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Abstract: Pancreatic cancer has a high mortality rate and its incidence has risen rapidly in

recent years. Meanwhile, the diagnosis and treatment of this cancer remain challenging.

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer,

but, currently, no sufficiently effective modalities for its treatment exist. The early diagnosis

rate of pancreatic cancer is low and most patients have reached an advanced stage at the time

of diagnosis. PDAC evolves from precancerous lesions and is highly aggressive and meta-

static. It is essential to understand how the disease progresses and metastasizes. CDKN2A

mutations are very common in PDAC. Therefore, here, we have performed a literature

review and discuss the role of CDKN2A and some related genes in the development of

PDAC, as well as the basis of gene targeting with a correlation coefficient of CDKN2A

above 0.9 on the STRING website. It is noteworthy that the interaction of CDKN2A with

each gene has been reported in the literature. The role of these genes and CDKN2A in PDAC

may provide new directions that will advance the current knowledge base and treatment

options since cancer progression is realized through interactions among cells. Our findings

provide new insights into the treatment of PADC that can, to some extent, improve the

diagnosis rate and quality of life of patients.
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Pancreatic Ductal Adenocarcinoma (PDAC)
In the industrial age, pancreatic cancer is the fourth most common cause of cancer

deaths in the world that is expected to become the second leading cause in the next

few years.1,2 The survival prognosis of patients with pancreatic cancer is worse

thanother cancer types due to the low rate of early diagnosis, the high invasiveness

and metastatic potential, and the resistance to chemotherapy, as well as the absence

of effective treatment for refractory pancreatic cancer.3,4

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic

cancer. Approximately 90% of pancreatic solid tumors are PDAC, which are usually

diagnosed in the late stage.5,6 PDAC has one of the worst prognoses among all solid

tumors. The median survival time of postoperative patients is 8–12 months and the

5-year survival rate is less than 10%.7,8 The probability of PDAC metastasis to distant

organs is high, mainly in the liver, peritoneum, and the lung. PDAC is usually

asymptomatic at an early stage and current screening methods fail to achieve the

effectiveness and ubiquity of early diagnosis without invasive surgery, and thus early-

stage diagnosis and the standard resection of this cancer are critical to the survival and

prognosis of patients.9,10 Studies have shown that most PDACs are characterized by

continuous genetic changes as a result of long-lasting accumulation including of genes,
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such as KRAS and TP53, followed by CDKN2A and

SMAD4.11 More attention is to be focused on understanding

the molecular mechanisms of pancreatic cancer development

and progression.12 Therefore, further discovery and identifi-

cation of predictive biomarkers for therapy are highly neces-

sary for the provision of a rational basis for priority in the

treatment of pancreatic cancer patients.13–15

CDKN2A
CDKN2A was discovered in 1993 and was a cyclin-

dependent kinase inhibitor (CDKI) consisting of three

exons. CDKN2A has an alternative splicing exon (El-β)
and is located on some 9p21 regions in the chromosome.

