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Simultaneous observation of 
higher-order non-classicalities 
based on experimental photocount 
moments and probabilities
Jan Peřina Jr.1, Ondřej Haderka1 & Václav Michálek2

Using a sub-Poissonian optical field generated from a weak twin beam by photon-number resolving 
post-selection we have simultaneously observed higher-order non-classicalities in photocount moments 
(sub-Poissonian statistics) and probabilities (witnessed by the Klyshko inequalities). Up to the seventh-
order non-classicalities in photocount moments simultaneously with up to the eleventh-order non-
classicalities in photocount probabilities have been experimentally observed. Non-classicality counting 
parameters of different orders as experimental counterparts of the theoretical Lee non-classicality 
depth have been suggested to quantify and also mutually compare the robustness of these non-
classicalities against the noise.

The formulation of quantum theory of coherence1,2 has revealed the existence of special states of light that cannot 
be described in the framework of classical statistical theory of coherence3. These states, that are called nonclassi-
cal, immediately attracted attention of experimentalists who began their long-lasting and very successful investi-
gation of such states4. Three different kinds of nonclassical states were identified in this endeavor: sub-Poissonian 
states with reduced intensity (photon-number) fluctuations, squeezed states with reduced phase fluctuations and 
anti-bunched light with unusual temporal correlations. All three kinds of states were experimentally observed and 
their properties were analyzed. Moreover, many other highly quantum states have been theoretically suggested 
and experimentally observed during the last decades5 (e.g., non-Gaussian states6, sub-binomial states7). Whereas 
highly squeezed states8 are nowadays routinely generated in monolithic nonlinear cavities (squeezing better than 
12 dB9, with the potential to improve the detection of gravitational waves) and strongly anti-bunched light4 coming 
from individual emitters is detected, only weakly sub-Poissonian light has been observed for a long time.

Different techniques for the generation of sub-Poissonian light were applied using resonance fluorescence10 
(Fano factor = 〈 Δ 〉 〈 〉 ≈ .F n n( ) / 0 9982 ), Franck–Hertz experiment11 ( ≈ .F 0 99), high-efficiency light-emitting 
diodes12 ( ≈ .F 0 96), feed-forward action on the beam13, second-subharmonic generation14 and excited atoms 
passing through micro-cavities15,16. Also the experimental displaced single-photon states exhibited 
sub-Poissonian photocount statistics for smaller displacements17. Considerable improvement was reached when 
a post-selection scheme based on photon-number-resolving detectors and exploiting either the continuous signal 
and idler fields from optical parametric oscillators18,19 or pulsed weak twin beams were applied20–24. Recently, also 
collective emissions from small clusters of single-photon emitters were analyzed as promising sources of 
sub-Poissonian light25.

More detailed investigations revealed that the observation of non-classicality of such fields is not restricted to the 
behavior of second-order photocount moments26: Also higher-order photocount and photon-number moments27,28 
can behave nonclassically. In such cases the observed fields exhibit higher-order non-classicalities27,29–32.  
These higher-order moments are immediately available in various experiments aimed at exploring higher-order 
correlations in photon fields33–36. Nonclassical behavior of higher-order moments was observed for the third-25,  
fourth-17,35, fifth-37 and even fourteenth-order38 photocount moments in different scenarios. On the other hand, 
also another type of higher-order non-classicalities based on non-classicality inequalities written directly for 
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photocount and photon-number probabilities (elements of the photocount and photon-number distributions) has 
been recently introduced39,40 and experimentally investigated37. Both types of non-classicalities are complemen-
tary in the sense that one of them ‘scans’ the space of quantum states spanned by photocount (photon-number) 
moments whereas the other operates directly in the space of photocount (photon-number) distributions.

As it has been demonstrated in ref.37 for sub-Poissonian fields generated by photon-number-resolving 
post-selection from a weak twin beam both types of non-classicalities can be observed simultaneously. Here, we 
extend the results of ref.37 in two directions. First, the improved stability of our experimental setup allows us to 
report on the simultaneous observation of the seventh-order non-classicality expressed in photocount moments 
and eleventh-order non-classicality detected in photocount probabilities. Second, we introduce non-classicality 
counting parameters of different orders that are derived directly from the photocount (photon-number) probabil-
ities or moments. Contrary to the traditionally-used Lee non-classicality depth based on the integrated-intensity 
(normally-ordered) moments and applied, e.g., in ref.37, these parameters are defined also for the non-classicalities 
written in probabilities. This then allows, among others, mutual comparison of both types of non-classicalities 
with respect to their robustness against the noise. Also, their evaluation for the case of non-classicalities based 
on photocount (photon-number) moments does not require the use of commutation relations. This is especially 
important for multi-mode optical fields.

