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Abstract

Preeclampsia (PE) is a hypertensive complication affecting 8-10% of US pregnancies annu-

ally. While there is no cure for PE, aspirin may reduce complications for those at high risk for

PE. Furthermore, PE disproportionately affects racial minorities, with a higher burden of

morbidity and mortality. Previous studies have shown early prediction of PE would allow for

prevention. We approached the prediction of PE using a new method based on a cost-sensi-

tive deep neural network (CSDNN) by considering the severe imbalance and sparse nature

of the data, as well as racial disparities. We validated our model using large extant rich data

sources that represent a diverse cohort of minority populations in the US. These include

Texas Public Use Data Files (PUDF), Oklahoma PUDF, and the Magee Obstetric Medical

and Infant (MOMI) databases. We identified the most influential clinical and demographic

features (predictor variables) relevant to PE for both general populations and smaller racial

groups. We also investigated the effectiveness of multiple network architectures using three

hyperparameter optimization algorithms: Bayesian optimization, Hyperband, and random

search. Our proposed models equipped with focal loss function yield superior and reliable

prediction performance compared with the state-of-the-art techniques with an average area

under the curve (AUC) of 66.3% and 63.5% for the Texas and Oklahoma PUDF respec-

tively, while the CSDNN model with weighted cross-entropy loss function outperforms with

an AUC of 76.5% for the MOMI data. Furthermore, our CSDNN model equipped with focal

loss function leads to an AUC of 66.7% for Texas African American and 57.1% for Native

American. The best results are obtained with 62.3% AUC with CSDNN with weighted cross-

entropy loss function for Oklahoma African American, 58% AUC with DNN and balanced

batch for Oklahoma Native American, and 72.4% AUC using either CSDNN with weighted

cross-entropy loss function or CSDNN with focal loss with balanced batch method for MOMI

African American dataset. Our results provide the first evidence of the predictive power of

clinical databases for PE prediction among minority populations.
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Introduction

Preeclampsia (PE) spectrum disorders occur in pregnant women and are generally defined

by new onset hypertension and proteinuria after week 20 of gestation. PE afflicts 8–10% of

the approximately 4 million yearly pregnancies in the US [1]. Of those women who survive,

PE is associated with long-term health effects, such as increased risk of heart disease,

stroke, and diabetes [2]. Children of women with PE also have increased risk of long-term car-

diovascular illness [3]. Studies have shown that the low-dose aspirin early in pregnancy can

reduce the occurrence of PE in pregnant women who are at high risk [4]. Stratification of

women at the highest risk of PE would allow clinicians to provide primary prevention at the

right time.

Several statistical and machine learning (ML) models have been developed. A compre-

hensive overview of previous studies is given in Table 1. Kenny et al. (2014) [5] and Sand-

strom et al. (2019) [6] applied logistic regression to predict PE among nulliparous

women. Moreira et al. (2017) [7] and Sufriyana et al. (2020) [8] have successfully used ran-

dom forest classifiers to predict PE; however, the random forest algorithm and its variable

importance measures tend to show bias in the presence of predictor variables with many

categories and variables with different scale of measurement [9]. Marić et al. (2020) [10]

have proposed the use of the elastic net model for PE prediction, but their study focused on

a single high-risk referral hospital which included a higher occurrence of PE than in the

general population.

Previous studies have shown that the mothers’ race and ethnicity are significant risk factors

for PE [11]. Minority women experience severe morbidity and mortality rates as high as four

times that of their Caucasian counterparts during pregnancy and postpartum [12–16], with

several studies reporting an increased incidence of PE among African American (AA) and

American Indian/Native American (NA) women [17–23]. AA women have a higher risk of a

Table 1. Summary of early-onset PE prediction previous studies with methods they used. MImp.: Missing imputation technique, R: Removal technique, EM: Expected

maximization, M: Mean Imputation, FFS: Forward Feature Selection, BFS: Backward Feature Selection, CBF: Correlation Based Feature Selection, PCA: Principal Compo-

nant Analysis, Imb.: class imbalance method, OS: oversampling, WT: class-weight adjustment, ST: SMOTE, LR: Logistic regression, EN: Elastic Net, DT: Decision Tree,

RF: Random Forest, SVM: Support vector machine, ANN: Artificial Neural Network, GB: Gradient Boosting, EL: Ensemble Learning, NB: Naïve Bayes, KNN: K Nearest

Neighbor, KS: Kappa statistics, SN: Sensitivity, SP: Specificity, ACC: Accuracy, PR: Precision, GM: G-mean, FM: F-measure, BR: Brier Score.

Authors (Year) MImp. Feature Selection Imb. ML Method Performance Measure

Wang et al. (2022) [46] - PCA - SVM, CNN, NB ACC, PR, SN, FM

Wanriko et al. (2021) [53] - - ST LR, DT, RF, SVM, ANN, NB ACC

Li et al. (2021) [48] - XGBoost WT LR, GB, RF, SVM ACC, AUC, PR, SN, FM, BR

Manoochehri et al. (2021) [49] - - - LR, DT, RF, SVM, KNN ACC, SN, SP

Guo et al. (2021) [42] - CBF - DT, ANN, Adaboost ACC, AUC, PR, SN, SP

Maric et al. (2020) [10] M FFS - EN, LR, GB AUC, SN

Sufriyana et al. (2020) [8] R FFS OS LR, DT, RF, SVM, ANN, EL AUC, PR, SN, SP

Sandstrom et al. (2019) [6] R BFS - LR AUC, SN

Moreira et al. (2017) [7] R - - DT, RF, NB AUC, PR, SN, FM, KS

Kenny et al. (2014) [5] R BFS - LR AUC, PR, SN

Caradeux et al (2013) [45] - BFS - LR AUC, PR, SN

Parra-Cordero et al. (2013) [44] - - - LR AUC, SN

Scazzocchio et al. (2013) [54] R FFS - LR AUC

North et al. (2011) [55] EM BFS - LR AUC

Odibo et al. (2011) [56] - - - LR AUC, PR, SN

Yu et al. (2005) [57] - BFS - LR AUC, SN, SP

https://doi.org/10.1371/journal.pone.0266042.t001
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prolonged length of stay in the hospital and progression to severe forms of PE [24]. Long-term

follow-up of patients with PE indicates a high recurrence risk in future pregnancies and a two

to eight-fold risk of cardiovascular disease [25, 26], affecting minorities more frequently and

with more adverse maternal and neonatal outcomes [27]. Delivery may reduce the risk for

adverse outcomes for the mother, but premature delivery presents many complications for the

baby, having consequences for the whole family. Unfortunately, minority women often initiate

prenatal care later [28], limiting the lead time for physicians to assess each patient’s individual

risk for PE, negatively affecting care delivery effectiveness [13].

Existing works have rarely addressed the inherent sparsity and large number of categorical

variables in the data available in large clinical databases, the presence of noisy and missing

data, and the skewed distribution of observations (known as imbalanced data) among pre-

eclamptic and healthy individuals. Therefore, these ML models may not be reliable, or inter-

pretable (due to the sparsity and presence of a large number of categorical variables). The

severity of these issues is even higher for AA and NA populations as confirmed by our study

on a number of PE datasets. Modern ML models, have been extremely effective in dealing with

these issues in application of predictive modeling [29, 30]. In particular imbalance-aware mod-

els can handle imbalanced data during the learning process [31–35].

To our knowledge, there are no reliable ML-based decision support approaches specific to

PE prediction, particularly for AA and NA populations. There is no study that has investigated

the risk factors of PE and developed predictive models for AA and NA populations using

advanced ML techniques, particularly Deep neural networks (DNN) [36, 37]. DNNs have been

useful for large, high-dimensional datasets [38–40]. They are flexible to being extended for

imbalanced classification problems [41].

In the absence of heterogeneous and multimodal data such as placental mRNA Samples

[42], Uterine artery Doppler measurements [5, 43–45], medications [10], and images [46] to

predict PE, the contributions of this paper are multi-fold as stated below.

1. First, using the chi-square feature selection method, we identify the significant clinical and

demographic attributes associated with developing PE among women from AA and NA

populations as well as general populations using large datasets. There is no existing work

that has studied the PE risk prediction using ML for minority populations.

2. Second, we construct a new cost-sensitive deep neural network (CSDNN) prediction model

capable of identifying women with high suspicion of developing PE and estimating their

associated risk (probability) using highly imbalanced and high-dimensional sparse datasets.

In particular, we extend the idea of using focal loss to classify sparse imbalanced PE data-

sets, where focal loss has been primarily utilized for object detection problems [47] in the

literature. To the best of the authors knowledge, there is no advanced deep neural network

algorithm that takes into consideration the imbalanced and sparse nature of the preeclamp-

sia prediction problem.

