
RESEARCH ARTICLE

Association between serum iron

concentrations and cognitive impairment in

older adults aged 60 years and older: A dose-

response analysis of National Health and

Nutrition Examination Survey

Zonglin Gong1, Wenlei Song1, Minjun Gu2, Xiaoming Zhou1, Changwei TianID
1*

1 Department of Integrated Services, Kunshan Centers for Disease Control and Prevention, Kunshan,

Jiangsu, China, 2 Department of Disease Control, Kunshan Centers for Disease Control and Prevention,

Kunshan, Jiangsu, China

* tiancwcdc@126.com

Abstract

Epidemiological evidence on peripheral iron and cognitive impairment in older adults is

sparse and limited. Results on serum iron and cognitive impairment in older adults from the

National Health and Nutrition Examination Survey have not been reported. Data on serum

iron and cognitive impairment from individuals � 60 years of age were obtained from the

2011–2014 NHANES (N = 3,131). Serum iron concentrations were determined with DcX800

method. Cognitive impairment was assessed with four cognitive tests: the Digit Symbol Sub-

stitution Test (DSST), the Animal Fluency (AF), the Consortium to Establish a Registry for

Alzheimer’s Disease Delayed Recall (CERAD-DR) and Word Learning (CERAD-WL) tests.

Logistic regression and restricted cubic splines were adopted to explore the dose-response

relationship between serum iron concentrations and cognitive impairment. Comparing the

highest to lowest tertile of serum iron concentrations, the multivariate-adjusted odds ratios

of scoring low on the DSST were 0.70 (0.49–1.00), 0.88 (0.65–1.20) for CERAD-WL, 0.65

(0.48–0.88) for CERAD-DR, and 0.78 (0.53–1.15) for AF. Stratified analyses by sex showed

that the above-mentioned associations were mainly found in men; however, the interaction

with sex was not significant. Dose-response analysis showed that relationships between

serum iron and cognitive impairment evaluated by DSST and CERAD-DR were linear,

respectively.

Introduction

It was estimated that 35.6 million people lived with dementia worldwide in 2010, with num-

bers expected to 65.7 million in 2030 and 115.4 million in 2050 [1]. Dementia affects an esti-

mated 2.4 to 5.5 million individuals in the United States [2], and the number is expected to rise

to 13.8 million by 2050 [1]. The prevalence of mild cognitive impairment varies greatly (3%-
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42%) in older adults worldwide [3]. Iron is essential for normal development and functions of

the brain, and plays myriad keystone roles in a number of cellular processes including neuro-

transmitter synthesis, myelination of neurons, and mitochondrial function [4, 5]. Previous

studies showed that brain iron accumulation could have a detrimental effect on cognitive abil-

ity because excess of iron could induce oxidative stress, energy failure, synaptic loss and cell

death, et al. [6–11]. However, epidemiological evidence on peripheral iron and cognitive

impairment incidence is limited [12], and the diversity of the existing evidence precludes any

conclusions relating to the relationship between peripheral iron and cognitive impairment

incidence [12]. Recently, results from the NHANES showed that total iron intake was inversely

associated with cognitive impairment evaluated by Digit Symbol Substitution Test (DSST)

[odds ratios (95% confidence intervals): 0.44 (0.21–0.95)], but not with Consortium to Estab-

lish a Registry for Alzheimer’s Disease (CERAD) test [1.00 (0.47–2.12)] and Animal fluency

(AF) test [0.62 (0.31–1.25)] [13]. However, the association between peripheral iron and cogni-

tive impairment from the NHANES has not been reported. Therefore, the purpose of this

study was to examine the relationship between peripheral iron and cognitive impairment.

Materials and methods

Data collection

The NHANES is a nationally representative, continuous cross-sectional study of US popula-

tion. Data from two consecutive NHANES 2-year cycles (2011–2012, 2013–2014) are collected,

because these two cycles specifically inquired about cognitive impairment. Individuals who do

not provide data of serum iron and cognitive performance tests were excluded. Written

informed consent was obtained for all participants or proxies. The survey protocol was

approved by the Research Ethics Review Board at the National Center for Health Statistics.