CDKN2A encodes four products: p16INK4a, p14 alter-

nate reading frame (p14ARF, mouse p19ARF), cyclin-

dependent kinase4 p15 (p15INK4A) and long-chain

non-coding RNA (lncRNA) ANRIL (also known as

CDKN2B-AS), products involved in cell cycle regulation,

differentiation, senescence and apoptosis.16,17 p16INK4a

is one of the important coding products of CDKN2A and

an inhibitor of the cyclin-dependent kinase family (CDK),

whose amount increases during the aging process of many

tissues including islets.18 The lack of CDKN2A isolates

CDK4/6 and prevents its binding to D-cyclin, so that the

tumor suppressor protein retinoblastoma (RB) binds to the

transcription factor E2F and the loss of protein activity

results in cell cycle arrest and cell senescence.19 The lack

of expression of p16INK4a leads to overexpression of

CDK4 and proliferation of B cells, rising insulin secretion

and causing pancreatic hyperplasia.20 p16INK4a regulates

cyclin D1 expression, and D1/CDK4 is critically involved

in cellular metabolism and cell cycle progression, which

provides therapeutic potential for inhibiting the progres-

sion of pancreatic cancer by cell cycle suppression.21

CDKN2A Mutations
In cell immortalization and subsequent transformation in

many types of cancer, CDKN2A has high-frequency loss of

heterozygosity (LOH) or mutation.22 CDKN2A involves the

function regulation of islets, fat, muscle, liver and immune

cells, and even the whole process of uterine development.23

CDKN2A affects the risk of human vascular disease, includ-

ing coronary artery disease, aneurysm, ischemic stroke,

glaucoma, Alzheimer’s disease, endometriosis and

periodontitis.16,24 Additionally, CDKN2A mutations are

involved in a variety of cancers.25 Evidence exists that

CDKN2A mutations are strongly associated with the recur-

rence of melanoma.26 Significant deletion of CDKN2A can

be used as a biological target in a cell line for early identifica-

tion of human head and neck squamous cell carcinoma

(HNSCC).27 In early metaplasia, the methylation of the

CDKN2A promoter is a very common event in esophageal

adenocarcinoma.28 Dysregulation of CDKN2A in bladder

cancer is also frequent.29 Furthermore, the homozygous dele-

tion of CDKN2A is associated with a more aggressive prog-

nosis of mesothelioma.30 The mutations of CDKN2A are

also involved in the development of primary breast cancer.31

CDKN2A in PDAC
Hypermethylation of the CDKN2A promoter was confirmed

as a marker of CDKN2A inactivation. Moreover, the hyper-

methylation of CpG islands in the CDKN2A promoter was

found to be mediated by DNA methyltransferase, which is

a transcriptional mechanism of silencing tumor suppressor

genes, thereby promoting cancer metastasis.32 CpGmethyla-

tion-mediated gene inactivation in the CDKN2A promoter

region is one of the determinants of malignant tumor

development.33 Transcriptional silencing plays a key role in

the development of PDAC, thus CDKN2A is considered

a target for this cancer.34 Promoter methylation provides

a new insight into better understanding the role of

CDKN2A and opens up new directions for improving the

diagnosis and treatment of patients with PDAC.

Various defects in DNA repair genes, such as genes

involved in DNA repair pathways or cell cycle regulation

(such as CDKN2A), may be involved in the development of

PDAC.35 CDKN2A mutation occurs in early PDAC, and the

regions of significant loss or expansion of CDKN2A can be

established using specific calculation methods.35,36 Patients

with a CDKN2A mutation in familial atypical multiple mela-

noma syndrome (also known as pancreatic cancer-melanoma

syndrome) have a 20-fold higher risk of pancreatic cancer than

individuals without mutations.37 It is noteworthy that patients

with a CDKN2A gene deletion had shorter overall survival

(P = 0.002), this indicates that CDKN2A mutations can be

used as a prognostic marker for PDAC.34

CDKN2A negatively regulates the cell cycle regulator

CDK4/6 in the development of PDAC. PDAC has four major

driving genes: KRAS, TP53, CDKN2A and SMAD4.38

Chromosome changes in PDACs lead to the loss of tumor

suppressor factors, such as CDKN2A, TP53 and SMAD4.38

Multiple gene mutations occur throughout the development

of PDAC, which are critical for more effective screening and

treating of pancreatic cancer and other invasive tumors.

Investigations on the mutations of these genes and how
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they affect the cell cycle to promote disease progression and

metastatic phenotype are thus of substantial significance.

CDK4, CDK6, MYC, TP53 and
MDM2 in PDAC
We searched STRING for genes highly correlated with

CDKN2A (correlation coefficient more than 0.9 and

top 5), including CDK4, CDK6, MYC, MDM2 and TP53

as can be seen in Figure 1.