3. Lastly, we demonstrate the effectiveness and impact of the proposed scheme through a rich

array of datasets which represents a diverse cohort of both AA and NA populations such as

Texas Public Use Data Files (PUDF), Oklahoma PUDF, and the Magee Obstetric Medical

and Infant (MOMI) databases. Our work is distinguished from previous works that studied

small EHR datasets (with few hundreds or less patients in their cohort [7, 43, 48, 49]). The

Texas data includes a total of 360,943 patients delivered at the hospital. Of those, 14,375

(3.98%) developed PE. The Oklahoma data contains a total of 84,632 women who delivered

in-hospital, of which 4,721 (5.58%) developed PE. The MOMI data includes in total 31,431

women who delivered in-hospital, of which 2,743 (8.73%) developed PE.
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4. Furthermore, in order to improve the accuracy of our proposed models using MOMI data,

we have added a new variable for each patient which represents the number of incidents of

spikes in blood pressure within the first 14 weeks. However, we were not able to use this vari-

able with Texas and Oklahoma datasets, but using the MOMI dataset our work intends to

identify the PE patients as early as possible with higher accuracy by considering the incidents

of spikes in the blood pressure within the first 14 weeks compared to the existing studies.

Methods

Artificial neural networks

Artificial Neural Networks (ANN) originated in the 1940s, with the McCulloch-Pitts Neuron

[50]. The idea of “artificial neurons” is inspired by the human brain, in which a neuron takes

“input” in the form of signals from surrounding cells, and will only activate in the form of an

electrical spike if the combined signals passes a threshold level. An artificial neuron mimics

this behavior by taking a series of features x, multiplying each by an individually chosen weight

w, and then adds the result to a bias term b before summing them together to calculate if a pre-

defined threshold is met, which allows for classification.

Later versions of ANN adapted the artificial neuron to represent more complicated func-

tions by linking them together into a multilayer perceptron (MLP) or feedforward ANN [51].

The MLP is typically composed of multiple layers, each layer containing a pre-defined number

of neurons, or nodes. These layers can be subdivided into three separate types: the input layer,

which takes each feature x as input; a number of hidden layers (the number of layers here

denotes the depth of the network), which performs the previously seen linear computation on

each input before passing the output to the next layer; and, the output layer, which returns the

final prediction. Each node in a layer is connected to every node in the next layer, making a fully-

connected neural network where the final prediction is a functional composition of each layer.

These functions each take the form of:

f ðx;w; bÞ ¼ w � xþ b ð1Þ

Where x are the input features, w are the weights of each node in the layer, and b are accom-

panying bias term. More modern versions of neural networks add non-linearity through the

use of activation functions [52]. The most commonly-used activation function is the sigmoid

activation given by

sigmoid : aðzÞ ¼
1

1þ e� z
ð2Þ

Where z represents the linear output of the node. The downside of this activation function is

that it can saturate, meaning that if the output is too large or small the gradient can become

close to 0 which negatively affects the ability of the network to update the parameters. To over-

come this issue, the sigmoid function has been improved through using the related hyperbolic

tangent function given by

tanh : aðzÞ ¼
2

1þ e� 2z
� 1 ð3Þ

This function outputs values between -1 and 1 and has a significantly steeper gradient

which makes it easier for training than using the sigmoid function. Another common activa-

tion function is the rectified linear unit (ReLU) function:

ReLU : aðzÞ ¼ maxð0; zÞ ð4Þ
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ReLU tends to converge faster than sigmoid or tanh [58] which makes the learning of a neu-

ral network more efficient. Due to the ability to learn complex non-linear functions, neural

networks have been used successfully in a variety of machine learning problems, such as image

recognition [59, 60], machine translation [61, 62], speech recognition [63, 64], weather fore-

casting [65], credit scoring [66], and cancer detection [67–69].

Back-propagation and gradient-based learning

The ANN models employ specific optimization processes to obtain the parameters (w�, b�) at

each layer, which is called the back-propagation stage [70]. Stochastic gradient descent (SGD)

[71], Adaptive Moment Estimation (Adam) [72], NAdam [73], and root mean squared propa-

gation (RMSProp) [74] are the most common optimizers. We use the RMSProp, Adam, and

NAdam methods in the back-propagation for each dataset due to their superior performance

in computational efficiency [73–75]. We select the best optimizer for each dataset using model

selection algorithms explained below.

The parameters (w�, b�) is calculated using these optimization algorithms at each epoch.

The number of epochs used in the model is another hyperparameter. Too few epochs may lead

to the model not learning the data and too many may result in over-fitting, limiting generaliza-

tion to other datasets [36]. The best number of epochs is identified through the early stopping

method, in which the risk of overtraining is reduced by stopping training after the validation

error is stabilized or no further improvement is made.

Cost-sensitive neural networks

Despite the success of neural networks in a variety of applications, their use might be challeng-

ing due to the distribution of the given dataset. In classification, many machine learning algo-

rithms, including neural networks, assume that the distribution of classes is roughly the same.

When this assumption is violated, the neural network can best reduce the misclassification

cost by outputting the majority class in every case. This results in a model with high accuracy,

but with no ability to distinguish between classes [76].

Our method removes this assumption using a cost-sensitive learning approach. In this

approach, originally proposed by Kukar [77], the cost function is modified such that different

costs are associated with the true value of any given sample. Two specific loss functions were

employed: weighted cross-entropy and focal loss functions.

Weighted cross-entropy loss

In neural networks, the cross-entropy (CE) loss function is usually used for binary classifica-

tion problems which is defined by

CEðp; yÞ ¼
� log ðpÞ if y ¼ 1

� log ð1 � pÞ otherwise:

(

ð5Þ

Where y 2 {±1} is the ground-truth class and p 2 [0, 1] is the model’s estimated probability of

the class with label y = 1. This basic loss function can be modified by multiplying the cost of

each individual sample by a class specific weight [47], which results in what is referred to as the

weighted CE (WCE) or balanced CE, defined by:

WCEðp; yÞ ¼
� Cþ log ðpÞ if y ¼ 1

� C� log ð1 � pÞ otherwise:

(

ð6Þ
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Where Cþ ¼ N
2Nþ, C� ¼ N

2N� , and N+ and N− are the sizes of the positive and negative classes

respectively. The parameters C+ and C− represents misclassification penalties of samples in the

minority (positive) and majority (negative) class respectively. Accordingly, the error cost func-

tion is formulated with Eq 7.

Jðw; bÞ ¼ �
1

N
Cþ
XNþ

fijyi¼1g

yi log ðpiÞ þ C�
XN�

fjjyj¼� 1g

ð1 � yjÞ log ð1 � pjÞ

0

@

1

A ð7Þ

Focal loss

Focal Loss (FL) is an extension of CE loss for binary imbalanced classification proposed by Lin

et al. [47], and was initially developed for object detection application. The main idea behind

the FL is to focus training on hard samples while reducing the loss contribution from well-clas-

sified and easy samples through adding a modulating factor to the sigmoid CE loss.

Suppose the predicted output from the model for both classes are ŷ ¼ ½ŷ1; ŷ2�
T
. The sigmoid

function calculates the probability distribution for minority and majority classes as pt = sig-

moid(ŷt) = 1/(1 + exp(� ŷt)) where pt is provided in Eq 8,

pt ¼
p if y ¼ 1

1 � p otherwise:

(

ð8Þ

The focal loss can be formulated with Eq 9:

FLðp; yÞ ¼
� ð1 � pÞg log ðpÞ if y ¼ 1

� pg log ð1 � pÞ otherwise:

(

ð9Þ

where y 2 {±1} is the ground-truth class and p 2 [0, 1] is the model’s estimated probability for

the class with label y = 1. The parameter γ� 0 should be tuned. The modulating factor (1−pt)
γ

is added which reduces the loss contribution from easy examples—in essence, the more confi-

dent a model is in its prediction, the less the sample will contribute to the loss. FL is equivalent

to CE, when γ = 0. The effect of the modulating factor increases as the γ parameter increases

[47].

In addition, an α-balanced variant of the original focal loss has been developed to further

focus on the effective number of samples. The parameter αt 2 [0, 1] is defined with Eq 10.

at ¼
a if y ¼ 1

1 � a otherwise:

(

ð10Þ

The α-balanced variant of the focal loss has shown better performance over the non-α bal-

anced form [47]. It is calculated with Eq 11.

FLðp; yÞ ¼
� að1 � pÞg log ðpÞ if y ¼ 1

� ð1 � aÞpg log ð1 � pÞ otherwise:

(

ð11Þ

Therefore, the error cost function is provided in Eq 12.