The fact that both types of higher-order non-classicalities can be identified and quantified already in the 
experimental photocount distributions (histograms) is principally important as it allows to avoid possible ‘distor-
tions’ of non-classical properties of the detected fields caused by their reconstruction. Excluding the death-time 
effect and its spatial variant in photon detection41, attenuation in detection (described by quantum detection 
efficiency), the detection of additional noise photons and cross-talk effects only degrade nonclassical properties of 
the detected optical fields. Subsequent reconstruction of the optical field then compensates for these effects which 
may result in artifacts in identification of the optical-field non-classicality. For this reason, special non-classicality 
inequalities valid directly for the photocount distributions measured by multiple on-off detectors (‘click-counting’ 
statistics) were even derived42.

The paper is organized as follows. In section Higher-order non-classicalities and their quantification, we 
define higher-order non-classicalities of two types and the corresponding non-classicality counting parame-
ters. Properties of these counting parameters are theoretically investigated in section Non-classicality counting 
parameters τ for specific groups of states. In section Experimental higher-order non-classicalities in photo-
count moments and probabilities the non-classicality parameters are applied to an experimentally generated 
sub-Poissonian field with about 11 photons on average. Analysis of nonclassical properties of the corresponding 
photon-number distribution is contained in section Higher-order non-classicalities in the reconstructed field. 
Section Conclusions summarizes the results.

Higher-Order Non-Classicalities and Their Quantification
Non-classicality is defined in general as a property of a state endowed with non-positive Glauber-Sudarshan 
phase-space quasi-distribution. It has been shown in refs4,28,37 that a state with a kth photocount (photon-number) 
moment 〈 〉ck  smaller than that of a classical optical field with a Poissonian photocount (photon-number) statistics 
〈 〉ck

Pois (in a coherent state) with the same mean photocount (photon) number 〈 〉 = 〈 〉c c Pois is nonclassical. This 
brings us to the following definition of a kth-order non-classicality observed in photocount (photon-number) 
moments37 that refers to the kth-order sub-Poissonian statistics:
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We note that the states exhibiting second-order as well as higher-order non-classicalities defined by inequality 
(1) form a subset inside the set of all nonclassical states fulfilling the above general definition.

Theoretical analysis of the measured photocount and also reconstructed photon-number distributions reveals 
a complementary way how to identify another type of higher-order non-classicalities39. It is based directly upon 
the elements f(c) [p(n)] of the photocount [photon-number] distributions that, for any classical field, have to obey 
the following inequalities37,39:

− ≥ = ….−k f k f f k! ( ) (0) (1) 0, 2, 3, (2)k k1

We note that the Poissonian distribution f(c) gives equality in Eq. (2). In parallel to Eq. (1), we may define the 
following coefficient rc

k( ) that identifies a kth-order non-classicality observed directly in the (modified) photo-
count (photon-number) distributions39 [ =f k k f k f( ) ! ( )/ (0)]:
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At the theoretical level, the Lee non-classicality depth43 is standardly used to quantify robustness of non-
classical features of light. However, the determination of the Lee non-classicality depth is based upon the 
(normally-ordered) integrated intensity moments that have to be derived from the usual experimental photo-
count (photon-number) moments relying on the commutation relations between the field’s creation and annihi-
lation operators. To avoid this derivation that does not have to be apparent for multi-mode fields, we suggest here 
a non-classicality counting parameter τ for quantifying the robustness of non-classicality. It is based upon con-
sidering directly the photocount (photon-number) distribution of the analyzed field. According to the definition, 
we superimpose an independent noise thermal field with varying mean photocount (photon) number τ to the 
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analyzed field. When the noise mean photocount (photon) number τ increases, non-classicality of the composed 
field characterized by the overall photocount (photon-number) distribution fcomp,

∑τ τ
τ

= − ′
+′=

′

′+
f c f c c( ; ) ( )

(1 )
,

(4)c

c c

ccomp
0

1

weakens. The threshold values of τ at which the coefficients rc
k( ) in Eq. (1) and rc

k( ) in Eq. (3) vanish can then be 
used as non-classicality quantifiers with respect to a given criterion. The greater the non-classicality counting 
parameter τ is, the more robust the non-classicality is. The values of τ are found in the range from 0 to ∞. 
However, the parameter τ cannot be successfully applied to highly nonclassical states that remain nonclassical 
even for τ → ∞ as shown in the following section.