CDK4
CDK4 is a major regulator of insulin signaling.39 The

activity of CDK4 in mouse islets is critical for the prolif-

eration of differentiated B cells, which is the primary

mechanism for regulating islet mass to accommodate the

steady-state requirements of insulin secretion, and similar

situations may apply to the regulation of adult pituitary cell

proliferation.40 The absence of CDK4 completely inhibited

the development of pituitary and islets, and pituitary defects

caused male and female infertility.41 Deletion of CDK4 in

islet cell line inhibits Rb hyperphosphorylation, and the

CDK4-Rb pathway is critically involved in controlling neu-

roendocrine cell proliferation.41 CDK4 activation is essen-

tial for the early stage of the carcinogenic process of

neuroendocrine cell types and a close relationship exists

between cancer development and CDK4 activation.

Cell proliferation is dependent on D-cyclin and CDKs,

which are key nodes controlling the progression from the

G phase to the S phase. Both cyclin D2 and CDK4 proteins

are essential for pancreatic cell growth and replication.

CDKN2A inhibits CDK4, which may be a key function of

PDAC cell cycle regulation.42 Furthermore, CDK4 is

involved in hepatic glucose metabolism, and the induction

of gluconeogenesis in the liver predetermines the potential

for the application of CDK4 inhibitors in the treatment of

hyperglycemia in hepatic cancer patients. CDK4 also affects

muscle mitochondrial oxidative metabolism, which is essen-

tial for maintaining normal physiological functions of the

human body.43 CDK4 affects fat cell function and cell pro-

liferation and metabolism. Its expression level can indirectly

influence cell aging and the occurrence and development of

various diseases. Future research will address the metabolic

function of CDK4 in PDAC and its therapeutic targets in

metabolic diseases.43 Affecting metabolic pathways, CDK4-

targeted therapy can regulate the key mechanisms of various

cellular processes and environmental cues during the pri-

mary, secondary and circulating cancer cell (CTC) transport,

thereby controlling PDAC progression.44 Therefore, CDK4

regulation will have important therapeutic significance for

the personalized treatment of pancreatic cancer in the future.

CDK6
CDK6, first reported in 1994 by Meyerson and Harlow, is

similar in structure and function to CDK4. It belongs to the

same CDKs, which are regulators of D-cyclin kinase and the

G1 phase. CDK6 and CDK4 are involved in the regulation of

G1 to S cell cycle progression, transcription, differentiation

and other biological processes.45 Activation of CDK4/6

requires binding to cyclin D1, D2, or D3, and the phosphor-

ylation of CDK6 regulates Rb activity, exerting control of the

cell cycle, and also blocks the transcriptional regulation of

differentiation.46 The availability of nutrients initiates down-

stream signals, after which CDK6 is involved in signaling

pathways that stimulate metabolism and cell proliferation,

promoting cell cycle progression.47 The transcriptional role

of CDK6 is involved in the production of blood vessels in

cancers. CDK6 downregulation is associated with the release

of Runt-associated transcription factor 1 (Runx1, an impor-

tant blood-regulating gene, transcription factor required for

chromatin opening) in hematopoietic cells.48 Most of the

CDK6 is localized in the cytoplasm, which facilitates the

obtaining of more comprehensive knowledge on the role of

CDK6 in cell cycle control, differentiation and cancer

development.

CDK6 is involved in the negative regulation of cell differ-

entiation. Some cancer cells require CDK6 for their prolifera-

tion. CDK6 also promotes the growth of cancer cells and their

upregulated expression in various cancer types. The overex-

pression of CDK6 in lymphoma can be used as a specific

therapeutic target formalignant lymphoma.49 Additionally, the

Figure 1 CDKN2A-centric network regulation. Interaction network diagram of

CDKN2A on the STRING webpage (correlation coefficient more than 0.9 and no

more than 5 interactors) including CDK4, CDK6, MYC, TP53, MDM2 and KRAS,

SMAD4. In this picture, CDKN2A, TP53, SMAD4 are tumor suppressor genes,

while CDK4, CDK6, MYC, MDM2 and KRAS are oncogenes in almost cancer cells.

