis acquisitions from 

variable echocardiographic views, thus enabling the downstream view-agnostic inference from 

limited POCUS acquisitions.  

 

METHODS 

Study population  

The study was designed as a case-control analysis of patients seeking care across five distinct 

hospitals, emergency rooms, and outpatient clinics affiliated with the Yale-New Haven Health 

System (YNHHS) in Connecticut and Rhode Island. We identified patients with HCM, ATTR-

CM, and controls, enriched for conditions with phenotypic overlap (such as, severe AS), all with 

available TTE and/or ED POCUS videos. 

 First, we queried the electronic health record (EHR) and linked YNHHS 

echocardiographic library (n=522,507 unique studies) for TTE exams performed between 

5/12/2015 (database inception) and 12/31/2022 in patients with HCM, ATTR-CM, AS, and 

controls. We chose these conditions as representative examples due to their often indolent course 
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and delayed diagnosis, overlapping phenotypic features yet distinct underlying pathology, and 

given that they are not routinely discernable on two-dimensional POCUS. We used the following 

non-mutually exclusive definitions: 

 

HCM: All individuals with an ICD-9/ICD-10 code for any cardiomyopathy (425, I42.0, 

I42.1, I42.2, I42.5, I42.8, I42.9, I43.1, I43.8) or heart failure (428, I50*), inclusive of HCM-

specific ICD-9/10 codes (425.1, 425.11, 425.18, I42.1, I42.2) were identified. To maximize the 

specificity of our definition, given the known unreliability of billing/administrative codes in 

accurately capturing patient phenotypes,30 we required positive labels for this condition to have 

undergone cardiac magnetic resonance (CMR) imaging with the final interpretation/conclusion 

supporting the presence of the diagnosis.31 Given that HCM is a genetic cardiomyopathy, we 

included all available echocardiograms regardless of their timing relative to the time of 

diagnosis.6  

 

Amyloid cardiomyopathy (ATTR-CM): We screened for all individuals with an ICD-

based diagnosis of any cardiomyopathy or heart failure as above or an amyloidosis-specific code 

(277.3, 277.30, 277.39, E85.2, E85.82, E85.4, E85.8, E85.9, excluding E85.81 [light chain 

amyloidosis]). Similar to HCM, to increase the specificity of the label, we required positive 

labels to have undergone bone scintigraphy (with Tc99m-pyrophosphate [PYP]), which was 

interpreted as positive for cardiac uptake by the interpreting physician (i.e., a semi-quantitative 

visual score of 2 or 3 or heart to contralateral lung ratio >1.5).32 For positive cases, we defined 

the time of diagnosis as the time of the positive PYP scan, and, to account for the delay between 

disease onset and diagnosis (median delay of ~13 months as previously reported in the 
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literature),33 we included echocardiograms performed up to 12 months before this date (and any 

time after).  

  

 Controls: These were defined by randomly sampling echocardiograms from the same 

period, after excluding any positive HCM or ATTR-CM cases, and after excluding intermediate 

phenotypes (i.e., CMR findings suggestive of possible HCM, or equivocal PYP results). The 

study sample was further enriched for cases of severe AS, including severe low-flow, low-

gradient AS, based on the interpretation of a TTE exam by a board-certified reader and in 

agreement with existing guidelines.34,35 This was done to ensure the model learned to identify 

AS, a separate pathology, rather than a confounder of ATTR-CM or other cardiomyopathies. 