Jðw; bÞ ¼ �
1

N

XNþ

fijyi¼1g

að1 � piÞ
g log ðpiÞ þ

XN�

fjjyj¼� 1g

ð1 � aÞpgj log ð1 � pjÞ

0

@

1

A ð12Þ
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We used WCE and α-balanced focal loss functions to treat imbalanced classification and we

represented the deep neural network based on these two loss function using CSDNN-WCE

and CSDNN-FL, respectively. We also used the standard deep neural network with CE loss

function for comparison purposes, and for simplicity we denote it as DNN throughout this

paper.

Balanced batch training for imbalanced data

For comparison, we also used the balanced batch generator from the scikit-learn Imbalanced-

learn library [78]. It utilizes a chosen sampling strategy to balance a dataset prior to generating

a batch of data for training. We applied random oversampling with replacement, which ran-

domly selects data samples from the PE class (minority class) and includes them in the training

data.

Chi-square feature selection

Chi-square (χ2) feature selection [79] selects significant features using the test of independence

between the feature and the classes:

w2 ¼
Xm

i¼1

Xl

j¼1

ðNij � EijÞ
2

Eij
ð13Þ

Where Nij is the number of samples that belong to class Ci in the jth interval. Eij is the expected

frequency of Nij and l is the number of intervals. The features with the highest χ2 values are

selected for the predictive model. This method is useful for categorical data, which was ideal

for our datasets.

Performance measures

The most commonly-used performance measures in binary classification tasks are calculated

from the confusion matrix (Fig 1).

Fig 1. Confusion matrix for binary classification problems.

https://doi.org/10.1371/journal.pone.0266042.g001
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The number of true positives (TP) represents the number of preeclamptic (PE) patients cor-

rectly classified, while true Negatives (TN) is the number of non-preeclamptic (Non-PE)

patients classified as Non-PE. The number of false positives (FP) refers to the Non-PE patients

classified as PE, while false negatives (FN) represents PE patients classified as Non-PE.

The most common metric in classification tasks is accuracy, provided by Eq 14, which mea-

sures the total proportion of correctly classified samples.

Accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
ð14Þ

Accuracy is very sensitive to the size of the majority class (Non-PE), and is likely to obtain a

misleadingly high accuracy dominated by the majority class pattern while the minority class

samples are most likely misclassified. Accuracy does not account for this imbalance, and so we

used additional metrics to better understand model performance.

We report Precision, recall, G-mean, and AUC. Precision measures the number of positive

values that are actually positive, while recall (or sensitivity) measures what percentage of the

positive cases were captured by the model. Specificity refers to the percentage of the negative

examples that are truly negative. We also report G-mean, which takes into account both the

specificity and sensitivity, as well as the area under the receiver operating characteristic curve

(AUC), which measures the balance between the correctly classified positive samples (TP) and

incorrectly classified negative samples (FP). The performance metrics were calculated with Eqs

15–18.

Precision ¼
TP

TP þ FP
ð15Þ

Recall=Sensitivity ¼
TP

TP þ FN
ð16Þ

Specificity ¼
TN

TN þ FP
ð17Þ

G � mean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
ð18Þ

Data preparation

We compare and validate the ML models using three datasets including the 2013 Texas Inpa-

tient Public Use Data File (PUDF) (case 1), the 2017–2018 Oklahoma PUDF sets (case 2), and

a granular research hospital data which is the Magee Obstetric Medical and Infant (MOMI)

data (case 3). These state and national datasets that represent a diverse cohort of African

American and Native American populations, allowing us to examine racial disparities in PE

outcome specifically in our analysis. The PUDFs exclude information that could identify

patients directly or indirectly. Access to these data files is given to users after submission and

approval of the Data Use Agreement. The University of Oklahoma institutional ethical review

board approval was obtained for this study (#12718, 07/20/2020). The characteristics of these

datasets are explained in this section.

Case 1: Texas PUDF. The 2013 Texas Inpatient PUDF has patient-level information

related to inpatient hospital stays collected from all state-licensed hospitals except those that

are exempt from reporting.“Exempt” hospitals include those located in a county with a
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population less than 35,000, or those located in a county with a population more than 35,000

and with fewer than 100 licensed hospital beds and not located in an area that is delineated as

an urbanized area by the United States Bureau of the Census [80]. This data is maintained and

extracted from the Texas Department of State Health Services’ Hospital Discharge Database

[81].

The Texas PUDF includes both sociodemographic and clinical information about each

patient. The clinical information in particular is contained within up to 25 admission and dis-

charge diagnosis codes for each patient, and are defined by the The International Classification

of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM).

We first filtered the records of women who delivered in hospital using an ICD-9-CM code

beginning with V27 (Outcome of delivery) and then analyzed this subset of data. The Texas

PUDF contains 360,943 patients who delivered at the hospital. Of those, 14,375 (3.98%) devel-

oped PE. Table 2 summarizes the demographic attributes, such as age, race, ethnicity, insur-

ance type, and whether or not the patient lives in a county on the Mexican border [82]. The

frequency of each feature’s values (percentage of the population) is provided in this table.

Fig 2 shows that the majority of the patients lie within age range of 20 and 34. The preva-

lence of PE across age groups shows a U-shaped distribution with the most at-risk patients in

the range 45–49, followed by patients of ages 40–44 and 10–14.

Table 3 shows the distribution of patients based on ethnicity and race. There is a large num-

ber of missing values regarding race among the non-Hispanic population, and a large amount

of missing values regarding ethnicity amongst Other Races and the White population in this

data. Table 4 and Fig 3 show the distribution of occurrence of PE by race. Notably, Hispanic

Table 2. Patient demographic attributes in the Texas PUDF, where AA: African American, NA: Native America,

A/PI: Asian or Pacific Islander.

Feature Value Frequency

Ethnicity Hispanic 150,031 (41.57%)

Non-Hispanic 207,494 (57.49%)

Race White 195,149 (54.07%)

AA 41,168 (11.41%)

NA 1,214 (0.34%)

A/PI 13139 (3.64%)

Other 109,395 (30.31%)

Border County Yes 44,989 (12.46%)

No 315,954 (87.54%)

Insurance Medicaid 185,010 (51.25%)

Medicare 2,543 (0.70%)

Self-pay/Charity 31,903 (8.84%)

Other 176,312 (48.84%)

Age (years) 10–14 505 (0.14%)

15–17 11,120 (3.08%)

18–19 24,317 (6.74%)

20–24 91,287 (25.29%)

25–29 101,109 (28.01%)

30–34 84,728 (23.47%)

35–39 38,760 (10.74%)

40–44 8,593 (2.38%)

45–49 484 (0.13%)

50–54 40 (0.01%)

https://doi.org/10.1371/journal.pone.0266042.t002
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Fig 2. Left: The distribution of age group in Texas PUDF; Right: The prevalence of PE (%) for each age group.

https://doi.org/10.1371/journal.pone.0266042.g002

Table 3. Distribution of the Texas PUDF [frequency (percentage)] based on race and ethnicity attributes, where

AA: African American, NA:Native America, A/PI: Asian or Pacific Islander.

Race/Ethnicity Hispanic Non-Hispanic Missing

AA 1,125 (0.027%) 39,743 (0.965%) 300 (0.007%)

NA 390 (0.321%) 805 (0.663%) 19 (0.016%)

A/PI 333 (0.025%) 12,676 (0.965%) 130 (0.010%)

White 59,500 (0.305%) 134,246 (0.688%) 1,403 (0.007%)

Other 88,505 (0.809%) 19,384 (0.177%) 1,506 (0.014%)

Missing 178 (0.203%) 640 (0.729%) 60 (0.068%)

https://doi.org/10.1371/journal.pone.0266042.t003

Table 4. Distribution of preeclamptic patients among different race (AA: African American, NA: Native America,

A/PI: Asian or Pacific Islander), and ethnic (Hispanic and non-Hispanic) groups in the Texas PUDF.

Race Ethnicity Preeclamptic

White Hispanic 2461 (4.14%)

Non-Hispanic 5117 (3.81%)

AA Hispanic 107 (9.51%)

Non-Hispanic 2118 (5.33%)

NA Hispanic 16 (4.10%)

Non-Hispanic 25 (3.10%)

A/PI Hispanic 4(1.20%)

Non-Hispanic 289 (2.28%)

Other Hispanic 3464 (3.91%)

Non-Hispanic 665 (3.431%)

https://doi.org/10.1371/journal.pone.0266042.t004
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AA patients had a higher incidence of PE, with a frequency of 9.51% (as a proportion of popu-

lation) among all race/ethnic groups. Fig 4 shows that the preeclamptic women are more likely

to have prolonged length of stay in hospital compared to Non-PE patients. In particular, AA

Hispanic patients with PE have longer average stay in the hospital (Table 5).

The average length of stay for women with PE is longer. The median and interquartile

range (IQR) of women with PE are 3 days and 1 day in comparison to the median and IQR of

2 days and 1 day for women without PE.