Lines represent interactions between two genes and we can find out CDKN2A has

relationships with these genes in PADC.
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overexpression of CDK6 in pancreatic cancer promotes the

growth and proliferation of pancreatic cancer cells, affects

tumor transformation and progression of cell cycle events by

participating in the progression of the cell cycle, a process that

may be involved in other endocrine cancers.50 The knockout

of CDK6 expression in colorectal cancer COLO320 cells

significantly inhibited tumor cell growth, indicates that

CDK6 inhibitors present potential therapeutic benefits for

colorectal cancer patients, this indicates that CDK6 is a key

target for anti-tumor therapy.51 Inhibition of CDK6 blocks

tumor cell proliferation and suppresses the supply of tumors

to blood demand, which provides new insights into CDK6

transcription, this also inhibits cell cycle and terminates the

progression of pancreatic cancer.52

The combination of CDK6 and cyclin D3 (D3-CDK6)

plays a unique role in glucose metabolism and promotes

cancer cell survival, which may become a strong target for

cancer treatment.53 Clinically, PDACs are particularly sen-

sitive to drugs that reproduce p16IN4a activity. CDKN2A-

encoded p16INK4a protein inhibits the kinase activity of

CDK4 and CDK6. Therefore, studying the effects of the

CDK4/6 combination will increase the positive influence

of drugs on patients with PDAC.47,54,55 Given the wide

application and effect of CDK4 and CDK6 inhibitors in

clinical trials, the use of D3-CDK6 inhibitors for antic-

ancer treatment is expected to improve the clinical efficacy

of anti-CDK4/6 treatment, thus positively affecting the

treatment and prognosis of PDAC patients.53

MYC
MYC is a promoter and oncogenes which is involved in

the regulation of various cellular functions, including cell

growth, differentiation, adhesion, migration, invasion and

apoptosis.12 MYC controls metabolic pathways, promotes

glucose metabolism, glutamine metabolism, fatty acid

synthesis, oxidative phosphorylation, nucleotide synthesis

and ribosomal biogenesis.56 The loss of MYC leads to the

misuse of fat as a cell energy source and eventually results

in mitochondrial dysfunction.57 Many genes involved in

the glucose metabolism are target genes of MYC, which

promotes glucose metabolism reprogramming of cancer

cells through different targets, providing bioenergy to

ensure cell growth and metabolism the unlimited prolifera-

tion of cells.58,59 MYC-induced cell growth and bioenergy

accumulation depend on the production of appropriate

ATP in mitochondria.60 MYC controls glycolysis and

thus regulates the overall mitochondrial function,

increasing the resistance of cells to individual metabolic

disorders.61

MYC selectively activates many genes involved in cel-

lular processes, including DNA replication and transcrip-

tion, translation, chromatin modification and protein

synthesis and degradation. Moreover, MYC coordinates

the metabolism and promotes cell growth, enhancing RNA

extension throughout the genome and interacting with other

transcription factors.62–65 MYC exists in open chromatin

regions in almost all genomes. The level of amplification

entirely depends on the pattern of open chromatin in the

gene.66,67 Acute MYC activation causes chromatin changes

and promotes gene transcription by inhibiting RNA poly-

merase promoter pauses.68 Cancer cells have a stronger

ability to replicate and proliferate than normal cells.69 In

rapidly proliferating cells, especially cancer cells, MYC

directly regulates protein synthesis and responds efficiently

to growth signals.70 The activation of mutations in MYC

induces a normal short-circuit of the cell’s mitotic signal,

forming a wound that cannot heal and promoting the devel-

opment of cancer.36,71 MYC has an indispensable role in

cancer and the deletion of MYC inhibited cell proliferation

in a human Burkitt’s lymphoma cell line.72 Moreover, MYC

is one of the most frequently amplified oncogenes.73 The

abnormal expression of MYC in many cancers, including

PDAC, is usually not due to dysfunction of the MYC gene

itself, but is caused, for example, by amplification, chromo-

somal translocation, or upstream carcinogenic signaling

disorders, as well as by a loss of tumor suppressor

factors.74,75 MYC is required for the maturation and main-

tenance of embryonic and adult acinar differentiation, and

the activation of MYC signaling induces cancerous changes

