PRE-EMPTION OF HUMAN CELL-MEDIATED LYMPHOLYSIS BY A SUPPRESSIVE MECHANISM ACTIVATED IN MIXED LYMPHOCYTE CULTURES*

BY PAUL M. SONDEL, # MARC W. JACOBSON, AND FRITZ H. BACH

(From the Immunobiology Research Center and Departments of Medical Genetics and Surgery, The University of Wisconsin, Madison, Wisconsin 53706)

The regulation of B-cell and T-cell immune responses has been extensively examined and in the experimental animal appears to involve regulatory or "suppressor" T cells (1-4). The limitations of in vitro experimentation have made comparable study of nonpathological human suppression quite difficult (5). We report here an in vitro method that generates and quantitates suppressor activity in man after antigen-specific activation in mixed leukocyte culture (MLC).

The one-way MLC induces both a proliferative response (6) and the generation of cytotoxic T lymphocytes (CTLs) (7). Both of these responses are mediated by antigen-specific T-cell subpopulations (8, 9) and have been correlated with recognitive and destructive phases of allograft rejection. Recent reports have examined the antigen reactivity of mouse (10, 11), rat (12), or human (13, 14) lymphocytes obtained after proliferation in MLC. In all cases, after the primary MLC proliferative peak, the recovered lymphocytes rapidly differentiate upon re-exposure to the initial stimulating population, but do so only weakly when exposed to a presumably noncross-reactive third-party stimulating population.

Velocity sedimentation separation studies have shown that the blast cells produced in a primary MLC revert to small lymphocytes that rapidly differentiate into proliferating and/or cytotoxic T lymphocytes upon restimulation with the initial antigen (15). These findings demonstrate that positive selection for the responding population in primary MLC does exist and may account for at least part of the specificity of the secondary response. However, this positive selection does not preclude possible involvement of a suppressor mechanism. In fact we have detected suppressor activity in primary MLC sensitization cultures at a time when the proliferation responsible for positive selection is not yet significant, suggesting that suppression may be of overriding importance in the specificity of MLC-activated secondary responses.

^{*} This work was supported by National Institutes of Health grants AI-11576, AI-08439, GM-15422, CA-14520, and CA-16836 and The National Foundation-March of Dimes grant CRBS 246. This is paper no. 1894 from the Laboratory of Genetics and paper no. 55 from the Immunobiology Research Center, The University of Wisconsin, Madison, Wisconsin.

[‡] Dr. Sondel's present address is the Sidney Farber Cancer Center, Division of Tumor Immunology, Harvard Medical School, Boston, Mass. 02115.

	CTLs		Cytotoxicity							
			Day 6				Day 8			
	Day 0	Day 2	B targets K/T		C targets K/T		B targets K/T		C targets K/T	
			30	6	30	6	30	6	30	6
			%		%		%		%	
1	AB _m	_	54	33	14	2	33	12	5	3
2	ACm	_	8	2	60	37	1	1	46	28
3	AB_mC_m	_	44	30	61	35	34	14	52	24
4	AB_m	Cm	50	38	29	18	43	22	11	6
5	ACm	Bm	21	14	69	48	12	2	64	35
6	Α	Cm	6	4	28	16	9	2	65	45
7	Α	Bm	21	15	5	3	48	24	10	3
8	AAm	Cm		_	_	_	7	2	70	44
9	AAm	$\mathbf{B}_{\mathbf{m}}$		_		_	53	28	7	3
10	BC _m	_	1	1	57	30	_	_		_
11	CB _m	_	40	24	-4	-1	_	_		_

Table	I
Reciprocal CML	Pre-emption

Each culture flask contained 9×10^6 responding cells and 12×10^6 stimulating cells added on day 0 or day 2. If two populations of stimulating cells were added, 6×10^6 of each were used. All CML combinations were tested on days 6 and 8 at killer to target ratios (K/T) of 30 and 6 to 1. Control value counts per minute for each target: Day 6 B Spontaneous Release (SR) = 156 Max = 1,079; Day 6 C SR = 198, Max = 852; Day 8 B SR = 168, Max = 1,498; Day 8 C SR = 163, Max = 1,105.