Non-Classicality Counting Parameters τ for Specific Groups of States
To elucidate the behavior of non-classicality counting parameters τ k( ) and τ k( ) defined above, we determine the 
non-classicality coefficients rc

k( ) and rc
k( ) defined in Eqs (1) and (3), respectively, for two groups of states: mixtures 

composed of the vacuum state | 〉vac  and one-photon Fock state | 〉1  and Fock states | 〉N  with varying photon num-
ber N. We assume ideal photon-number detection in which the photocount distribution f(c) coincides with the 
photon-number distribution p(n).

Considering the first group the states are described by the statistical operator ρ̂ given as

ρ α α α= − | 〉〈 | + | 〉〈 |ˆ( ) (1 ) vac vac 1 1 (5)

and α ∈ 〈 〉0, 1  is a real parameter. They have simple photon-number distributions p n( ) that give the following 
photocount distributions f c( ):

α α= − = = = ….f f f k k(0) 1 , (1) , ( ) 0, 2, (6)

Photocount distribution τf c( , )comp  defined according to Eq. (4) is derived for the distribution f c( ) in Eq. (6) 
in the form:
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Photocount moments 〈 〉ck  of a noise thermal distribution as well as of the reference Poissonian distribution 
needed when determining coefficients rc

k( ) can conveniently be derived invoking the relation between photocount 
(photon-number) and integrated-intensity (Wc) moments3:
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symbol Skl stands for the Stirling numbers of the second kind. We have for the noise thermal distribution with 
mean integrated intensity 〈 〉Wc :

〈 〉 = 〈 〉 .W l W! (9)c
l

c
l

On the other hand, the following integrated-intensity moments characterize the Poissonian field with mean 
integrated intensity 〈 〉Wc :
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Applying formula (9) to the composed photocount distribution τf c( , )comp  in Eq. (7), we arrive at the follow-
ing first photocount moments:
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Formula (10) then allows us to arrive at the second-order non-classicality coefficient rc
(2):
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Considering =r 0c
(2)  in Eq. (12) the non-classicality counting parameter τc

(2) is derived as

τ α α= .( ) (13)c
(2)
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According to Eq. (13), the greater the fraction α of the one-photon Fock state in the analyzed state is, the 
greater amount τ of thermal noise is needed to conceal the non-classicality, and thus the more nonclassical the 
state is.

For the composed photocount distribution f c( )comp  with the elements given in Eq. (7) the coefficients rc
k( ) from 

Eq. (3) are derived as follows

τ α τ α τ
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τ τ′ = / τ+(1 ) and α α′ = / α−(1 ). Considering the condition =r 0c
(2)  in Eq. (14) we arrive at the correspond-

ing non-classicality counting parameter τ
c

(2) for α ≤ 1/2:
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On the other hand, the coefficient rc
(2) remains negative (and hence nonclassical) for α > 1/2 even for τ → ∞. 

This means that the non-classicality counting parameter τ~c
(2) is not sensitive enough to quantify robustness of 

these highly nonclassical states.
We note that the analytical formulas for the non-classicality counting parameters τc

(3) and τ
c

(3) reveal the ine-
qualities τ τ≤c c

(3) (2) and τ τ≤
 c c

(3) (2).
Performing similar calculations for an N-photon Fock state | 〉N  with statistical operator ρ̂N  ( ≥N 1),

ρ = | 〉〈 |ˆ N N , (16)N

we arrive at the following formula for the second-order non-classicality coefficient rc
(2):
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Assuming =r 0c
(2)  in Eq. (17) the non-classicality counting parameter τ N( )c

(2)  is derived as

τ = .N N( ) (18)c
(2)

Thus, it exceeds one for >N 1. We note that the coefficients τr N( ; )c
k( )  are not defined for these states and, simi-

larly as above, we also have τ τ≤c c
(3) (2).

Experimental Higher-Order Non-Classicalities in Photocount Moments and 
Probabilities
Now we analyze the performance of the introduced non-classicality counting parameters rc

k( ) and rc
k( ) in case of an 

experimental photocount histogram f(c) belonging to a sub-Poissonian field obtained by photon-number- 
resolving post-selection from a weak twin beam. We show that though the non-classicality counting parameters 
are not applicable for highly nonclassical states they successfully quantify the non-classicality of real experimental 
fields.