in pancreatic tissue.76 MYC overexpression occurs in up to

42% of late PDAC, which is associated with poor clinical

outcomes, increased probability of recurrence, worsening

disease, and decreased survival in patients with PDAC.36

In addition, MYC was found to protect pancreatic cancer

cells from failure and inhibits their differentiation, indicates

that MYC is a critical therapeutic target in PDAC.77

MYC is downstream of many growth-promoting signal-

ing pathways, including signaling pathways initiated by

growth factor-stimulated receptor tyrosine kinases, T-cell

receptors and WNT signaling.12 MYC is an important

downstream effector of KRAS in PDAC. KRAS expression

disorder is common in PDAC, and MYC may be involved

in the early development and progression of this cancer.78,79

Aerobic glycolysis is a metabolic feature of invasive cancer,

in which MYC promotes the progression of PDAC.80 The
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knockout of the MYC gene reduces LDL expression,

lactate production, glucose consumption and alternative

approaches that focus on interfering with MYC-mediated

downstream effectors may provide new therapeutic avenues

for PDAC.81 Besides, MYC regulates the ability of related

stem cells, blocks cellular senescence and differentiation,

and coordinates the changes in the cancer microenviron-

ment, including activation of angiogenesis and inhibition of

host immune responses. Given that MYC regulates multiple

components of the cellular process, further research is

required on the MYC-regulated pathways to ensure normal

cell function while preventing the occurrence of ineffective

cycles.82

TP53
More than 50% of the malignant cancers have mutations in

TP53, and the frequency of these mutations varies consid-

erably, depending on the specific cancer type. TP53 muta-

tion leads to the loss of its tumor suppressor function,

contributing to the development of solid and hematopoietic

cancer.83 PDAC is often associated with dense interstitial

fibrosis, which leads to drug resistance, cancer growth and

metastasis. TP53 induces lipid accumulation and plays

a key role in fibrosis, exerting anticancer effects through

a paracrine mechanism in the cancer microenvironment.84

Evidence exists that TP53 and MDM2 are involved in the

AURORA signaling pathway. Hence, affecting the

AURORA signaling pathway by influencing TP53 and

MDM2 can indirectly lead to changes in the occurrence

and progression of PDAC.85 In the past, many signaling

pathways, nutrients and natural products interacted with

pathways involved in TP53 and drug resistance.86

TP53-positive chronic pancreatitis is considered ineffi-

cient in inducing carcinogenesis. On the contrary, in the

absence of TP53, the genetic instability affects the latency

required for tumor formation, DNA damage, etc., resulting

in increased pancreatitis-induced carcinogenesis.87 In an

examination, the expression of TP53 in PDAC tissues was

significantly lower than that in normal tissues and benign

tissues, the overall survival rate of patients lacking TP53

was poor. The low expression of TP53 in people was

associated with an increased risk of PDAC.88 Mainly due

to DNA amplification of genes in PDAC tissues, a high

proportion of oncogenes MDM2, MDM4 and WIP1 are

overexpressed in cancer cells. These gene changes attenuate

the function of the cancer suppressor TP53, which results in

TP53 mutation. These changes also contribute to the devel-

opment of cancer, indicates that the dysfunction of the TP53

pathway may be an important mechanism for the prolifera-

tion and progression of PDAC.89 The deletion of TP53 in

mice induces cancer formation and the recovery of its

expression level will rapidly resolve the formed carcinoma

in situ. This indicates that TP53 has the therapeutic potential

to repair cancer tissues and new therapeutic strategies can

be developed to combat cancers lacking TP53, which will

have a therapeutic impact.90–92

Small-molecule activation of TP53 is an attractive ther-

apeutic strategy for the restoration of the wild-type TP53

function in the treatment of PDAC. Based on these strate-

gies, MDM2 inhibitors had a good beneficial effect on

TP53 wild-type cancer in vivo and in vitro.93 Nonetheless,

some evidence suggested that TP53 inactivation or dysfunc-

tion can directly or indirectly lead to the promotion of

tumorigenesis. However, most mutations of TP53 lead to

the loss of function, resulting in apoptosis and senescence.