 

Development (TTE) and testing (POCUS) sets 

Development cohort: We developed our models using TTE videos (all views included) from 

participants who did not contribute data to the ED POCUS arm. This ensured that there would be 

no data leakage between TTE and POCUS studies performed in the same individual. After 

assigning HCM, ATTR-CM, and AS labels as reviewed above, we randomly split our 

development cohort at the patient level into a training 75%, validation (15%), and internal 

testing (10%) set. This ensured that distinct echocardiograms belonging to the same patient 

would not be present across more than one of the three (training, validation, testing) sets. To 

further boost the validity of the observations, we excluded any echocardiographic study with a 

measured interventricular septal thickness during diastole (IVSd) of 1.3 cm or greater from the 

controls of our training set. However, this was not done during validation or testing to ensure a 

reliable assessment of the model’s performance.  
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Testing (POCUS) cohort: We identified 16,487 participants (both cases and controls) who 

underwent a cardiac POCUS by an emergency provider between 2/2011 and 10/2023. Such 

studies are performed by emergency department staff using a general-purpose ultrasound system 

(Sparq Ultrasound system, Philips) and are not read by echocardiographers. We excluded any 

POCUS studies performed after the onset of end-stage renal disease (‘585.6’, ‘N18.6’), after 

heart transplantation (‘V42.1’, ‘Z94.1’, ‘Z94.3), and/or aortic valve replacement (ICD procedure 

codes ‘35.21’, ‘35.22’, ‘02RF07Z’, ‘02RF08Z’, ‘02RF0JZ’, ‘02RF0KZ’), as well as POCUS 

studies that exclusively included non-cardiac imaging (i.e., lung ultrasound) with none of the 

major cardiac views typically captured in a cardiac POCUS (at least one of parasternal long axis 

[PLAX], parasternal short axis at the papillary muscle level [PSAX] and/or apical four-chamber 

[A4C] views). Our approach resulted in 1,879 unique studies in 1,330 unique patients with 3,758 

cardiac-focused views performed between 2/23/2011 and 10/30/2023.  

 

Automated view characterization and alignment assessment 

We implemented our previously published end-to-end pre-processing pipeline on TTE studies 

stored in DICOM format,22,23 that involves loading the pixel data, masking our pixels in the 

periphery to remove identifying information and converting to Audio Video Interleave (.AVI) 

format. We then randomly sample ten frames from each video, down-sample to 224x224 pixels, 

and fed through a previously validated VGG19 convolutional neural network (CNN) that enables 

video-level classification of 18 echocardiographic views by assigning a probability that a given 

video corresponds to a standard anatomical view (with probabilities adding up to 1 across all 

views).37 A predicted view was then assigned based on the view class that has the highest 
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probability. The highest probability value (0-1) is then used to define a metric of anatomical 

alignment with standard echocardiographic views. In other words, greater anatomical correctness 

and view quality was associated with higher confidence in the CNN model’s output. Next, we 

performed more thorough cleaning and de-identification by binarizing each video frame with a 

fixed threshold, masking out all pixels outside the convex hull of the largest contour, and down-

sampling to 112x112 pixels. 

 

Designing a view-agnostic training pipeline adapted for low-quality acquisitions. 

We designed a training framework that incorporated a naïve approach to using multiple views 

(apical, parasternal long, parasternal short, and subcostal views) without annotations as well as a 

customized training loss to heavily favor low-quality, off-axis videos of patients with the labels 

of interest. We first initialized a 3D-ResNet18 CNN architecture by using pre-trained weights 

from the Kinetics-400 dataset, a large corpus of over 300,000 natural videos for human action 

classification provided by PyTorch,38 and further modified the output layer of the label to enable 

multi-label classification for the three representative labels of interest, namely HCM, ATTR-CM, 

and AS. To deploy our model in POCUS scans for screening of relatively rare cardiomyopathies, 

we implemented a range of customizations: 

 

Natural and synthetic data augmentation methods: We trained both separate models for each 

key views-of-interest, namely PLAX, PSAX, and A4C, followed by all-inclusive, view-naïve 

models trained in pooled datasets that included all parasternal (long and short) and apical views 

with the classifier blinded to the input view. This enabled a head-to-head comparison of how 

view-specific versus view-agnostic approaches generalize to real-world POCUS acquisitions. We 
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further applied a series of data augmentations to account for variable orientation and off-axis 

views that included random zero padding by up to 8 pixels in each spatial dimension, random 

horizontal flipping with (probability 0.5), and a random rotation within -10 and 10 degrees 

(probability 0.5). After augmentation, each video clip’s intensities were normalized to 0-1 and 

standardized using the channel-wise means and standard deviations from the Kinetics-400 

training dataset.  