Materials and Methods

Methods used for generating CTLs and performing cell-mediated lympholysis (CML) assays in these studies have recently been described (16). All lymphocytes were Ficoll-Hypaque purified and obtained from healthy nontransfused volunteers. The protocols involved in these suppression studies required CML testing on two target populations that were minimally cross-reactive in the CML assay; however, this, relatively sensitive CML assay detects extensive cross-reactivity between most individuals examined. Therefore, many individuals were screened by prior CML testing to identify five different groups of three donors each. To simplify presentation of data, the responding cell donor in each group is designated A, and the other two B and C. These three individuals were in each case chosen so that CTLs from an AB_m culture induced strong specific killing on B targets and low cross-killing on C targets; the CTLs from an AC_m culture killed reciprocally.

Results

When fresh lymphocytes from individual A are simultaneously sensitized with mitomycin C-treated cells from B and C (B_m and C_m), cytotoxicity is developed against both B and C targets. CML blocking studies have shown that such cultures generate separate populations of CTLs, one reactive to antigens on B and the other reactive to C (16). Unlike simultaneous addition of B_m and C_m , the addition of C_m to an ongoing AB_m culture that was initiated 2 days earlier induces very little cytotoxicity on C, but allows the development of normal cytotoxicity on B targets. In this case the ongoing AB_m culture "pre-empts" the cytotoxic response of the subpopulation of A cells able to recognize C.

An example of CML pre-emption is presented in Table I. In the standard day 6 CML assay, individual A demonstrated great specificity in distinguishing B target cells from C target cells (rows 1 and 2); however, even this low level of cross-killing was greater than the "autokilling" (rows 10 and 11). Rows 3 and 4 represent CTLs obtained from sensitization flasks that contained the same

SONDEL ET AL. BRIEF DEFINITIVE REPORT

number of A, B_m , and C_m cells, the only difference being that fresh C_m cells were added on day 2 in row 4, as opposed to on day 0 in row 3. These two populations killed B target cells to the same extent, as did the CTLs sensitized to B_m alone (row 1). Cytotoxicity on C targets by the AB_mC_m culture (row 3) was similar to that mediated by the AC_m culture (row 2); both of these were much greater than that mediated by the AB_m culture stimulated on day 2 with C_m (AB_m - C_m , row 4). The cytotoxicity mediated on C targets by 30×10^4 CTLs from this pre-empted culture (row 4) was 29%, less than that mediated by only 6×10^4 CTLs in rows 2 and 3. Because peak CML activity is observed 6 days after allogeneic stimulation, it is essential to examine the cytotoxic activity of these cultures on day 8, the expected time of peak response to the stimulating cells added on day 2. Of greatest importance was the cytotoxicity mediated by the "pre-empted" mixture (row 4). Like rows 1 and 3, cytotoxicity on B targets dropped from day 6 to day 8. However, unlike the increased cytotoxicity directed at C targets in rows 6 and 8, the day 8 cytotoxicity on C targets by this pre-empted combination was as low as the cross-killing by AB_m on the C targets (row 7). This indicated that the response of the A lymphocytes to the addition of C_m cells on day 2 was preempted by the ongoing response to B_m-stimulating cells. That the C_m cells obtained on day 2 were highly stimulatory was demonstrated by the cytotoxicity on C target cells in rows 6 and 8; the percent cytotoxicity was of comparable magnitude to that observed on day 6 using the standard CTLs stimulated on day 0 with C_m cells (rows 2 and 3).

The reciprocal combination and its appropriate controls also demonstrated that the ongoing response to C_m pre-empted the generation of CTLs to B target cells when B_m -stimulating cells were added on day 2 (row 5). This pre-emption is similar to preliminary data obtained in mouse (17).

In other experiments, pre-emption in man was observed by adding C_m to a 24h ongoing AB_m culture; the pre-emption effect increased slightly from day 1 to 3 (80–96% inhibition of cytotoxic potency). The observation of pre-emption before detectable MLC or CML reactivity and 4–5 days before their peaks would not be expected from a mechanism involving only positive selection for the responding (proliferating) population.

Direct evidence supporting a suppressive mechanism is presented in Table II. Fresh C_m -stimulating cells were added to ongoing 2 day AB_m or AA_m cultures with or without fresh A lymphocytes. The AB_m cultures pre-empted the cytotoxic response to fresh C_m alone (row 5 compared to rows 4 and 6). If this preemption were merely selective in nature it would not be expected to influence fresh A lymphocytes from responding to C_m . However, the ongoing AB_m culture (row 8), but not the AA_m culture (row 7), markedly suppressed the expected development of cytotoxicity directed towards C (row 3) when fresh A plus C_m cells were added to them on day 2.