Moreover, further validation and functional assessment of

these genetic variants, targeting TP53 can also improve the

prognosis of patients with PDAC to some extent.88,94

MDM2
MDM2 (mouse double microsome 2) is an oncogene found

in a locus amplified on the double microsome of a tumor-

bearing mouse cell line (3T3-DM) in 1992. The function of

TP53 in cells is mainly regulated by its inhibitor, MDM2.

The latter directly binds to the N-terminus of TP53 by reg-

ulating the position, stability and activity of TP53, and

derives TP53 from the nucleus, continuously promoting the

degradation of TP53 transforming it into a short-lived

protein.95,96 Cellular stress, such as oncogene activation or

DNA damage, disrupts the mutual regulation relationship

between MDM2 and TP53, and MDM2 itself is polyubiqui-

tinated and degraded. Meanwhile, the level and activity of

TP53 increase, inducing a cellular response to cancer cells,

including cell cycle arrest, apoptosis and aging.97,98 The

MDM2 gene contains the TP53 promoter, which is regulated

by TP53 transcription, TP53 acts as a transcription factor of

MDM2, which induces the synthesis of MDM2.98 This reg-

ulatory mechanism is subject to a feedback loop in which

MDM2 inhibits TP53 activity, which in turn regulates

MDM2 transcription levels, resulting in a delicate balance

between the amount of TP53 and that of MDM2. The two

form a negative feedback loop, that is, the automatic adjust-

ment loop.99

MDM2 is overexpressed in many tumors, including

PDAC, usually due to the expansion of chromosome seg-

ments, and its amplification is closely related to tumor
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metastasis. MDM2 ubiquitinates and degrades E-cadherin,

which is associated with EMT and tumor grade. This is an

important step in the development of metastatic tumors.100

Approximately 50–75% of PDACs carry TP53 mutations,

and the MDM2–TP53 pathway in PDAC is frequently

affected.101 A mouse model with a cancer-associated single

nucleotide polymorphism had high levels of MDM2 expres-

sion, decreased TP53 function and increased tumor

incidence.102 The overexpression of MDM2 inhibited the

transcriptional activity of TP53, elevated the proliferation

and invasion of cancer cells, suppressed apoptosis and induced

resistance to chemotherapy.103,104 MDM2 was involved in

DNA double-strand break (DSB) repair. Delayed the expres-

sion ofMDM2 in a mouse PDACmodel, the cells repair DNA

was damaged, caused an arrest of the cell cycle and slowed

down the growth of PDAC cells.105 Furthermore, the over-

expression of MDM2 in PDAC was associated with diverse

clinicopathological features, such as invasiveness, high differ-

entiation, advanced stage, translocation, recurrence and poor

prognosis.106 Patients with MDM2 expression had a shorter

median (OS) and progression-free survival (PFS) than others.

Thus, MDM2 expression is an unfavorable prognostic factor

for PDAC.104,107

The TP53 mutation in PDAC occurs in its late stage,

which results in a loss of the DNA binding ability and

induces transcriptional activation of the gene. There is

a TP53 mutation in PDAC, which may invalidate MDM2

inhibitors. TP53 mutations facilitate the escape of damaged

cells from cell cycle checkpoints and their transformation

into carcinogens with an increased cancer potential for

metastasis and invasion to other organs.108,109 To avoid

infections and the formation of TP53 wild-type cancers, the

treatment design is crucial to be based on a comprehensive

understanding of the effects of MDM2 on tumors. Hence, the

identification of a new TP53-independent therapeutic agent

that inhibits MDM2 is highly necessary.110,111 Different

TP53 mutations may have diverse activities and appropriate

customized treatments need to be considered along with

a timely genetic diagnosis. A better understanding of onco-

genes and tumor suppressor genes will lay the foundation for

prompt diagnosis and effective treatment of PDAC.