 

Quality-adjusted weights and loss function: We defined a loss function to prompt the model to 

learn from lower-quality cases. We took the binary cross entropy (BCE) with logits loss function, 

that combines a sigmoid layer and the BCE loss function in one class, and incorporated both 

label-specific weights to account for rare labels,39 as well as inverse weighting based on the view 

alignment probabilities (see Supplement).37 Higher probabilities (i.e., PLAX view probability of 

1.00) denote greater anatomical correctness compared with lower ones. The aim was to penalize 

the model for missing under-represented labels, especially in the context of a challenging view. 

We also applied label smoothing (�=0.1) to penalize over-confidence in our model’s 

predictions.40,41  

 

Model training 

All models were trained for a maximum of 30 epochs with early stopping, such that if the mean 

validation area under the receiver operating characteristic (AUROC) for the three labels of 

interest did not improve for 5 consecutive epochs, training was terminated and the weights from 

the epoch with maximum validation AUROC were used for final evaluation. Models were 

trained on four NVIDIA Tesla T4 GPUs with the Adam optimizer, a learning rate of 10-4, a batch 
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size of 56 to maximize GPU utilization, and a random dropout of 0.25, using randomly sampled 

video clips of 16 frames and sampling one out of every five frames to enable a global capture of 

the cardiac cycle (median number of frames 61 25th-75th percentile: 50-85]). We applied optional 

padding with empty frames along the temporal axis if either the video was too short or the 

randomly chosen starting point of the clip was near the end of the video.  

 

Model performance assessment 

At the time of inference, we averaged four 16-frame-clip-level predictions to obtain video-level 

predictions for each label. We analyzed the performance of video- and study-level predictions by 

averaging class-specific probabilities from all videos acquired during the same study. We 

evaluated the discriminatory performance for HCM, ATTR-CM, and AS using standard metrics, 

including AUROC, the area under the precision-recall curve (AUPRC), as well as metrics across 

the thresholds that maximized Youden’s J (sum of sensitivity and specificity minus one) as well 

as 90% sensitivity, including the F1 score, diagnostic odds ratio (OR), positive (PPV) and 

negative predictive value (NPV) at 3% prevalence, an estimated average of the prevalence of 

HCM, ATTR-CM, AS in non-randomly selected individuals with a mean age of >65 years with 

known or suspected cardiovascular disease.15,16,42–44  

 

Model explainability 

To assist with explainability, we generated sample saliency maps for the most confident cases 

using Gradient-weighted Class Activation Mapping (Grad-CAM).45 We present the pixelwise 

maximum along the temporal axis to capture the most salient regions as a heatmap overlayed on 

the videos being leveraged in defining the respective conditinos. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.10.24304044doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.10.24304044
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 12

 

Statistical analysis 

Categorical variables are summarized as counts (valid percentages), and continuous variables as 

mean ± standard deviation, or median [25th-75th percentile], unless specified otherwise. 

Categorical variables were compared across distinct groups using the χ2 test. Continuous 

variables were compared using the non-parametric Mann-Whitney or Kruskal-Wallis tests for 

two or three or more groups, respectively. Metrics of discrimination and corresponding 95% 

confidence intervals (CI) are derived from bootstrapping with 200 replications. The probability 

distribution of continuous variables across distinct groups is visualized using density plots, with 

values compared by the non-parametric Mann-Whitney test. Analyses were performed using 

Python 3.9.7, using pytorch 1.8.0, torchvision 0.9.0, and scipy 1.7.3. All statistical tests were 2-

sided with a significance level of 0.05, unless specified otherwise. 