Cognitive performance tests

Participants aged 60 years and older were eligible for cognitive performance tests, and a series

of assessments were introduced in NHANES, including CERAD, AF and DSST. The CERAD

is used to assess the ability for new learning, delayed recall and recognition memory, and the

test consists of three consecutive learning trials, and a delayed recall. In the CERAD-Word

Learning test (CERAD-WL) that consists of 3 consecutive learning trials, participants are

instructed to read aloud 10 unrelated words, one at a time, and the order of the 10 words is

changed in each of the three learning trials. In the CERAD-Delayed Recall test (CERAD-DR),

participant was asked to recall the 10 unrelated words used in the first CERAD-WL trial, after

all of the cognitive performance tests were completed (approximately 8–10 minutes from the

start of the word learning trials). The AF test examines categorical verbal fluency, a component

of executive function. The Digit Symbol Substitution test (DSST), a performance module from

the Wechsler Adult Intelligence Scale, relies on processing speed, sustained attention, and

working memory.

The assessments were administered by trained interviewers at the beginning of the face-to-

face private interview in the Mobile Examination Center. Detailed information on the cogni-

tive performance tests including quality assurance, quality control, data processing and editing

are described in the NHANES (https://www.cdc.gov/nchs/nhanes/index.htm). Based on prior

literature[14], cutoffs of<14 for AF,<34 for DSST, <17 for CERAD-WL and <5 for CER-

AD-DR were used to distinguish potential cognitive impairment from healthy cognitive func-

tion and lack of cognitive impairment in the NHANES.
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Serum iron measurement

Serum specimens are processed, stored, and shipped to the Collaborative Laboratory Services,

Ottumwa, Iowa for analysis. The DcX800 method used to measure the iron concentration is a

timed-endpoint method. In the reaction, iron is released from transferrin by acetic acid and is

reduced to the ferrous state by hydroxylamine and thioglycolate. The ferrous ion is immedi-

ately complexed with the FerroZine Iron Reagent. The system monitors the change in absor-

bance at 560 nm at a fixed-time interval. This change in absorbance is directly proportional to

the concentration of iron in the sample. The NHANES quality control and quality assurance

protocols meet the 1988 Clinical Laboratory Improvement Act mandates.

Covariates

According to the previously related publications [12, 13], the following covariates were

included in this study: data release cycle, age group (60 to<65 y, 65 to<70 y, 70 to<75 y, 75

to<80 y, and�80 y), sex, race/ethnicity (Mexican American, Other Hispanic, Non-Hispanic

White, Non-Hispanic White, Other Race), body mass index (<25 kg/m2, 25 to<30 kg/m2,

�30 kg/m2), poverty-income ratio (<1, 1 to 2,>2), education (< 9th grade, 9-11th grade, high

school graduate, some college or AA degree, college graduate or above), marital status (never

married, married, others), hypertension, diabetes, moderate recreational activities for at least

10 minutes continuously in a typical week, serum cotinine (continuous) and daily intakes

(continuous) of sugar, fat, protein, caffeine, alcohol and total energy.

Statistical analysis

Logistic regression and restricted cubic splines were adopted to explore the dose-response rela-

tionship between serum iron concentrations and cognitive impairment. In logistic regres-

sion, subjects were classified into tertiles according to their serum iron concentrations, and

ORs and 95% CIs of cognitive impairment for subjects in tertile 2 (T2) and tertile 3 (T3)

were calculated as compared to those in tertile 1. We calculated three different logistic

regression models. Model 1 was adjusted for data release cycle, age group, sex, race/ethnic-

ity and body mass index. Model 2 was adjusted for covariates in model 1, and also poverty-

income ratio, education and marital status. Model 3 was adjusted for covariates in model 2,

and also hypertension, diabetes, moderate recreational activities, serum cotinine and daily

intakes of sugar, fat, protein, caffeine, alcohol and total energy. Tests for trends across cate-

gories were performed by modeling serum iron concentration as a continuous variable

using the median value of each category. The interaction with sex were tested by using the

cross-product term of serum iron and sex. The dose–response relationship between serum

iron concentrations and cognitive impairment was assessed using restricted cubic splines

with three knots located at the 5th, 50th, and 95th percentiles of serum iron concentrations,

and a P value for nonlinearity (Pfor non-linearity) was calculated by testing the null hypothesis

that the coefficient of the second spline is equal to 0 [15]. All analyses were conducted using

STATA version 12.0, and P� 0.05 was considered statistically significant.

Results

Table 1 presents characteristics of the study participants. A total of 3,131 older adults aged 60

years and older were included in this study. The mean concentration (SD) of serum iron was

82.80 (31.89) ug/dL. The weighted prevalence of cognitive impairment was 15.32% for DSST,

23.45% for CERAD-WL, 26.16% for CERAD-DR, and 22.83% for AF, respectively. Compared

with participants in T1 of serum iron concentrations, those in T3 of serum iron concentrations
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Table 1. Population characteristics by tertiles of serum iron concentrations (mean values: tertile 1: 51.07 ug/dL, tertile 2: 80.10 ug/dL, tertile 3: 119.67 ug/dL).