Case 2: Oklahoma PUDF. The second set of data that we use is the 2017 and 2018 Okla-

homa Discharge Public Use Data Files (PUDF). The Oklahoma PUDF consists of statewide

discharge data collected from two data sources: 1) the Uniform Claims and Billing Form (UB-

92) for the hospital inpatient and outpatient surgeries, 2) the HCFA/CMS 1500 claims forms

for the ambulatory surgery centers. It is maintained by the Health Care Information Division

of the Oklahoma State Department of Health.

Unlike the 2013 Texas PUDF, the 2017–2018 Oklahoma PUDF used the ICD-10-CM diag-

nosis codes [83]. The women who delivered in hospital are filtered based on the ICD-10-CM

codes beginning with Z37 (Outcome of delivery). This dataset contains a total of 84,632

women who delivered in-hospital, of which 4,721 (5.58%) developed PE. Table 6 demonstrates

the demographic attributes, such as age, race, insurance type, and month of delivery. The fre-

quency of each feature’s values (percentage of the population) is reported in this table. Unlike

the Texas PUDF, no data on ethnicity is collected for each patient, but race remains an avail-

able variable along with additional attributes such as marital status and month of admission.

There are no records indicating the delivery date for each patient in this data. We used the

month of admission to estimate the month of delivery for each patient.

Fig 5 shows the distribution of patients’ age groups and the prevalence of preeclampsia

among them. Similar to the Texas PUDF, most of the patients are in the age range of 20–34.

Fig 3. The rate of PE per race/ethnicity in the Texas PUDF.

https://doi.org/10.1371/journal.pone.0266042.g003
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The prevalence represents a U-shaped curve highlighting the youngest and oldest patients as

the most at-risk patients.

Table 7 shows the frequency of PE among each racial group in the Oklahoma PUDF, while

Fig 6 shows the absolute number of patients in each racial category and their respective preva-

lence of PE. Despite White patients contributing the overwhelming majority of patients in this

dataset, Native Americans and African Americans have the highest prevalence of PE. In partic-

ular, PE among Native Americans is almost twice that of the “Other/Unknown” race.

Similar to the Texas PUDF, the average length of stay is longer for patients with PE com-

pared to those without PE as shown in Fig 7. The median and IQR length of stay for those

without PE is 2 and 1 days respectively, while for those with PE, the median and IQR length of

stay is 3 and 2 days respectively.

Fig 4. Distribution of length of stay for the Texas PUDF—Left: Women without PE; Right: Women with PE.

https://doi.org/10.1371/journal.pone.0266042.g004

Table 5. Length of stay (days) by race/ethnicity for patients with PE for the Texas PUDF. We report the average (Avg), standard deviation (SD), minimum (Min), first

quartile (Q1), median, third quartile (Q3), and maximum (Max) values.

Race, Ethnicity Avg SD Min Q1 Median Q3 Max

AA, Hispanic 5.8 4.8 2.0 3.0 4.0 6.0 37.0

AA, Non-Hispanic 5.0 6.0 1.0 3.0 4.0 5.0 107.0

A/PI, Hispanic 3.5 1.7 2.0 2.8 3.0 3.8 6.0

A/PI, Non-Hispanic 5.0 5.7 1.0 3.0 3.0 5.0 58.0

NA, Hispanic 4.3 3.7 1.0 2.0 3.0 4.3 13.0

NA, Non-Hispanic 4.0 3.8 1.0 2.0 3.0 4.0 21.0

Other Race, Hispanic 4.1 4.4 1.0 2.0 3.0 4.0 93.0

Other Race, Non-Hispanic 4.2 3.9 1.0 3.0 3.0 4.0 37.0

White, Hispanic 3.8 3.0 1.0 2.0 3.0 4.0 44.0

White, Non-Hispanic 4.6 4.7 1.0 3.0 3.0 5.0 105.0

https://doi.org/10.1371/journal.pone.0266042.t005
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Table 6. Patient demographic attributes in the Oklahoma PUDF, where AA: African American, NA: Native America.

Feature Value Frequency Feature Value Frequency

Race White 55,815 (65.950%) Month of Delivery Jan 7,148 (8.446%)

AA 8,510 (10.055%) Feb 6,418 (7.583%)

NA 5,443 (6.431%) Mar 6,947 (8.208%)

Other 14,864 (17.563%) Apr 6,537 (7.724%)

Marital Status Married 37,038 (43.760%) May 7,242 (8.557%)

Not Married 32,579 (38.490%) Jun 7,031 (8.308%)

Unknown 15,015 (17.740%) Jul 7299 (8.624%)

Age Group 10–14 71 (0.084%) Aug 7,699 (9.097%)

15–19 6,192 (7.316%) Sep 7,183 (8.487%)

20–24 21,831 (25.795%) Oct 7,371 (8.709%)

25–29 26,708 (31.559%) Nov 6,872 (8.120%)

30–34 20,115 (23.768%) Dec 6,885 (8.135%)

35–39 8,164 (9.646%)

40–44 1,458 (1.723%)

45–49 84 (0.099%)

50–54 9 (0.011%)

Insurance Medicaid 42,192 (0.499%)

Medicare 450 (0.005%)

Self-pay 916 (0.011%)

Other Insurance 41,071 (0.485%)

https://doi.org/10.1371/journal.pone.0266042.t006

Fig 5. Left: The distribution of age group in the Oklahoma PUDF—Right: The prevalence of PE (%) for each age group.

https://doi.org/10.1371/journal.pone.0266042.g005
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The length of stay also varies with a patient’s race. According to the Table 8, we notice that

AAs and NAs had longer hospital stays compared to their white and “other” counterparts.

After selecting the initial set of clinical features, each was formulated as a binary feature

based on the presence of corresponding ICD-9-CM/ICD-10-CM codes in any of the diagnosis

columns. We set the value of the feature equal to 1 if the corresponding ICD-9-CM/ICD-

10-CM codes used in this study were present in any of the diagnosis columns; otherwise the

value was set to zero. A full list of ICD-9-CM/ICD-10-CM codes is described in the S3 Table of

the S1 File. Furthermore, a detailed analysis of prevalance of each code in both Texas and

Oklahoma datasets can be found in the S5 Table of the S1 File.

Case 3: MOMI. Maintained by University of Pittsburgh’s Medical Center Magee-Wom-

ens Hospital since 1995, the MOMI Database reports about 300 variables for more than

200,000 deliveries. The dataset is extracted from medical records coding, admitting services,

outpatient encounters, ultrasound, and other ancillary systems for all mother-infant pairs

delivered at Magee. Unlike the Texas and Oklahoma data, this dataset contains patient infor-

mation from multiple prenatal visits in addition to the demographic and clinical features. For

this study, we considered patients’ information in their latest prenatal visit within the first 14

weeks, which includes in total 31,431 women who delivered in-hospital, of which 2,743

Table 7. Distribution of preeclamptic patients among different race in the Oklahoma PUDF, where AA: African

American, NA: Native American.

Race Preeclamptic

White 3008 (5.39%)

AA 551 (6.57%)

NA 446 (8.19%)

Other/Unknown 716 (4.82%)

https://doi.org/10.1371/journal.pone.0266042.t007

Fig 6. The rate of PE per race in the Oklahoma PUDF.

https://doi.org/10.1371/journal.pone.0266042.g006
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(8.73%) developed PE. The demographic attributes along with their frequency (percentage of

the population) are represented in Table 9. The clinical attributes of the MOMI data are sum-

marized in the S6 Table of the S1 File.

Furthermore, we added a new feature for each patient which represented the number of

incidents of spikes in blood pressure within the first 14 weeks. A spike in blood pressure is

defined as systolic pressure above 130 or diastolic pressure above 80. In addition, this dataset

consists of several numeric variables, including weight, age, previous pregnancies, the number

of abortions and deliveries, etc. All numeric variables are normalized so that all values are

within the range of 0 and 1 prior to training ML models. The race variable for patients from

the groups “Indian(Asian)”, “Chinese”, “Korean”, “Filipino”, “Japanese”, “Vietnamese”, and

“Other Asian” are labeled as “Asian.” We noted that patients from any of the cohorts “Hawai-

ian”, “Samoan”, “Guam/Chamorro”, and “Other Pacific Islander” are identified as “Polyne-

sian” race. We include “Native American” and “Alaskan Native” patients as one group

(“Native American (NA)”). Ethnicity (whether or not a mother is Hispanic) is included as a

variable in the MOMI dataset, however 42% of this variable was missing, and as such we

dropped this variable from our analysis.

Fig 7. Distribution of length of stay—Left: Women without PE; Right: Women with PE.

https://doi.org/10.1371/journal.pone.0266042.g007

Table 8. Length of stay by race for patients with PE in Oklahoma PUDF. We report the average (Avg), standard deviation (SD), minimum (Min), first quartile (Q1),

median, third quartile (Q3), and maximum (Max) values.