 

RESULTS 

Study population 

The development cohort included a total of 10,702 studies with 290,245 echocardiographic 

videos among 8,460 unique patients, split into a training (n=8,090 patients), validation (n=1,577 

patients) and an (internal) testing set (1,035 patients). In the training set, the mean age at the time 

of echocardiography was 68.3±15 years, 3,752 (46.4%) were women, 6,087 (75.2%) self-

reported White race, 612 (7.6%) Black race and (433) 5.4% Hispanic ethnicity. In total, 1,375 

studies corresponded to HCM (17.0%), 228 (2.8%) to ATTR-CM and 1,120 (15.0%) to severe 

AS, with comparable prevalence among the training, validation, and testing splits (Table 1).  
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The ED POCUS testing population included 1,879 studies with 3,758 key 

echocardiographic views (mean age at the time of the ED visit was 68.3±16.7 years). Reflecting 

the differential access to outpatient versus emergency care, the prevalence of non-white race 

groups or Hispanic ethnicity was significantly higher in the ED POCUS than in the TTE cohort; 

in summary, 1,053 studies (56.0%) were performed in women, 363 (19.3%) in Black and 198 

(10.5%) in Hispanic individuals (p<0.001 for all relative to the TTE cohort). There were 83 

(4.4%) scans in patients with HCM, 56 with ATTR-CM (16.1%), and 302 (16.1%) with AS. 

 

Development of a view-agnostic, multi-label model for HCM, ATTR-CM, AS 

When tested in a leave-out set of the development (TTE) cohort, our multi-label, view-agnostic 

classifier successfully discriminated the presence of HCM (AUROC 0.95 [95% CI: 0.94-0.96]), 

ATTR-CM (0.98 [95% CI: 0.96-0.99]), and AS (AUROC 0.94 [95% CI: 0.93-0.95]). f(Figure 

S1). In a per-video analysis, the highest AUROC for HCM and ATTR-CM was seen in A4C 

videos (AUROC 0.90 [95% CI 0.89-0.92] and 0.98 [95% CI 0.97-0.99]), respectively) (Figure 

S2). Furthermore, in head-to-head video-level comparisons, the view-agnostic model 

consistently outperformed an ensemble of three view-specific models for PLAX, PSAX-PAP and 

A4C views (HCM (0.86 vs 0.81 with Δ[AUC] of 0.05 [95%CI: 0.03-0.07]); ATTR-CM: 0.95 vs 

0.92 with Δ[AUC] of 0.03 [95%CI: 0.01-0.06]); and AS (0.84 vs 0.79 with Δ[AUC] of 0.05 

[95%CI: 0.03-0.06]) (Figure S3). 

 

Cardiac-focused POCUS assessment in the emergency room 

As opposed to the TTE cohort where the ratio of PLAX:PSAX:A4C views was almost 1:1:1 

(reflecting a standardized protocol) (Table 1), PSAX views were seen in the majority of all 
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(2,442 out of 3,758 [70.0%]) eligible cardiac POCUS videos, followed by the PLAX (836 

[22.2%]) and A4C views (480 [12.8%]). Furthermore, the automated view classifier probabilities 

were significantly lower than in the TTE cohort (median 0.63 [IQR: 0.44-0.88] vs 0.93 [IQR: 

0.69-1.00], p <0.001), reflecting lower anatomical correctness and view quality. Among POCUS 

videos, there was no significant difference in the view classifier probabilities between HCM, 

ATTR-CM, AS or controls (pKruskal-Wallis=0.07). 

 

View-agnostic, multi-label AI models for opportunistic screening in the ED via POCUS 

When deployed to the external POCUS cohort, our view-agnostic model consistently 

outperformed an ensemble of three view-specific models for PLAX, PSAX and A4C views for 

both HCM (AUROC 0.77 vs. 0.71 with Δ[AUROC] of 0.06 [95%CI: 0.02-0.10]), and ATTR-

CM (AUROC 0.82 vs. 0.71 with Δ[AUROC] of 0.11 [95%CI: 0.06-0.16]) (Figure 2). 