Characteristics Overall Tertile 1 Tertile 2 Tertile 3

Age, year 70.06±6.97 70.38±6.91 69.94±6.93 69.35±6.91

Women, % 51.54 62.26 48.57 41.42

Serum iron (ug/dL) 82.80±31.89 51.07±11.53 80.10±8.16 119.67±25.73

DSST<40, % 15.32 21.17 13.38 11.29

CERAD-WL<17, % 23.45 26.76 22.80 20.73

CERAD-DR<5, % 26.16 30.27 26.51 21.81

AF<14, % 22.83 29.68 20.01 19.27

Diabetes, % 27.28 35.07 27.00 20.72

Obesity, % 37.00 44.62 35.86 31.09

Hypertension, % 77.77 83.01 76.28 73.26

Education, %

<9th grade 14.95 17.34 13.74 12.49

9-11th grade 14.62 17.24 13.15 12.39

High school graduate 23.02 24.23 22.09 23.05

Some college or AA degree 26.10 23.66 27.74 27.82

College graduate or above 21.09 17.24 23.10 24.26

Marital status, %

Never married 5.96 5.94 6.33 5.19

Married 53.43 47.80 54.09 60.63

Others 40.61 46.26 39.58 34.18

Race/Hispanic origin (%)

Mexican American 9.25 8.62 9.27 10.36

Other Hispanic 10.13 10.34 8.94 10.56

Non-Hispanic White 45.37 41.28 48.06 51.17

Non-Hispanic Black 23.98 29.69 24.11 14.42

Other Race 11.26 10.06 9.61 13.50

Ratio of family income to poverty (%)

<1 19.84 21.99 17.38 16.89

1–2 30.28 32.57 29.85 28.08

2–5 49.88 45.45 52.77 55.03

Physical activitya

Yes 35.88 31.42 39.21 39.49

No 64.10 68.58 60.79 60.51

Daily intake

Total energy (kcal) 1802.42±691.57 1712.19±673.03 1830.04±698.53 1870.47±681.32

Total sugars (g) 94.79±52.34 91.57±49.52 98.09±53.91 94.38±50.13

Protein (g) 72.20±30.00 68.57±29.00 73.44±30.63 74.91±29.92

Total fat (g) 68.44±33.34 64.89±32.47 70.53±34.36 70.13±32.66

Alcohol (g) 5.59±15.28 3.61±12.20 4.65±12.22 8.88±20.17

Caffeine (mg) 134.89±147.98 120.28±137.02 140.66±153.40 148.66±155.57

Values are means ± SDs for continuous variables

a: moderate recreational activities for at least 10 minutes continuously in a typical week.

AF: the Animal Fluency, CERAD-DR: the Consortium to Establish a Registry for Alzheimer’s Disease Delayed Recall, CERAD-WL: the Consortium to Establish a

Registry for Alzheimer’s Disease Word Learning, DSST: Digit Symbol Substitution Test.

https://doi.org/10.1371/journal.pone.0255595.t001
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were more likely to be male (58.58% vs. 37.74%), and have low prevalence of cognitive

impairment (DSST: 11.29% vs. 21.17%, DERAD-WL: 20.73 vs. 26.76%, CERAD-DR: 21.81%

vs. 30.27%, AF: 19.27% vs. 29.68%), diabetes (20.72% vs. 35.07%), obesity (31.09% vs. 44.62%)

and hypertension (73.26% vs. 83.01%).

Logistic regression

Overall, the results were similar across the three models, while the ORs were attenuated when

more covariates were included in the model. In multivariable logistic analysis (model 3), the

multivariate-adjusted ORs (95% CIs) of cognitive impairment for T3 vs. T1 of serum iron con-

centrations were 0.70 (0.49–1.00) for DSST (Pfor trend = 0.045), 0.88 (0.65–1.20) for CER-

AD-WL (Pfor trend = 0.42), 0.65 (0.48–0.88) for CERAD-DR (Pfor trend<0.01) and 0.78 (0.53–

1.15) for AF (Pfor trend = 0.20). The inverse associations between serum iron concentrations

and cognitive impairment evaluated by DSST [0.55 (0.33–0.92), Pfor trend = 0.02] and CER-

AD-DR [0.57 (0.32–1.00), Pfor trend = 0.06] were observed in men, while no association was

found in women (Table 2). However, the interaction with sex was not significant in any of the

analysis (all P values> 0.05).