A twin beam that was used for the post-selection was emitted in non-collinear geometry in a 5-mm-long 
type-I BaB2O4 crystal pumped by the third harmonics (280 nm) of a femtosecond cavity dumped Ti:sapphire laser 
(pulse duration 150 fs, central wavelength 840 nm) (for the setup, see Fig. 1). The signal field as well as the idler 
field were detected by the photocathode of an intensified CCD (iCCD) camera Andor DH334-18U-63 whose 
detection efficiency η = . ± .0 220 0 005 and dark-count rate = . ± .DM 0 040 0 005 electrons per frame was deter-
mined in an independent measurement22,26. We note that also intensified CMOS cameras44,45 and 
electron-multiplied CCD cameras46 were used as photon-number-resolving detectors in similar tasks. Both the 
signal and idler beams were monitored by =M 6500 neighbor pixels that provided photon-number resolu-
tion41,47. In the experiment the nearly-frequency-degenerate signal and idler fields at the wavelength of 560 nm 

Figure 1.  Scheme of the performed experiment: A twin beam is emitted in a BaB2O4 (BBO) crystal pumped 
by the third harmonics (THG) of a femtosecond Ti:sapphire laser. The signal field and the idler field (after 
reflection on mirror HR), after filtering by bandpass interference filter IF, are detected by iCCD camera. 
Intensity of the pump beam stabilized by power stabilizer PS is monitored by detector D.
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were filtered by a 14-nm-wide bandpass interference filter. Intensity of the pump beam was actively stabilized via 
a motorized half-wave plate followed by a polarizer based on the information about intensity from a detector. The 
analyzed idler field was obtained by considering only the experimental realizations in which exactly cs = 5 signal 
photocounts were observed. Out of the overall 1.2 × 106 repetitions of the measurement, 8.49% of them provided 
the analyzed sub-Poissonian field. For the generated twin beam with averaged photon-pair number equal to 
8.800 ± 0.003 and negligible amount of noise (≈0.1), the mean photocount number 〈 〉ci  of the post-selected idler 
field equaled 2.770 ± 0.003 and its Fano factor = . ± .F 0 94 0 01c ,i  confirmed the sub-Poissonian statistics.

Declination Δf of the obtained experimental photocount histogram f(ci) from the corresponding Poissonian 
distribution plotted in Fig. 2(a) clearly shows narrowing of the experimental histogram f c( )i  with respect to the 
Poissonian reference. This narrowing gives sub-Poissonian character to the field, as already indicated by the Fano 
factor Fc ,i lower than 1. Application of the higher-order non-classicality identifiers rc

k( ) and rc
k( ) based on photo-

count moments and probabilities and defined in Eqs (1) and (3), respectively, reveals nonclassical properties of 
this field. According to the graphs in Fig. 3(a,c), the field exhibits up to the seventh-order non-classicality in the 
coefficient rc

k( ) and, simultaneously, up to the eleventh-order non-classicality in the ‘complemenatary’ coefficient 
rc

k( ). The observation of even higher-order non-classicalities suffers from the experimental noise. Increase of the 
number of measurement realizations would be needed to reach them experimentally. We note, that fields exhib-
iting up to the fourteenth-order non-classicality in photocount moments [rc

k( )] were reported in38 using a similar 
post-selection scheme with a superconducting photon-number-resolving detector with higher efficiency.

The higher-order non-classicality counting parameters τc
k( ) and τ

c
k( ), that allow for the quantification of 

non-classicality resistance against the noise, are plotted in Fig.  3(b,d) for the analyzed higher-order 
non-classicalities. According to the graph in Fig. 3(b), the resistance of higher-order non-classicality based on 
photocount moments (rc

k( )) decreases with the order parameter k. On the other hand, the higher-order 
non-classicality counting parameter τ

c
k( ) derived from photocount probabilities reveals non-classicality on the 

right-hand side from the maximum in the photocount distribution f(ci) [see Fig. 2(a)]: The greater the photocount 
number k is the more prone the non-classicality identifier rc

k( ) to the noise is. Mutual comparison of the values of 
non-classicality counting parameters τc

k( ) and τ
c

k( ) plotted in Fig. 3(b,d), respectively, reveals better resistance of 
the parameters τ

c
k( ) derived from photocount probabilities against the noise.