Discriminator performance increased further by incorporating a liberal quality control 

threshold that required input view probabilities to be 0.5 or greater (n=2496 from 3,758 videos) 

(Figure 3), reaching video-level performance consistent with that of standard TTE (Figure S3). 

For instance, at a single video level, our classifier identified ATTR-CM from PLAX views with 

an AUROC of 0.94, and HCM from A4C views with an AUROC of 0.85. At the threshold level 

that maximized Youden’s J, these thresholds corresponded to a diagnostic odds ratio of 25.5 for 

HCM and 46.7 for ATTR-CM, respectively (see Table 2 for threshold-specific summaries of 

sensitivity, specificity and PPV/NPV metrics). 

 

Explainability and representative cases 
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Grad-CAM: Representative Grad-CAM maps for the top (true positive predictions) for each 

label are shown in Figure 4. For HCM these generally localized to the left ventricle, for ATTR-

CM the signal further localized to the left atrium, whereas for the reference label of severe AS 

the focus seemed to be on the left ventricle and the aortic valve (when in plane), consistent with 

our prior work.22  

 

Representative cases: In the Supplement (Figures S4-S13), we provide an illustrative summary 

of studies corresponding to the top five highest and lowest predictions for both cases and 

controls across all three key views (PLAX, PSAX, A4C). These examples showcase the key 

challenges of POCUS imaging, including the variation in acquisition protocols, probe 

orientation, off-axis views, and significant noise artifacts. 

 

POCUS timing relative to diagnosis 

Finally, to understand the relative proportion of patients who would have received a positive 

screen in the ED before their diagnosis, we estimated that among all patients with HCM (n=35) 

or ATTR-CM (n=57) who had at least one ED POCUS study in our system (before or after their 

diagnosis), 51.4% (n=18/35) and 41.1% (n=32/57), respectively, would have had a positive 

screen on POCUS in the 12 months leading up to their eventual confirmatory imaging (Figure 

5). 

 

DISCUSSION 

In the present study, we demonstrate that AI algorithms trained using large datasets of standard 

transthoracic echocardiograms (TTE) can be adapted for use with point-of-care ultrasonography 
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(POCUS), thus enabling opportunistic screening of rare cardiomyopathies across a range of 

settings without dedicated protocols. Our approach describes a training framework that prompts 

video-based models to adjust to the unique challenges of handheld echocardiography, such as 

off-axis views and variable acquisition protocols, ultimately helping the models to learn 

generalizable signatures detectable across low and high-quality studies. Indeed, we show that 

view-agnostic models, which are exposed to the whole range of views available during training, 

consistently outperform view-specific models, a pattern that persists across both standard TTE 

and POCUS videos. The feasibility and superior performance of this approach are illustrated 

across more than 3,000 POCUS videos obtained in the emergency rooms of a hospital health 

system, with POCUS-adaptable CNNs effectively discriminating cases of HCM, ATTR-CM, and 

AS on single echocardiographic videos. Taken together, these findings provide a guide on how 

POCUS-adaptable training of AI echocardiographic algorithms can maximize their diagnostic 

value. Finally, we provide evidence that this approach may expand screening to minority 

populations receiving outpatient care at significantly lower rates than their counterparts, given 

their much higher representation in those undergoing POCUS than those undergoing formal 

echocardiography. 