Restricted cubic splines

We observed a steep significant association with a decrease in odds of cognitive impairment

evaluated by DSST up to 90 ug/dL of serum iron concentrations [OR (95% CI): 0.74 (0.50–0.99),

Table 2. Odds ratio (95% confidence intervals) of cognitive impairment by tertiles of serum iron concentrations.

Overall Men Women

Cognitive test T1 T2 T3 T1 T2 T3 T1 T2 T3

DSST<34

Model 1 1.00 0.60 (0.42–0.86)�� 0.56 (0.43–0.74)�� 1.00 0.76 (0.55–1.07) 0.58 (0.37–0.92)� 1.00 0.73 (0.47–1.13) 0.63 (0.40–1.00)�

Model 2 1.00 0.61 (0.41–0.91)� 0.63 (0.44–0.90)� 1.00 0.75 (0.49–1.15) 0.52 (0.32–0.85)� 1.00 0.81 (0.53–1.24) 0.83 (0.49–1.42)

Model 3 1.00 0.65 (0.44–0.98)� 0.70 (0.49–1.00)� 1.00 0.80 (0.51–1.25) 0.55 (0.33–0.92)� 1.00 1.11 (0.63–1.95) 1.03 (0.57–1.88)

CERAD-WL<17

Model 1 1.00 0.81 (0.64–1.04) 0.76 (0.58–0.99)� 1.00 0.97 (0.70–1.35) 0.88 (0.63–1.22) 1.00 0.68 (0.44–1.05) 0.65 (0.46–0.93)�

Model 2 1.00 0.92 (0.73–1.18) 0.86 (0.65–1.15) 1.00 1.02 (0.71–1.45) 0.86 (0.60–1.25) 1.00 0.82 (0.51–1.33) 0.78 (0.53–1.14)

Model 3 1.00 0.96 (0.73–1.26) 0.88 (0.65–1.20) 1.00 1.02 (0.69–1.51) 0.83 (0.55–1.25) 1.00 0.98 (0.59–1.61) 0.86 (0.57–1.31)

CERAD-DR<5

Model 1 1.00 0.75 (0.53–1.07) 0.60 (0.46–0.80)�� 1.00 1.07 (0.69–1.65) 0.67 (0.42–1.07) 1.00 0.97 (0.69–1.38) 0.65 (0.43–0.97)�

Model 2 1.00 0.83 (0.57–1.21) 0.65 (0.49–0.86)�� 1.00 1.18 (0.74–1.89) 0.68 (0.40–1.15) 1.00 1.11 (0.77–1.59) 0.73 (0.49–1.08)

Model 3 1.00 0.87 (0.60–1.26) 0.65 (0.48–0.88)�� 1.00 1.16 (0.73–1.84) 0.57 (0.32–1.00)� 1.00 1.32 (0.92–1.91) 0.79 (0.51–1.22)

AF<14

Model 1 1.00 0.65 (0.48–0.89)�� 0.70 (0.49–1.00) 1.00 1.01 (0.62–1.63) 0.92 (0.52–1.63) 1.00 0.77 (0.56–1.07) 0.71 (0.49–1.04)

Model 2 1.00 0.70 (0.52–0.96)� 0.75 (0.52–1.09) 1.00 1.05 (0.62–1.78) 0.96 (0.51–1.84) 1.00 0.91 (0.68–1.21) 0.80 (0.55–1.17)

Model 3 1.00 0.74 (0.53–1.02) 0.78 (0.53–1.15) 1.00 1.15 (0.69–1.92) 1.00 (0.52–1.93) 1.00 0.96 (0.67–1.37) 0.82 (0.54–1.26)

Model 1 was adjusted for data release cycle, age group, sex, race/ethnicity and body mass index.

Model 2 was adjusted for covariates in model 1, and also poverty-income ratio, education and marital status.

Model 3 was adjusted for covariates in model 2, and also hypertension, diabetes, moderate recreational activities, serum cotinine and daily intakes of sugar, fat, protein,

caffeine, alcohol and total energy.

T1: tertile 1, T2: tertile 2, T3: tertile 3.

�: P<0.05

��: P<0.01.