The combinations presented in the last four rows involved the addition of fresh A cells on day 2 and fresh C_m cells on day 3. Again, the ongoing AB_m response initiated on day 0 suppressed the generation of CTLs directed against C. The observed suppressive effect required the responding AB_m cells, since the cell-free supernate from a 2 day AB_m culture did not suppress (row 12).

In other experiments, cells from a AB_m sensitization flask were removed and

1608

TABLE II In Vitro Induced CML Suppression

			Day 8 cytotoxicity					
	CTLs			B targets		C targets		
				K/T ratio		K/T ratio		
	Day 0	Day 2	Day 3	25/1	5/1	25/1	5/1	
				%				
1	AB _m	_		58	33	5	-1	
2	ACm	_		5	1	60	38	
3	_ "	ACm		5	3	73	39	
4	AB_mC_m		_	51	27	62	33	
5	ABm	C _m	_	64	29	15	6	
6	AAm	Cm	_	1	1	52	32	
7	AAm	\mathbf{C}_{m} A \mathbf{C}_{m}	_	2	0	64	34	
8	ABm	ACM		74	42	32	15	
9	AAm	Α	Cm	4	5	48	32	
10	ABm	Α	Cm	68	43	20	8	
11	_	$A + med^*$	Cm	0	0	47	23	
12	_	A + sup	Cm	0	1	46	27	

CML reactions were performed with CTLs obtained from sensitization flasks to which responding and stimulating cells were added on days 0, 2, or 3. Each flask received a total of 9×10^6 responding cells and 12×10^6 stimulating cells. Control values for each target: B targets: SR = 179, Max = 1,441; C targets: SR = 379, Max = 1.904.

* Fresh A lymphocytes were cultured on day 2 in medium that had been cultured since day 0 in the absence of cells.

‡ Fresh A lymphocytes were cultured on day 2 in cell-free supernate from AB_m culture established on day 0.

washed after 2 days of culture and added to fresh A plus C_m cells; suppression similar to the above was caused by these cells, while the 2 day AB_m supernate had no suppressing effect.

To determine where the suppressive mechanism was acting, cells from an ongoing 2-day AB_m culture were added to an ongoing 2-day AC_m culture. The cytotoxicity observed on day 6 was similar to that from a simultaneously stimulated AB_mC_m culture, showing no suppressive effect. This suggests that the suppression mechanism demonstrated above involves inhibition of immune recognition or of the early steps in CTL differentiation.

Discussion

These experiments have demonstrated that a cell-dependent suppression of CTL activation is generated in human MLC. Several distinct methods of generating and detecting suppressor activity have recently been described (1-5, 18-22); aspects of this in vitro suppression in man appear to parallel certain qualities of in vitro induced murine suppression (23). However, more studies are required to determine the in vivo significance and the specific cellular mechanism of this suppression. Many complex models could be constructed to account for the phenomena, yet this seems unwarranted until more insight is provided. At present, two conclusions can be derived from these studies. Firstly, cell-mediated suppression of immune responses can be generated and studied in vitro using human lymphocytes responding to allogeneic cells. Secondly, the specificity of secondary responses to alloantigens after sensitization in MLC represents,

1610 SONDEL ET AL. BRIEF DEFINITIVE REPORT

at least in part, a "pre-emption" of third-party responsiveness by this suppression mechanism.

We thank Drs. Joyce Zarling and Oded Kuperman for stimulating discussion and Ms. Genia Gordon and Mr. Chi-Ming Yip for excellent technical assistance.

Received for publication 8 September 1975.