Race Avg SD Min Q1 Median Q3 Max

AA 4.2 3.3 1.0 3.0 3.0 5.0 35.0

NA 4.5 4.4 1.0 3.0 3.0 5.0 57.0

Other/Unknown 3.8 3.7 1.0 2.0 3.0 4.0 57.0

White 4.0 3.9 1.0 2.0 3.0 4.0 84.0

https://doi.org/10.1371/journal.pone.0266042.t008
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Fig 8 shows the prevalence of PE within the different age groups. We observed that there is

a noticeable U-shaped trend in incidence which reflects the high risk of PE among the oldest

patients and a slightly increased risk among the youngest patients.

Fig 9 represents the prevalence of PE among different racial groups in MOMI dataset. Afri-

can American patients experience a higher rate of PE (11.4%) compared to other racial groups.

Table 9. Patient demographic attributes in the MOMI data. We report the average (Avg), standard deviation (SD), minimum (Min), and maximum (Max) values for

numeric non-discrete attributes.

Feature Value Frequency Feature Statistic Value

Race Polynesian 36 (0.12%) Mother’s Age Avg 30.13

NA 102 (0.33%) SD 5.33

White 22,184 (70.58%) Min 13

Asian 2,108 (6.71%) Max 52

AA 6,354 (20.22%) Weight at Admission Avg 86.28

Missing 647 (2.06%) SD 19.14

Insurance Self-pay 378 (1.20%) Min 30.58

Classification Medicare/Medicaid 10,336 (32.89%) Max 259

Private Insurance 20,710 (65.89%) Infant Number Avg 1.57

Infant Sex Female 15,003 (47.73%) SD 0.86

Male 16,012 (50.94%) Min 1

Max 10

Prenatal Weight Avg 2,616.58

SD 694.64

Min 176

Max 7,456

https://doi.org/10.1371/journal.pone.0266042.t009

Fig 8. Left: The distribution of age group in the MOMI dataset; Right: The prevalence of PE (%) for each age group.

https://doi.org/10.1371/journal.pone.0266042.g008
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To reduce the computational complexity and increase the interpretability of our results, we

used Chi-square feature selection to extract the most critical variables related to preeclampsia,

which will be described in the Results Section.

Missing data challenge. In the Texas PUDF set, the county feature has the most signifi-

cant number of missing values (2.5%), followed by the patients’ ethnicity (0.95%), race

Fig 9. The rate of PE per race in the MOMI.

https://doi.org/10.1371/journal.pone.0266042.g009

Fig 10. Feature ranking for the Full Texas dataset.

https://doi.org/10.1371/journal.pone.0266042.g010
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(0.24%), and insurance (0.04%). In the Oklahoma PUDF, the most common missing values

was marital status variable (17.74%), followed by the county (0.004%) and insurance (0.004%)

variables.

In the MOMI dataset, features with greater than 20% missing values were dropped prior to

any preprocessing steps. The most frequently missing feature is race (2.06%), followed by the

mean arterial pressure (1.40%) and infant sex (1.32%). Furthermore, we observed that if there

was a missing value for the total number of previous pregnancies for a patient, some others

such as deliveries, miscarriages, abortions, and whether or not this is a first pregnancy were

also missing. More details about features with missing values are provided in the S7-S9 Tables

of the S1 File. We used a Multiple Imputation technique [84] to estimate missing values. For

the Multiple Imputation implementation, we used Bayesian ridge regression [85] repeated 10

times in order to gain a more robust estimate for the final imputed values.

Results

Feature selection

Using Chi-square feature selection, we identified the 20 most important risk factors which are

ranked in terms of variable importance for each of the three datasets.

Case 1: Texas PUDF. The top 20 critical risk factors related to Texas PUDF general (full)

population as well as AA and NA populations are represented in Figs 10–12. Although there

are differences in which features are chosen among the various groups, there is a considerable

overlap among them. For example, obesity is the highest ranked feature in the full, only NA,

and only AA population datasets. In the AA dataset, there are six features that are indicated as

important based on Fig 11, but they do not appear in the full population’s most important fea-

tures. These are unspecified renal disease, thyroid disease, renal failure, hypertensive heart and

chronic kidney disease, ages 20–29, and iron deficiency anemia.

Fig 11. Feature ranking for the Texas African American dataset.

https://doi.org/10.1371/journal.pone.0266042.g011
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Fig 12, indicates that amongst NA patients, there are a greater number of features that do

not overlap with the general population. These features are pure hypercholesterolemia, iron

deficiency anemia, thyroid disease, location on the Mexican border, ages 20–29, discharge/

delivery in the third quarter, inadequate prenatal care, tobacco use disorder, ages 30–39, dis-

carge/delivery in the first quarter, primigravida, and self-pay or charity with respect to pay-

ment methods.

Case 2: Oklahoma PUDF. Figs 13–15 show the ranked top 20 risk factors related to Okla-

homa PUDF general (full) population as well as AA and NA populations. Although there are

differences in which features are chosen among the various groups, there is also a considerable

overlap. For example, obesity is the highest, second highest, and third highest ranked feature

in the full, African American, and Native American populations datasets respectively. In the

African American dataset as shown in the Fig 14, there are 7 features that are indicated as

important and differ from the full population. These include primigravida, month of delivery,

age range of 20–29, age range of 30–39, Medicare, unspecified vitamin D deficiency, and his-

tory of premature delivery. According to Fig 15, in the Native American dataset, there are a

greater number of specific features that do not overlap with the general population. These fea-

tures are hypertensive kidney disease, UTI, cocaine dependence, and history of premature

delivery.

Case 3: MOMI data. Our computational results with MOMI data show that our models

performed best when all features are considered in training. However, we identified the top 20

most important features in order to improve the interpretability of the data (Figs 16 and 17).

Like the Texas and Oklahoma datasets, hypertension and diabetes are significant predictors,

however other variables such as kidney disease are among the important risk factors which

were not identified within the Texas and Oklahoma datasets (case 1 and 2). Interestingly, we

Fig 12. Feature ranking for the Texas Native American dataset.

https://doi.org/10.1371/journal.pone.0266042.g012
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note that the number of previous spikes in high blood pressure was among the significant risk

factors.

In the African American dataset as shown in the Fig 17, there were four features that were

identified as important and do not overlap with the full population. These include maternal

Fig 13. Feature ranking for the Full Oklahoma dataset.

https://doi.org/10.1371/journal.pone.0266042.g013

Fig 14. Feature ranking for the Oklahoma African American dataset.

https://doi.org/10.1371/journal.pone.0266042.g014
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collagen vascular disease, maternal structural heart disease, hemorrhagic disorders, and mater-

nal anemia without hemoglobinopathy.

Model evaluation and discussion

In this section, we present the results of DNN and the proposed CSDNN algorithms on Okla-

homa, Texas, and MOMI datasets. The performance of these algorithms were compared based

Fig 15. Feature ranking for the Oklahoma Native American dataset.

https://doi.org/10.1371/journal.pone.0266042.g015

Fig 16. Feature ranking for the MOMI Full dataset.

https://doi.org/10.1371/journal.pone.0266042.g016
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on the evaluation measures described in the Performance Measures Section. We implemented

both DNN and CSDNN algorithms in Python version 3.6 with Keras [86] and TensorFlow

libraries [87]. All experiments and data processing were performed on an AMD Ryzen 5 3.8

GHz 6-Core processor and 16GB of Ram in a 64-bit platform. As a preprocessing step prior to

classification, continuous variables were normalized such that they have zero mean and uni-

tary standard deviation. In the MOMI dataset, outliers were removed using Local Outlier Fac-

tor [88]. Furthermore, a drop-out rate of 20% was applied to reduce the risk of overfitting for

training both DNN and CSDNN.

CSDNN architecture. Neural Networks contain many hyperparameters that are needed

to be set prior training such as learning rate, depth, the number of nodes per layer, activation

functions, and weight initialization strategy. Given the large number of hyperparameters, we

have found the best performing combination of hyperparameters for both DNN and CSDNN

models using three hyperparameter strategies: Random Search [89], Bayesian optimization

[90], and Hyperband [91]. All hyperparameter tuning is performed using the Keras Tuner

library [92].

The initial ranges of each hyperparameter for model selection algorithms are summarized

in Table 10. These hyperparameters are the batch size (B), the number of epochs (T), the num-

ber of hidden layers (h), the number of neurons in hidden layers (k), the learning rate (η), and

activation functions (a). Each model selection algorithm is performed on each dataset using

10-fold cross validation repeated 5 times to increase the robustness of results, while for small

sub-population datasets we performed 10-fold cross validation repeated 35 times. The best set

Fig 17. Feature ranking for the MOMI African American dataset.

https://doi.org/10.1371/journal.pone.0266042.g017

Table 10. Summary of hyperparameter ranges for DNN and CSDNN.