 Despite significant progress in AI in cardiovascular imaging, most currently available AI 

solutions for echocardiography have been developed for standard transthoracic 

echocardiography.24–26,29,46,47 Such models benefit, among others, from videos of high quality 

and anatomical fidelity that are obtained by certified echocardiography technicians, as well as 

standardized protocols with almost complete data capture that often include multiparametric 

phenotyping by Doppler and/or strain imaging. Unfortunately, disparities in accessing 

ambulatory outpatient care do exist and have repeatedly been shown to disproportionately affect 
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marginalized communities.48–50 Indeed, as shown in our analysis, the representation of Black 

participants in the POCUS dataset was nearly 3 times higher than in transthoracic 

echocardiography. This highlights the untapped potential of diagnostic images already acquired 

as part of the current clinical workflows, particularly for conditions such as HCM and ATTR-

CM that benefit from early detection and risk stratification, yet remain under-diagnosed,6,7,11,15–17 

particularly among under-represented communities.18–20 

 With this unmet need in mind, the present work describes innovative findings on both the 

methodological and clinical front. On the one hand, our work describes a scheme that can boost 

the performance of echocardiography-based AI tools when deployed to real-world POCUS 

studies by addressing POCUS-specific challenges as part of the training process. For instance, 

we show that natural augmentation of the training set through the naïve inclusion of multiple 

echocardiographic views and synthetic augmentation methods can help the model to learn a 

variety of on- and off-axis, high- and low-quality examples. By further introducing a quantitative 

scheme to assess view quality (or anatomical correctness), we confirm that POCUS videos have 

a significantly lower degree of anatomical correctness compared to standard TTE studies and 

provide a quantifiable metric that allows the training algorithm to place more emphasis on 

examples of low diagnostic quality. 

Our work also has direct implications for the scalability of AI-echocardiography 

tools,51,52 ensuring equitable access at the first point-of-care and eliminating disparities arising 

from differential access and referral to outpatient testing. We demonstrate that retrospective 

screening of large repositories could help detect rare cardiomyopathies even though the 

respective images and videos were not protocolled for this purpose. This highlights the 

opportunity to expand opportunistic screening and phenotyping beyond dedicated 
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echocardiographic studies and paves the path for prospective studies testing screening of high-

risk individuals in the community. 

Certain limitations merit consideration. First, our study was a retrospective analysis of a 

large hospital network. Thus, all echocardiograms were performed as part of a clinically 

indicated work-up, and, by design, POCUS studies were performed in individuals presenting to 

the emergency department with acute symptoms. Although this may limit our observations' 

generalizability, it also demonstrates the possibility of real-world AI-POCUS screening in our 

communities through existing care pathways. It should also be noted that the participants, 

ultrasound operators, and hardware used differed from the TTE derivation arm, thus enabling 

independent testing. Second, a drop in performance was noted when transitioning from TTE to 

POCUS studies. In reviewing representative images, we observed frequent off-axis views; for 

instance, the aortic valve was often poorly visualized on PLAX views. This is not surprising 

given that POCUS studies rarely focus on valvular function or LV thickness/remodeling and are 

most often limited to ruling out acute life-threatening conditions.  

 

CONCLUSIONS 

We propose and implement a framework that enables AI-based echocardiographic algorithms to 

generalize to point-of-care ultrasonography, thus enabling scalable opportunistic screening of 

under-diagnosed cardiomyopathies. 
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TABLES 
 
Table 1 | Summary of cohort characteristics. 

 Development (TTE) cohort 
ED POCUS 

testing 
 Training Validation 

TTE 
testing 

 
Available videos and studies 

Number of unique patients 6,376 1,245 839 1,330 

Number of unique studies 8,090 1,577 1,035 1,879 

Number of unique videos 218,725 43,031 28,489 3,758 

PLAX 25,569 4,987 3,283 836 

PSAX 26,665 5,114 3,313 2,442 

A4C 21,328 4,200 2,649 480 

 
Demographic characteristics (study-level) 

Age, mean (SD) 68.3 (15.0) 68.7 (14.8) 69.2 (15.3) 70.3 (16.7) 

Female gender, n (%) 3,752 (46.4) 709 (45.0) 496 (47.9) 1,053 (56.0) 

Hispanic Ethnicity, n (%) 433 (5.4) 80 (5.1) 51 (4.9) 198 (10.5) 