References

- 1. Dutton, R. W. 1972. Inhibitory and stimulatory effects of concanavalin A on the response of mouse spleen cell suspensions to antigen. I. Characterization of the inhibitory cell activity. J. Exp. Med. 136:1445.
- Gershon, R. K. 1974. T cell regulation: the "second law of thermodynamics." In The Immune System, Genes, Receptors, Signals. E. E. Sercarz, A. R. Williamson, and C. F. Fox, editors. Academic Press, Inc., New York. 471.
- Kapp, J. A., C. W. Pierce, and B. Benacerraf. 1975. In vitro studies of the cellular interactions in an antibody response controlled by an immune response (Ir) gene(s). *In* Immune Recognition. A. S. Rosenthal, editor. Academic Press, Inc., New York. 667.
- 4. Kuperman, O., G. W. Fortner, and Z. J. Lucas. 1975. Immune response to a syngeneic mammary adenocarcinoma. III. Development of memory and suppressor functions modulating cellular cytotoxicity. J. Immunol. In press.
- Waldmann, T. A., S. Broder, R. M. Blaese, M. Durm, M. Blackman, and W. Strober. 1974. Role of suppressor T cells in pathogenesis of common variable hypogammaglobulinemia. *Lancet.* 2:609.
- 6. Bach, F. H., and N. K. Voynow. 1966. One way stimulation in mixed leukocyte culture. Science (Wash. D.C.). 153:545.
- Lightbody, J. J., D. Bernoco, V. C. Migiano, and R. Ceppellini. 1971. Cell mediated lympholysis. G. Batteriol. Virol. Immunol. Ann. Osp. Maria Vittoria Torino Parte I Sez Microbiol. 64:243.
- Chess, L., R. P. MacDermott, and S. F. Schlossman. 1974. Immunologic functions of isolated human lymphocyte subpopulations. II. Antigen triggering of human T and B cells. J. Immunol. 113:1122.
- Sondel, P. M., L. Chess, R. P. MacDermott, and S. F. Schlossman. 1975. Immunologic functions of isolated human lymphocyte subpopulations. III. Specific allogeneic lympholysis mediated by human T cells alone. J. Immunol. 114:982.
- 10. Andersson, L. C., and P. Häyry. 1973. Specific priming of mouse thymus dependent lymphocytes to allogeneic cells in vitro. Eur. J. Immunol. 3:595.
- Bach, M. L., C. Grillot-Courvalin, K. S. Zier, and B. J. Alter. 1975. Genetic control of CML restimulation. In Histocompatability Testing 1975. F. Kissmeyer-Nielsen, editor. Munksgaard, Copenhagen. In press.
- 12. Howard, J. C., and D. B. Wilson. 1974. Specific positive selection of lymphocytes reactive to strong histocompatibility antigens. J. Exp. Med. 140:660.
- Sheehy, M. J., P. M. Sondel, M. L. Bach, R. Wank, and F. H. Bach. 1975. HL-A LD (lymphocyte defined) typing; a rapid assay with primed lymphocytes. *Science (Wash.* D.C.). 188:1308.
- 14. Zier, K. S., and F. H. Bach. 1975. Secondary responses of human lymphocytes to alloantigens in vitro. Scand. J. Immunol. In press.
- MacDonald, H. R., H. D. Engers, J. C. Cerottini, and K. T. Brunner. 1974. Generation of cytotoxic T lymphocytes in vitro. II. Effect of repeated exposure to alloantigens on the cytotoxic activity of long-term mixed leukocyte cultures. J. Exp. Med. 140:718.

- Sondel, P. M., and F. H. Bach. 1975. Recognitive specificity of human cytotoxic T lymphocytes. I. Antigen-specific inhibition of human cell-mediated lympholysis. J. Exp. Med. In press.
- 17. Schendel, D. J., and F. H. Bach. 1975. The role of different H-2 determinants in the genetic control of cell-mediated lympholysis. *Eur. J. Immunol.* In press.
- 18. Möller, G., and N. Kashiwagi. 1972. Antigen-induced suppression of the *in vitro* response to different antigens and mitogens. *Immunology*. 22:441.
- Folch, H., and B. H. Waksman. 1974. The splenic suppressor cell. II. Suppression of the mixed leukocyte reaction by thymus-dependent adherent cells. J. Immunol. 113:140.
- 20. Mackaness, G. B., and P. H. Lagrange. 1974. Restoration of cell-mediated immunity to animals blocked by a humoral response. J. Exp. Med. 140:865.
- Elie, R., and W. S. Lapp. 1975. GVH induced immunosuppression: regulatory function of macrophages in the humoral immune response. *In* Immune Recognition. A. S. Rosenthal, editor. Academic Press, Inc., New York. 563.
- 22. Thomas, D. W., W. K. Roberts, and D. W. Talmage. 1975. Regulation of the immune response: production of a soluble suppressor by immune spleen cells *in vitro*. J. *Immunol.* 114:1616.
- Rich, R. R., and S. S. Rich. 1975. Biological expressions of lymphocyte activation. IV. Concanavalin A-activated suppressor cells in mouse mixed lymphocyte reactions. J. Immunol. 114:1112.