B T k h η

Range 64–8096 10–200 32–64 2–8 0.0001–0.01

https://doi.org/10.1371/journal.pone.0266042.t010
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of hyperparameters was selected based on the model selection that yields the highest G-mean.

The best architecture along with hyperparameters obtained from the three model selection

techniques for the best architecture of the DNN and CSDNN with WCE and FL functions as

well as hybrid models that further balances batches with oversampling (Balanced Batches) are

summarized in S10-S15 Table in S1 File. We observe that the Hyperband model selection con-

sistently performs well on all datasets for both DNN and CSDNNs. The number of layers in

most models does not exceed 4. Most models have employed larger learning rate (e.g., 0.001),

but a few of the smaller datasets (e.g., Oklahoma NA datasets) have chosen smaller learning

rates (0.00001), particularly for DNN and CSDNN-WCE that used the balanced batches

method. Overfitting can be mitigated through early stopping of the neural networks. A

detailed analysis of training and validation AUC versus the number of epochs for each model

can be found in the S1-S6 Figs in S1 File.

Comparative analysis of CSDNN-FL versus parameters γ and α. To further investigate

the effect of FL function on CSDNN performance, we obtained the cumulative loss generated

from different values of the γ parameter. Inspired by the original paper by Lin et al. [47], Figs

18–20 were created by training the CSDNN-FL model with the best performing α for each

dataset and different values of γ. The samples in the test set wer split into the positive and nega-

tive samples, and the loss is calculated for each sample using different values of γ. Then, the

plots were created by ordering the normalized loss from lowest to highest and plotting the

cumulative sums for the positive and negative classes for various γ, resulting in the cumulative

sum plots (CSPs) shown in Figs 18–20. The effect of γ on positive samples (PE cases) was not

as noticeable, however the effect of γ on negative samples (Non-PE cases) was substantially dif-

ferent. Both positive and negative CSPs appeared relatively analogous when γ = 0. By increas-

ing the γ had a large effect on down-weighting the easy negative samples, as FL focuses

learning on hard negative samples. This was consistent with earlier literature on FL [47].

The Tables 11–13 show that as γ increased, AUC decreased, but G-mean increases slightly

except in the Texas dataset. CSDNN-FL for the Full Texas dataset showed relatively inferior

specificity and higher recall values as γ increaseed. The results in these tables are obtained after

calculating the best performing α, and then fixing α when calculating γ.

Fig 18. Cumulative distribution functions of the normalized loss for PE (positive) and Non-PE (negative) samples for various γ values for Texas PUDF and

α = 0.5.

https://doi.org/10.1371/journal.pone.0266042.g018
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Comparative analysis of csdnns with balanced batch method. We also compared our

proposed CSDNN-FL and CSDNN-WCE with the standard DNN with and without Balanced

Batches (BB) on the Full Texas, Oklahoma, and MOMI datasets as well as sub-population data-

sets. We reported the average G-mean, AUC, accuracy, precision, recall, and specificity values

in Table 14. We observed that CSDNN-FL performs better compared to CSDNN-WCE and

DNN on the Texas and Oklahoma datasets (in terms of G-mean and AUC). In Oklahoma Afri-

can American dataset, we observed that there is no statistically significant difference between

CSDNN-WCE and CSDNN-FL results. A detailed description is presented in Statistical Analy-

sis Section. Interestingly, DNN and CSDNN-FL with balanced batches performed better than

other methods for MOMI Full data and MOMI African American datasets, respectively. We

Fig 20. Cumulative distribution functions of the normalized loss for PE (positive) and Non-PE (negative) samples for various γ values and α = 0.5 for

MOMI data.

https://doi.org/10.1371/journal.pone.0266042.g020

Fig 19. Cumulative distribution functions of the normalized loss PE (positive) and Non-PE (negative) samples for various γ values and α = 0.5 for

Oklahoma PUDF.

https://doi.org/10.1371/journal.pone.0266042.g019
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also observed that in all cases the CSDNN-FL and CSDNN-WCE improve the recall. For the

Texas Full dataset, the CSDNN-FL model has a recall of 61.6% versus 11.8% for the standard

DNN model, which indicates the CSDNN-FL algorithm is capable of detecting more pre-

eclamptic women than the standard DNN model.

For measuring and comparing the characteristic of CSDNN-FL, CSDNN-WCE, and DNN

with and without balanced batches, we used box plots for G-mean measure as shown in Figs

21–24, which have been obtained over 50 iterations on the same data for each algorithm for

the Full datasets and 350 iterations on the same data for the subpopulations. As shown by the

Figs 21–24 (and standard deviations in the S4 Table of the S1 File), CSDNN-FL was more

robust than the other models in terms of G-mean. In addition, the models equipped with bal-

anced batches more frequently demonstrated greater variation between runs for Oklahoma

African American and Texas Native American datasets, which refleced their propensity for

overfitting. Moreover, the African American subpopulation had more variation in G-mean in

DNN compared to other methods for both Texas and Oklahoma datasets. We also observe

Table 11. Comparative analysis of CSDNN-FL versus γ using the Full Texas dataset. ACC, SP, PR, and RE repre-

sents accuracy, specificity, precision, and recall, respectively. The highest G-mean and AUC values are denoted in bold.

The parameter α is set as 0.97.

γ 0 2 4 6 8

ACC 0.775 0.759 0.759 0.759 0.698

G-mean 0.573 0.561 0.560 0.561 0.515

AUC 0.634 0.634 0.633 0.633 0.633

SP 0.789 0.772 0.772 0.772 0.706

RE 0.438 0.449 0.449 0.450 0.497

PR 0.084 0.083 0.083 0.083 0.079

https://doi.org/10.1371/journal.pone.0266042.t011

Table 13. Comparative analysis of CSDNN-FL versus γ using the MOMI Full dataset. ACC, SP, PR, and RE repre-

sents accuracy, specificity, precision, and recall, respectively. The highest G-mean and AUC values are denoted in bold.

The parameter α is set as 0.92.

γ 0 2 4 6 8

ACC 0.801 0.810 0.751 0.747 0.723

G-mean 0.664 0.676 0.665 0.675 0.682

AUC 0.762 0.765 0.751 0.756 0.745

SP 0.826 0.835 0.768 0.761 0.732

RE 0.534 0.547 0.577 0.599 0.635

PR 0.227 0.240 0.192 0.193 0.185

https://doi.org/10.1371/journal.pone.0266042.t013

Table 12. Comparative analysis of CSDNN-FL versus γ using Oklahoma Full dataset. ACC, SP, PR, and RE repre-

sents accuracy, specificity, precision, and recall, respectively. The highest G-mean and AUC values are denoted in bold.

The parameter α is set as 0.95.

γ 0 2 4 6 8

ACC 0.636 0.685 0.674 0.657 0.735

G-mean 0.603 0.613 0.611 0.614 0.593

AUC 0.658 0.658 0.650 0.648 0.647

SP 0.640 0.693 0.681 0.662 0.750

RE 0.568 0.542 0.549 0.570 0.468

PR 0.085 0.094 0.092 0.090 0.010

https://doi.org/10.1371/journal.pone.0266042.t012
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Table 14. Comparison of CSDNN-FL and CSDNN-WCE versus DNN with and without Balanced Batches (BB) on the Full Texas, Oklahoma, and MOMI datasets as

well as sub-population datasets. ACC, SP, PR, and RE represents accuracy, specificity, precision, and recall, respectively. The highest G-mean and AUC values are

denoted in bold.