AF: the Animal Fluency, CERAD-DR: the Consortium to Establish a Registry for Alzheimer’s Disease Delayed Recall, CERAD-WL: the Consortium to Establish a

Registry for Alzheimer’s Disease Word Learning, DSST: Digit Symbol Substitution Test.

https://doi.org/10.1371/journal.pone.0255595.t002
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after which the curve almost reached a plateau. However, the departure from a linear relation-

ship between serum iron concentrations and cognitive impairment evaluated by DSST was not

significant (Pfor non-linearity = 0.16), which was caused by the relatively wide range of the 95% CIs.

The odds of cognitive impairment evaluated by CERAD-DR decreased linearly (Pfor non-linearity =

0.35) with increasing levels of serum iron concentrations, with an apparent association for

serum iron concentrations around 110 ug/dL [OR (95% CI): 0.77 (0.56–0.98)]. No association

was found between serum iron concentrations and cognitive impairment evaluated by CER-

AD-WL and AF, respectively (Fig 1).

Discussion

In this study, higher serum iron concentrations were inversely associated with cognitive

impairment evaluated by DSST and CERAD-DR among older adults, and the associations

were linear. In addition, the inverse associations were mainly observed in men but not in

women.

The importance of iron in disease processes and normal function of the brain has been

summarized elsewhere [4, 5]. Iron is a cofactor of ribonucleotide reductase, which is responsi-

ble for the rate limiting step of DNA synthesis, making iron essential for cell division and neu-

ral tube formation [5, 16]. Beyond cell division, neurons need timely and adequate iron supply

Fig 1. Dose-response relationship between serum iron concentrations and the odds of scoring low on the DSST, CERAD-DR,

CERAD-WL and AF in older adults, respectively. The middle line and upper and lower line represent the estimated odds ratio and its

95% confidence interval, respectively. AF: the Animal Fluency, CERAD-DR: the Consortium to Establish a Registry for Alzheimer’s

Disease Delayed Recall, CERAD-WL: the Consortium to Establish a Registry for Alzheimer’s Disease Word Learning, DSST: Digit

Symbol Substitution Test.

https://doi.org/10.1371/journal.pone.0255595.g001
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for neurotransmitter synthesis, synapse formation, and dendritic arborization [5]. In addition,

polymorphisms in iron regulating genes like HFE have significant clinical and pathophysiolog-

ical impact in the nervous system [5]. In addition, previous data indicated that iron deficiency

has detrimental effects on cardiovascular diseases including coronary artery disease, heart fail-

ure and pulmonary hypertension [17], and a higher cardiovascular health score were associ-

ated with a lower risk of dementia and lower rates of cognitive decline in a recent study [18].

Excess redox-active iron can also lead to oxidative damage and cell death [5]. Ferroptosis is an

intracellular iron-dependent cell death pathway, and is characterized by the overwhelming,

iron-dependent accumulation of lethal lipid reactive oxygen species [5, 19]. However, in the

dose-response analysis, we did not observe detrimental effects of higher serum iron on cogni-

tive impairment within the concentrations observed in this study.

Epidemiological evidence on peripheral iron and cognitive impairment incidence in older

adults is limited, and the results were variable across studies [12]. Elevated transferrin satura-

tion was not associated with the risk of developing Alzheimer’s disease in US adults followed

from baseline in 1971–1974 to 1992 [20]. In another study, elevated serum iron levels may

decrease cognitive speed in older individuals susceptible to cognitive impairment assessed by

hemochromatosis C282Y genotype [21]. The trend suggested that higher iron intake maybe

associated with a decreased risk of cognitive impairment in women and an increased risk in

men [22]. Higher iron content in the caudate nucleus predicted lesser improvement in work-

ing memory after repeat testing in 78 adults from Metro Detroit area [23]. Low levels of hemo-

globin but not dietary iron intake were associated with increased risk of mortality from

Alzheimer’s disease [24]. An increased risk of decline was associated with higher levels of cere-

brospinal fluid ferritin level among individuals of apolipoprotein ε4 allele [25]. Therefore, the

diversity in iron measures, cognitive outcomes and main findings precludes any conclusions

relating to the relationship between peripheral iron and cognitive impairment incidence. A

previous study from NHANES showed that total iron intake was inversely associated with cog-

nitive impairment assessed by DSST, CERAD and AF in unadjusted model; however, the asso-

ciation was significant only in the analysis with DSST test after adjusting for other covariates

[13]. In addition to iron, several other metals such as copper, zinc and manganese are also

essential cofactors for many cellular enzymes, and were also found to be associated with cogni-

tive impairment in NHANES. Dietary intakes of zinc, copper, selenium and magnesium were

found inversely associated with cognitive impairment [13, 26]. In addition, blood selenium,

copper and zinc were also inversely associated with cognitive impairment [27, 28]. However,

blood cadmium was associated with worse cognitive function [29] while no association was

found between blood lead and cognitive performance [30]. The above-mentioned findings

from NHANES are generally consistent from those in meta-analyses [31–34], expect for serum

copper whose concentrations were higher in patients with cognitive impairment than controls

[35].