Race, n (%)     

African American 612 (7.6) 98 (6.2) 73 (7.1) 363 (19.3) 

Asian 109 (1.3) 23 (1.5) 12 (1.2) 20 (1.1) 

White 6,087 (75.2) 1,231 (78.1) 813 (78.6) 1,247 (66.4) 

Other or Unknown 1,282 (15.8) 225 (14.3) 137 (13.2) 249 (13.3) 

     

 
Cardiomyopathy diagnosis (study-level) 

HCM, n (%) 1,375 (17.0) 243 (15.4) 168 (16.2) 83 (4.4) 

ATTR-CM, n (%) 228 (2.8) 39 (2.5) 31 (3.0) 56 (3.0) 

Severe AS, n (%) 1,120 (15.0) 238 (16.0) 152 (15.5) 302 (16.1) 

Variables summarized as mean (standard deviation [SD]) or counts (percentages), as appropriate. A4C: Apical 4-
chamber; AS: aortic stenosis; HCM: hypertrophic cardiomyopathy; PLAX: parasternal long axis view; PSAX: 
parasternal short axis; SD: standard deviation; TTE: transthoracic echocardiography. 
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Table 2 | POCUS-based discrimination of HCM, ATTR-CM and AS. 
 

Label View Threshold Label AUROC Threshold AUPRC F-score Specificity Sensitivity 
PPV 