Dataset Method ACC AUC G-mean RE SP PR

TX Full CSDNN-FL 0.619 0.663 0.617 0.616 0.619 0.063

CSDNN-WCE 0.813 0.663 0.590 0.420 0.830 0.093

DNN 0.963 0.658 0.344 0.118 0.998 0.689

CSDNN-FL-BB 0.831 0.634 0.572 0.385 0.850 0.096

CSDNN-WCE-BB 0.040 0.633 0.000 1.000 0.000 0.040

DNN-BB 0.832 0.634 0.571 0.384 0.851 0.096

TX AA CSDNN-FL 0.748 0.667 0.623 0.512 0.762 0.110

CSDNN-WCE 0.795 0.667 0.605 0.450 0.815 0.123

DNN 0.951 0.665 0.414 0.173 0.996 0.689

CSDNN-FL-BB 0.778 0.666 0.612 0.472 0.795 0.117

CSDNN-WCE-BB 0.054 0.667 0.000 1.000 0.000 0.054

DNN-BB 0.789 0.667 0.608 0.458 0.808 0.121

TX NA CSDNN-FL 0.544 0.571 0.535 0.582 0.542 0.044

CSDNN-WCE 0.658 0.563 0.484 0.413 0.666 0.043

DNN 0.965 0.535 0.000 0.000 1.000 0.167

CSDNN-FL-BB 0.502 0.500 0.285 0.498 0.502 0.047

CSDNN-WCE-BB 0.426 0.492 0.282 0.584 0.420 0.045

DNN-BB 0.706 0.571 0.466 0.368 0.718 0.046

OK Full CSDNN-FL 0.622 0.635 0.594 0.566 0.626 0.082

CSDNN-WCE 0.706 0.620 0.575 0.461 0.720 0.089

DNN 0.944 0.620 0.000 0.000 1.000 0.000

CSDNN-FL-BB 0.702 0.635 0.583 0.476 0.716 0.090

CSDNN-WCE-BB 0.056 0.619 0.000 1.000 0.000 0.056

DNN-BB 0.691 0.621 0.580 0.480 0.704 0.088

OK AA CSDNN-FL 0.642 0.619 0.578 0.529 0.653 0.124

CSDNN-WCE 0.589 0.623 0.582 0.588 0.589 0.115

DNN 0.478 0.501 0.172 0.527 0.475 0.070

CSDNN-FL-BB 0.710 0.594 0.479 0.374 0.740 0.128

CSDNN-WCE-BB 0.082 0.554 0.000 1.000 0.000 0.082

DNN-BB 0.582 0.581 0.551 0.533 0.586 0.105

OK NA CSDNN-FL 0.701 0.575 0.515 0.386 0.724 0.091

CSDNN-WCE 0.549 0.519 0.463 0.473 0.554 0.073

DNN 0.8971 0.555 0.256 0.081 0.954 0.109

CSDNN-FL-BB 0.592 0.528 0.473 0.443 0.602 0.076

CSDNN-WCE-BB 0.501 0.502 0.460 0.498 0.502 0.066

DNN-BB 0.708 0.580 0.516 0.386 0.730 0.094

MOMI CSDNN-FL 0.694 0.756 0.682 0.672 0.696 0.176

CSDNN-WCE 0.713 0.765 0.690 0.669 0.716 0.188

DNN 0.904 0.735 0.433 0.195 0.971 0.396

CSDNN-FL-BB 0.724 0.759 0.685 0.647 0.732 0.191

CSDNN-WCE-BB 0.153 0.762 0.264 0.989 0.073 0.093

DNN-BB 0.723 0.768 0.690 0.661 0.729 0.195

MOMI AA CSDNN-FL 0.661 0.711 0.637 0.632 0.665 0.207

CSDNN-WCE 0.722 0.724 0.656 0.591 0.739 0.234

DNN 0.833 0.720 0.605 0.416 0.886 0.323

CSDNN-FL-BB 0.757 0.724 0.660 0.559 0.783 0.251

CSDNN-WCE-BB 0.539 0.703 0.263 0.754 0.511 0.168

DNN-BB 0.752 0.694 0.631 0.512 0.783 0.235

https://doi.org/10.1371/journal.pone.0266042.t014
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that the Native American subpopulation amongst the Oklahoma dataset had a highly variable

G-mean among others most likely due to the small datasets.

Comparative analysis of computation time. Table 15 shows the average time required

for the proposed algorithms to complete training and testing. In addition to evaluating the

quality of predictive models in terms of AUC and G-mean, it is critical to investigate whether

there is a computational bottleneck. Each computational running time for training and testing

is reported as an average of 10 iterations in which no hyperparameter tuning or cross valida-

tion was performed. Each model had the same architecture configuration with three hidden

layers consisting of 60, 30, and 45 nodes in each layer respectively, and with a batch size of

8192. The MOMI data was an exception, in which each model was implemented with a batch

Fig 21. Comparison of CSDNN-FL and CSDNN-WCE versus DNN (in terms of G-mean) on the Full Texas and Oklahoma datasets. Each boxplot denotes

variability of the G-mean (vertical axis) for different methods.

https://doi.org/10.1371/journal.pone.0266042.g021

Fig 22. Comparison of CSDNN-FL and CSDNN-WCE versus DNN (in terms of G-mean) on the African American Texas and Oklahoma datasets. Each

boxplot denotes variability of the G-mean (vertical axis) for different methods.

https://doi.org/10.1371/journal.pone.0266042.g022
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Fig 24. Comparison of CSDNN-FL and CSDNN-WCE versus DNN (in terms of G-mean) on the MOMI Full and African American populations. Each

boxplot denotes variability of the G-mean (vertical axis) for different methods.

https://doi.org/10.1371/journal.pone.0266042.g024

Fig 23. Comparison of CSDNN-FL and CSDNN-WCE versus DNN (in terms of G-mean) on the Native American Texas and Oklahoma datasets. Each

boxplot denotes variability of the G-mean (vertical axis) for different methods.

https://doi.org/10.1371/journal.pone.0266042.g023

Table 15. Average computational running time (in seconds) of each proposed model.

Model TX Full OK Full MOMI Full

CSDNN-FL 46.573 15.068 37.870

CSDNN-WCE 45.336 14.827 37.849

DNN 49.934 15.332 37.260

CSDNN-FL-BB 75.240 20.203 39.858

CSDNN-WCE-BB 76.295 20.180 38.738

DNN-BB 80.896 19.613 39.762

https://doi.org/10.1371/journal.pone.0266042.t015
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size of 4096. We observed that the proposed algorithms were capable of dealing with large

amounts of data in a reasonable amount of time.

Comparative analysis with traditional ml algorithms. To further evaluate the perfor-

mance of the CSDNN methods, we compared our CSDNNs with multiple existing methods:

logistic regression (LR), support vector machine with linear kernel (SVM-Lin), support vector

machine with radial basis function (SVM-RBF), and cost-sensitive versions of each of those

models including weighted LR (WLR), weighted SVM-Lin, (WSVM-Lin), and weighted

SVM-RBF (WSVM-RBF). Tables 16–18 show the average G-mean and AUC values for the

Texas, Oklahoma, and MOMI datasets, respectively. In all cases, the cost-sensitive versions

outperform in terms of both AUC and G-mean, however the best performing model for the

Texas and Oklahoma datasets is the CSDNN-FL with 66% and 64% AUC. The MOMI dataset

demonstrated CSDNN-WCE and CSDNN-FL perform well compared to other techniques

with 76% AUC. However, WLR produced the highest G-mean values followed by WSVM-RBF

and CSDNNs methods.

The ROC curve of all models is shown in Figs 25 and 26. These graphs show an improve-

ment over other traditional algorithms, although in all datasets neural networks tend to

Table 16. Comparative results of CSDNN-WCE and CSDNN-FL against Logistic Regression (LR), Weighted LR, Support Vector Machine (SVM-Lin), Weighted

SVM-Lin (WSVM-Lin), SVM with Radial Basis Function (SVM-RBF), Weighted SVM-RBF (WSVM-RBF), and DNN using Texas data. The highest average G-mean

and AUC values are denoted in bold.

LR WLR SVM-Lin WSVM-Lin SVM-RBF WSVM-RBF DNN CSDNN-WCE CSDNN-FL

G-mean 0.013 0.579 0.000 0.523 0.329 0.607 0.344 0.590 0.617

AUC 0.500 0.596 0.500 0.605 0.553 0.621 0.661 0.663 0.663

Recall 0.117 0.500 0.000 0.300 0.108 0.489 0.118 0.420 0.616

Specificity 0.998 0.753 1.000 0.907 0.998 0.753 0.830 0.619 0.619

Precision 0.691 0.077 0.000 0.131 0.688 0.076 0.689 0.093 0.063

https://doi.org/10.1371/journal.pone.0266042.t016

Table 17. Comparative results of CSDNN-WCE and CSDNN-FL against Logistic Regression (LR), Weighted LR, Support Vector Machine (SVM-Lin), Weighted

SVM-Lin (WSVM-Lin), SVM with Radial Basis Function (SVM-RBF), Weighted SVM-RBF (WSVM-RBF), and DNN using Oklahoma data. The highest average G-

mean and AUC values are denoted in bold.

LR WLR SVM-Lin WSVM-Lin SVM-RBF WSVM-RBF DNN CSDNN-WCE CSDNN-FL

G-mean 0.012 0.576 0.000 0.515 0.000 0.561 0.001 0.575 0.594

AUC 0.500 0.596 0.500 0.579 0.500 0.582 0.620 0.620 0.635

Recall 0.001 0.456 0.000 0.300 0.000 0.419 0.000 0.461 0.566

Specificity 0.999 0.735 1.000 0.854 0.999 0.737 1.000 0.720 0.626

Precision 0.128 0.092 0.000 0.108 0.065 0.086 0.000 0.089 0.082

https://doi.org/10.1371/journal.pone.0266042.t017

Table 18. Comparative results of CSDNN-WCE and CSDNN-FL against Logistic Regression (LR), Weighted LR, Support Vector Machine (SVM-Lin), Weighted

SVM-Lin (WSVM-Lin), SVM with Radial Basis Function (SVM-RBF), Weighted SVM-RBF (WSVM-RBF), and DNN using MOMI data. The highest average G-mean

and AUC values are denoted in bold.