Higher-Order Non-Classicalities in The Reconstructed Field
The higher-order non-classicality identifiers rn

k( ) and rn
k( ) and the accompanying non-classicality counting param-

eters τn
k( ) and τ

n
k( ) can also be applied to the reconstructed photon-number distribution p(ni) to judge its 

non-classicality. Here, we apply the method of maximum likelihood48 to arrive at the photon-number distribution 
p(ni) of the post-selected idler field22. According to this method, a photon-number distribution p(ni) is found as a 
steady state of the following iteration procedure that uses the experimental photocount histogram f(ci)41:

∑=
∑ ′ ′

= ….+

′
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T c n p n

l( ) ( ) ( ) ( , )
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In Eq. (19), the positive-valued operator measure T appropriate for the used iCCD camera with M active pixels, 
detection efficiency η and dark-count rate per pixel D is determined along the formula41:
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Figure 2.  (a,b) Difference Δf [Δp] between the photocount histogram f [photon-number distribution p] and 
its Poissonian counterpart fPois [pPois] is plotted (*) for the signal photocount number =c 5s . For comparison, 
Poissonian histogram fPois [Poissonian photon-number distribution pPois] is plotted by a solid curve.
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The reconstruction method when applied to the experimental histogram f(ci) gives us a field with mean pho-
ton number 〈 〉 = . ± .n 11 44 0 01i  and the Fano factor = . ± .F 0 72 0 04n,i . Thus, the reconstruction not only pre-
served the sub-Poissonian character of the field, it considerably improved its Fano factor Fn,i compared to that 
appropriate for the photocount histogram. Narrowing of the obtained photon-number distribution p(ni) with 
respect to its Poissonian counterpart is shown in the graph of Fig. 2(b). The analysis of the reconstructed 
photon-number distribution p(ni) from the point of view of higher-order non-classicality identifiers rn

k( ) expressed 
in photon-number moments reveals up to the seventh-order non-classicality [see the graph in Fig. 4(a)], similarly 
as in the case of photocount histogram f(ci). However, the comparison of the corresponding non-classicality 
counting parameters τn

k( ) plotted in Fig. 4(b) with those determined for photocount histogram f(ci) [see the graph 
in Fig. 3(b)] reveals better resistance of the former parameters against the noise. For example, whereas around 0.4 

Figure 3.  (a,c) Non-classicality identifiers rc
k( ) [rc

k( )] and the corresponding (b,d) non-classicality depths τc
k( ) 

[τ
c

k( )] of the post-selected idler field for the experimental photocount histogram f(ci) as they depend on the order 
k of non-classicality.

Figure 4.  (a) Non-classicality identifiers rn
k( ) and (b) the corresponding non-classicality depths τn

k( ) of the post-
selected idler field for the reconstructed photon-number distribution p(ni) as they depend on the order k of 
non-classicality.
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noise photocounts conceal the second-order non-classicality rc
(2), around 1.8 photons are needed to suppress the 

second-order non-classicality rn
(2). The improved resistance of the non-classicality of the reconstructed field with 

respect to the noise originates in the increase of the field intensity during the reconstruction. On the other hand, 
it holds also here that the greater the order k of non-classicality the more prone the non-classicality against the 
noise, as documented in the graph in Fig. 4(b). Unfortunately, the reconstruction that ‘amplifies’ the field roughly 
four-times considerably broadens the photon-number distribution p(ni) which results in the loss of higher-order 
non-classicalities rn

k( ) expressed in photon-number probabilities. This stemms from the fact that these probabili-
ties are considerably smaller than those in the original photocount histogram and so the ability to distinguish 
such non-classicalities is lost in the noise.

Conclusions
We have analyzed in parallel higher-order non-classicalities defined in terms of photocount or photon-number 
moments (sub-Poissonian statistics) and probabilities (using the Klyshko inequalities). We have introduced 
higher-order non-classicality counting parameters for both types of non-classicalities. We have elucidated 
their general performance considering two types of nonclassical states including the highly nonclassical ones. 
We have analyzed their performance on an experimental sub-Poissonian field with around 11 photons on aver-
age generated from a weak twin beam with around 8.8 mean photon pairs per pulse under the condition of 5 
detected signal-beam photocounts. For this field, we have observed up to the seventh-order non-classicality in 
photocount moments simultaneously with up to the eleventh-order non-classicality in photocount probabili-
ties. The seventh-order non-classicality in photon-number moments has been reached also for the reconstructed 
photon-number distribution. The introduced higher-order non-classicality counting parameters have shown 
that, with the increasing non-classicality order, the non-classicality becomes more prone to the noise. Also the 
non-classicality counting parameters determined for photocount probabilities are more resistant against the noise 
compared to their counterparts based on photocount moments when weak fields are analyzed.

Data Availability
All data generated and analyzed during this study are included in this published article.
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