In our analysis, serum iron concentrations were associated with cognitive impairment eval-

uated by DSST and CERAD-DR, while no association was found with cognitive impairment

evaluated by CERAD-WL and AF. The CERAD test specifically assesses episodic memory,

while AF test assesses verbal fluency and semantic-based memory function and DSST is a sen-

sitive measure of frontal lobe executive function. Therefore, the reasons for the inconsistencies

with different tests maybe because the cognitive domain emphasized in each test is not consis-

tent. A randomized controlled trial in mice suggested that iron intake had a differential effect

on various brain regions [36], and dysregulations in various areas could lead to different symp-

toms. The study by Gao et al. also showed that serum iron concentrations were only positively

correlated with brain iron in the right hippocampus and were not correlated with brain iron

other regions of interest [37]. A recent review summarized that iron accumulated
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heterogeneously across brain regions, and Caudate nuclei, Hippocampus and Thalamus were

the regions where iron was most frequently reported to correlate with memory performance,

while iron deposition in the putamen was correlate to poorer general cognition [7]. These find-

ings suggested that abnormal iron status might have different effects on various brain regions.

Strengths of this study included relatively large number of participants, cognitive

impairment assessed by the four commonly used separate tests and a number of covariates. In

addition, the dose-response relationship between serum iron concentrations and cognitive

impairment was also explored. There are also several limitations. First, only serum iron was

included in this study. The critical role of brain barrier systems in maintaining brain iron

homeostasis in the central nervous system has been summarized elsewhere [38]. In brief, the

brain barrier systems are comprised of the blood-brain barrier and blood-cerebrospinal fluid

barrier, and transferrin-bound iron is the primary species transported into the brain by the

blood-brain barrier [38]. The transferrin receptors in cerebral endothelia are about 3–7 fold

higher in the striatum and hippocampus than in the cortex, which explains the uneven distri-

bution of iron in various brain regions [38]. Meanwhile, the active transport process of iron

efflux from cerebrospinal fluid to blood by the blood-cerebrospinal fluid barrier enables the

body to maintain a relatively stable level of iron in the brain [38]. Gao et al. found that while

both brain iron deposition and body iron levels increased in patients with cognitive

impairment, serum iron in patients was only positively correlated with iron content in the

right hippocampus (P = 0.04) [37]. In the Austrian Stroke Prevention Study, serum iron levels

were not significant determinants of brain iron accumulation in normally aging subjects [39].

Furthermore, in the case of the iron-trafficking disease, iron elevation in tissues may accom-

pany low iron markers in the blood because iron cannot efficiently be exported out of the cell

[40]. These findings suggested that brain iron measures are not necessarily associated with

peripheral iron, and may also explain the previous inconsistent findings between brain iron

and peripheral iron and cognitive impairment. Our results are comparable with those from

the NHANES study on dietary iron intake and cognitive impairment [13], which is consistent

with the fact that serum iron levels are more dependent on dietary iron intake than brain iron

concentrations. Second, although we adjusted for a number of covariates, residual confound-

ing owing to measurement error or unmeasured confounding could be of concern. However,

the results were generally comparable across the three statistical models in this study. Third,

reverse causality should be considered because of the cross-sectional design. However, there

are no clinical guidelines to date recommending or limiting iron intake for prevention of cog-

nitive impairment. Finally, cognitive assessments cannot replace a diagnosis based on a clinical

examination; however, they are useful to examine the associations of cognitive functioning

with many medical conditions and risk factors in NHANES [13, 14, 41].

In summary, higher serum iron concentrations were inversely associated with cognitive

impairment evaluated by DSST and CERAD-DR among older adults. However, given the con-

sistent correlation between cognitive dysfunction and iron deposition in brain, our findings

indicated that iron deposition in brain is not necessarily associated with peripheral iron con-

centrations, and our results should be interpreted cautiously. The relationships between

peripheral iron concentrations and cognitive impairment deserve to be confirmed by longitu-

dinal studies.
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