LR WLR SVM-Lin WSVM-Lin SVM-RBF WSVM-RBF DNN CSDNN-WCE CSDNN-FL

G-mean 0.306 0.706 0.000 0.677 0.118 0.699 0.433 0.690 0.682

AUC 0.544 0.708 0.500 0.691 0.507 0.703 0.735 0.765 0.756

Recall 0.094 0.654 0.000 0.610 0.007 0.626 0.195 0.669 0.672

Specificity 0.992 0.746 1.000 0.771 0.999 0.763 0.917 0.716 0.696

Precision 0.539 0.197 0 0.205 0.540 0.201 0.396 0.188 0.176

https://doi.org/10.1371/journal.pone.0266042.t018
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perform similarly regardless of the loss function used (in terms of AUC), while the MOMI

dataset’s CSDNN seemed to outperform DNN. The CSDNN models demonstrate significant

superiority over LR and SVM for all datasets. Even though it is not easy to verify a specific win-

ning technique from the curves, CSDNN-FL and CSDNN-WCE are the most promising pre-

diction methods as demonstrated by the AUC shown in Tables 16–18. We note that the results

of the pairwise Wilcoxon rank sum test are summarized in the S16–S18 Tables of the S1 File

and are described in the Statistical Analysis of Results Section.

The robustness of the ML algorithm is critical in the PE prediction problem—a promising

prediction method should produce the same results over several iterations. To measure this,

Fig 25. ROC curve for the Texas and Oklahoma dataset.

https://doi.org/10.1371/journal.pone.0266042.g025

Fig 26. ROC curve for the MOMI dataset.

https://doi.org/10.1371/journal.pone.0266042.g026
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we employed box plots as shown in Figs 27–29, which have been obtained over 50 iterations

on the same data for each algorithm. As the figure shows, CSDNN-FL was more robust than

the other algorithms for Oklahoma and Texas datasets. A small standard deviation was

observed in CSDNN-FL followed by CSDNN-WCE for both datasets. WLR followed by

CSDNN-WCE showed better results each time for the MOMI dataset, while the performance

of both LR and SVM was inferior in most cases. Therefore, integrating cost-sensitive into pre-

diction models could improve the accuracy of models.

Statistical analysis of results. To test whether there is a statistical difference between the

models, a Kruskal-Wallis test was performed for each dataset. Table 19 shows that the null

hypothesis is rejected with an extremely low p-value for each dataset (at a specific significance

rate α = 0.05). We conclude that there is a statistical difference between the models.

In order to test whether our CSDNN models (CSDNN-Focal and CSDNN-WCE) perform

well compared to other existing methods, we perform a pairwise Wilcoxon rank sum test

Fig 27. Robustness of CSDNN-FL and CSDNN-WCE in comparison to other ML algorithms for Texas dataset in terms of G-mean (left) and AUC (right).

https://doi.org/10.1371/journal.pone.0266042.g027

Fig 28. Robustness of CSDNN-FL and CSDNN-WCE in comparison to other ML algorithms for Oklahoma dataset in terms of G-mean (left) and AUC (right).

https://doi.org/10.1371/journal.pone.0266042.g028
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between the CSDNN models and the benchmark methods. This test is performed on G-mean

values which are obtained from the 10-fold cross validation repeated 5 times. Since this test

must be run multiple times, the family-wise error rate is taken into account by reducing the

significance level to 0.0005.

The results of a one-tailed Wilcoxon rank-sum test between CSDNNs and the benchmark

methods for the Texas, Oklahoma, and MOMI Full datasets are presented in the S16–18 Tables

of the S1 File. The null hypothesis is rejected if the p-value for the test is lower than the signifi-

cance rate α = 0.0005. CSDNN-FL and CSDNN-WCE significantly outperforms the corre-

sponding methods in both Texas and Oklahoma datasets as shown in the S16 and 17 Tables of

the S1 File. While CSDNN-WCE method outperformed most methods, it showed significantly

inferior results compared to the WSVM-RBF in the Texas dataset, and the WLR,

CSDNN-FL-BB, and DNN-BB in the Oklahoma dataset. However, our CSDNN models per-

formed significantly better than most methods, except WLR, WSVM-RBF, DNN-BB, and

CSDNN-FL-BB for the MOMI dataset (S18 Table of the S1 File).

The results of the one-tailed Wilcoxon rank test for Texas and Oklahoma African American

datasets are shown in S19 and S20 Tables in the S1 File, respectively. For these datasets,

CSDNN-FL significantly outperformed the other methods except for the Oklahoma African

American dataset, in which CSDNN-WCE performed significantly better than the

CSDNN-FL.

The one-tailed Wilcoxon rank-sum test results for Texas and Oklahoma Native American

datasets are presented in S21 and S22 Tables in the S1 File. We observed that CSDNN-FL sig-

nificantly outperformed most methods, except DNN-BB, in both datasets, however, there was

Table 19. Kruskal-Wallis test for all three datasets.

Dataset p-value Hypothesis (α = 0.05)

Texas � 0.05 Rejected H0

Oklahoma � 0.05 Rejected H0

MOMI � 0.05 Rejected H0

https://doi.org/10.1371/journal.pone.0266042.t019

Fig 29. Robustness of CSDNN-FL and CSDNN-WCE in comparison to other ML algorithms for MOMI dataset in terms of G-mean (left) and AUC (right).

https://doi.org/10.1371/journal.pone.0266042.g029
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no significant difference between CSDNN-FL and CSDNN-WCE in Oklahoma Native Ameri-

can dataset.

CSDNN-FL and CSDNN-WCE performed significantly better than DNN and CSDNN-

WCE-BB for MOMI African American dataset, while there is no significant difference between

CSDNN-FL, CSDNN-WCE, CSDNN-FL-BB, and DNN-BB as shown in the S23 Table in the

S1 File.

Conclusion

False-negative PE predictions may result in high rates of maternal morbidity and mortality,

while false positives may lead to unnecessary interventions. As such, identifying patients who

would be well suited for outpatient management is challenging. Providing physicians with reli-

able and accurate tools to improve targeting and implementation prevention measures is criti-

cal in advancing the life-long health of preeclamptic patients. We propose the use of CSDNN

in PE prediction, which suffers from highly imbalanced datasets. We compared the focal loss

function in CSDNN (originally applied to image data) with both weighted cross-entropy and

standard cross-entropy loss functions. In addition, we evaluated and compared the results of

CSDNNs with the corresponding models equipped with balanced batch training sets obtained

from random oversampling.

We performed an extensive experimental analysis using three clinical datasets to show

the advantages of our CSDNN algorithm. Provided that the African American and Native

American women experience severe morbidity and mortality rates compared to of their Cauca-

sian counterparts during pregnancy, we studied the performance of our method on each sub-

population in addition to the full datasets. We further compared the CSDNN results with the

performance of the existing methods. Our results demonstrated that in many cases (5 out of 8

datasets), our CSDNN equipped with focal loss function performed better with significantly

less variation in the results compared to other methods in terms of G-mean and AUC.

Limitations to this study largely involve Oklahoma and Texas PUDFs which do not include

laboratory test results, detailed drug or alcohol usage, detailed blood pressure, specific height/

weight information, etc. To overcome this drawback, we studied MOMI data which contains

granular information about prenatal visits. Furthermore, Texas PUDF do not allows us to dis-

tinguish multiple-incident events for the same patient, which is necessary to treat the bias in

our statistical modelling results. To overcome this issue, we studied the Texas PUDF data for

only one year.

Future studies should extend the application of models to early and late onset PE. In addi-

tion, while our model accounts for race/ethnicity in PE prediction and presents promising

classification results for each group in a highly imbalanced setting, additional investigation

and computational testing for more equitable results, and further data collection for the

minority groups needs to be explored in the future. The proposed models for minority

groups can be extended to other health problems with disparities in outcomes. We will

improve the results of the deep neural network on specially small datasets in the future works

[93]. In addition, future studies should include detailed information on socioeconomic status,

maternal weathering, and allostatic load. Fairness in machine learning also merits continued

investigation.

Supporting information
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early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vas-

culogenesis during first trimester of pregnancy. Ultrasound in Obstetrics & Gynecology. 2013 May; 41

(5):538–44. https://doi.org/10.1002/uog.12264 PMID: 22807133
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