 
NPV Diagnostic OR 

HCM 

A4C 
Youden's J 

0.849 
0.148 

0.440 
0.274 0.561 0.952 0.063 0.997 25.52 

90% Sensitivity 0.190 0.288 0.640 0.857 0.069 0.993 10.67 

PLAX 
Youden's J 

0.760 
0.167 

0.206 
0.158 0.595 0.765 0.055 0.988 4.77 

90% Sensitivity 0.123 0.143 0.505 0.824 0.049 0.989 4.75 

PSAX 
Youden's J 

0.779 
0.208 

0.253 
0.161 0.706 0.688 0.067 0.986 5.29 

90% Sensitivity 0.121 0.127 0.490 0.875 0.050 0.992 6.73 

All 3 
Youden's J 

0.820 
0.180 

0.273 
0.178 0.646 0.818 0.067 0.991 8.23 

90% Sensitivity 0.148 0.158 0.557 0.879 0.058 0.993 9.12 

ATTR-
CM 

A4C 
Youden's J 

0.842 
0.308 

0.162 
0.200 0.850 0.714 0.128 0.990 14.14 

90% Sensitivity 0.308 0.200 0.850 0.714 0.128 0.990 14.14 

PLAX 
Youden's J 

0.936 
0.462 

0.548 
0.271 0.745 0.941 0.102 0.998 46.68 

90% Sensitivity 0.518 0.275 0.787 0.824 0.107 0.993 17.22 

PSAX 
Youden's J 

0.879 
0.497 

0.354 
0.189 0.777 0.811 0.101 0.993 14.96 

90% Sensitivity 0.401 0.166 0.719 0.865 0.087 0.994 16.35 

All 3 
Youden's J 

0.908 
0.383 

0.354 
0.171 0.719 0.911 0.091 0.996 26.20 

90% Sensitivity 0.396 0.175 0.735 0.889 0.094 0.995 22.21 

AS 

A4C 
Youden's J 

0.617 
0.442 

0.273 
0.371 0.490 0.692 0.040 0.981 2.17 

90% Sensitivity 0.290 0.376 0.293 0.885 0.037 0.988 3.18 

PLAX 
Youden's J 

0.803 
0.598 

0.428 
0.456 0.755 0.750 0.086 0.990 9.24 

90% Sensitivity 0.425 0.359 0.523 0.875 0.054 0.993 7.68 

PSAX 
Youden's J 

0.580 
0.484 

0.182 
0.296 0.478 0.690 0.039 0.980 2.03 

90% Sensitivity 0.334 0.270 0.166 0.897 0.032 0.981 1.72 

All 3 
Youden's J 

0.633 
0.512 

0.251 
0.334 0.579 0.645 0.045 0.981 2.49 

90% Sensitivity 0.314 0.289 0.185 0.892 0.033 0.982 1.87 

A4C: apical 4-chamber; AS: aortic stenosis; ATTR-CM: transthyretin amyloid cardiomyopathy; HCM: hypertrophic cardiomyopathy; OR: odds 
ratio; PLAX: parasternal long axis; POCUS: point-of-care ultrasonography; PSAX: parasternal short axis (papillary muscle level). * PPV and NPV 
reported at simulated 3% prevalence. 
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FIGURES 
 

 

 
 
Figure 1 | Study overview. Overview of study design and datasets. AI: artificial intelligence; 
AS: (severe) aortic stenosis; ATTR-CM: amyloid transthyretin cardiomyopathy; ER: emergency 
room; HCM: hypertrophic cardiomyopathy; POCUS: point-of-care ultrasound; TTE: (standard) 
transthoracic echocardiography.
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Figure 2 | Head-to-head comparison of view-agnostic vs view-specific multi-label models 
for discriminating HCM and ATTR-CM at the point-of-care. Head-to-head comparison of 
view-agnostic (red line) versus an ensemble of view-specific models (blue line) across included 
parasternal long, parasternal short and apical four-chamber views for discrimination of (a) HCM, 
or (b) ATTR-CM using POCUS videos. Continuous lines denote study-level estimates, where 
dotted lines reflect video-level estimate. ATTR-CM: amyloid transthyretin cardiomyopathy; 
AUROC: area under the receiver operating characteristic curve; CI: confidence interval; HCM: 
hypertrophic cardiomyopathy; POCUS: point-of-care ultrasonography.

b. ATTR-CM screeninga. HCM screening
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Figure 3 | Video and study-level performance of a view-agnostic multi-label deep learning 
algorithm applied to POCUS. (a) Video-level performance (AUROC with 95% CI) for 
discrimination of HCM and ATTR-CM, by deploying a POCUS-adapted, view-agnostic model 
to different echocardiographic views obtained in the ED (blue = PLAX; orange = PSAX at the 
papillary muscle level; green = A4C; and red = any of the 3 views combined). (b) Results 
presented for videos with an automated view classifier certainty of 50% of greater. (c-d) Study-
level results obtained by simple mean averaging of the video-level predictions for each study. 
A4C: apical-4-chamber view; ATTR-CM: amyloid transthyretin cardiomyopathy; AUROC: area 
under the receiver operating characteristic curve; CI: confidence interval; HCM: hypertrophic 
cardiomyopathy; PLAX: parasternal long axis view; POCUS: point-of-care ultrasonography; 
PSAX: parasternal short axis view.  
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Figure 4 | Saliency maps. Activation maps for HCM (a-b), ATTR-CM (c-d) and AS (e-f) across 
PLAX and A4C views obtained at the point-of-care in the emergency department. A4C: apical-4-
chamber view; AS: (severe) aortic stenosis; ATTR-CM: amyloid transthyretin cardiomyopathy; 
HCM: hypertrophic cardiomyopathy; PLAX: parasternal long axis view. 
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Figure 5 | Positive screening by POCUS relative to eventual confirmatory testing in HCM 
and ATTR-CM among cases with ED POCUS. Cumulative percentages of patients eventually 
diagnosed with HCM or ATTR-CM who had positive screening by AI applied to their POCUS 
studies before their eventual confirmatory imaging test. Positive screens are defined based on 
probabilities exceeding the value that maximizes Youden’s J statistic for each label. ATTR-CM: 
amyloid transthyretin cardiomyopathy; HCM: hypertrophic cardiomyopathy; POCUS: point-of-
care ultrasonography. 
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