KRAS and SAMD4 in PDAC
KRAS
In many cancers, KRAS is an oncogene.112 The development

of pancreatic ductal adenocarcinoma PDAC is a slow process

and most often begins with mutations of the oncogene KRAS

in pancreatic cells.113,114 About 90% of pancreatic tumors

express mutations in KRAS, the earliest genetic changes in

most pancreatic cancers.115,116 KRAS overexpression

induces up-regulation of EMT signals such as vimentin and

inhibition of E-cadherin, driving the occurrence of early

PDAC tumors.117,118 Some cases with KRAS mutation and

TP53 deletion, early PDAC converted to invasive PDAC.119

KRAS mutations allow cell cycle arrest to enter the aging

process and are usually established and maintained by TP53

and its upstream regulators CDKN1A and CDKN2A in

combination with activation of retinoblastoma (RB) tumor

suppressor pathways.73,120 The oncogene KRAS plays

a central role in PDAC cell proliferation, and its mutation

requires CDKN2A, TP53 and MYC are also regulated by

KRAS.117 KRAS mutations depend on CDKN2A inactiva-

tion and KRAS mutations are the preferred evolutionary

pathway for CDKN2A inactivation.121 After KRAS muta-

tion, KRAS downstream signal MYC is amplified and

CDKN2A inactivation may occur at the same stage.121

MYC is an important mediator of metabolic changes in

pancreatic cancer cells induced by KRAS.73 Inactivation of

TP53 and SMAD4 occurs mainly in true invasive cancers.122

MYC amplification can induce TP53 and SMAD4 silencing,

mutation or loss and promote further development of

PDAC.123,124

SMAD4
SMAD4 is a core component of the TGF-β signaling

pathway.125 Changes in genes related to the TGF-β signaling
pathway are present in almost all PDAC cases. In the

advanced stages of cancer, genetic changes may accelerate

disease progression, for example by inducing epithelial-

mesenchymal transition (EMT).126 The loss of SMAD4

may prevent the occurrence of EMT.127 Many studies have

shown that SMAD4 deletion or mutation is a negative prog-

nostic factor for PDAC.128 In cases of SMDA4-deficient

PDACs, TP53 usually has a missense mutation.129 Both

TP53 and SMAD4 inactivation occur in the late stages of

PDAC, but TP53 mutations occur earlier than SMAD4 loss.

TP53 mutations and SMAD4 loss occur mainly in aggressive

PDACs and they may be markers of high metastatic potential

for tumors.122,123,130 Both SMAD4 deletions and mutations

contribute to the inactivation of SMAD4 and the role of

SMAD4 in cancer progression has only been partially

reported.131,132 Some researchers have reported that

SMAD4 deletion is more common in early or resectable

tumors.133 Reports show that SMAD4 is lost more frequently

in patients with PDAC (72%) with extensive metastatic
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disease than in patients with locally destructive disease (35%,

p = 0.007).130 This findings may have potential significance

for patients with PDAC and provide new ideas for treatment

options to reduce local or distant tumor growth.129

Interactions in PDAC
Genomic analysis reveals repeated mutations in many genes

in PDAC and the oncogenic point mutations of individual

genes aggregate into core molecular pathways.108 Using

targeted sequencing to detect the number of mutation-

driven genes and subsequent sequence analysis may be

a promising genomic biomarker approach for predicting

postoperative and prognosis in patients with PDAC.134 In

previous examinations, gene sequencing confirmed that

chromatin remodeling, DNA repair, cell cycle, WNT-β-
catenin and NOTCH signaling pathways may be disrupted

in PDAC cells. The interaction between these pathways is

complex and most genes of these pathways would alter

actively or be altered passively.135,136 CDKN2A and the

aforementioned genes participate in the metabolic pathways

of cells and can develop effective antimetabolites to target

each cancer according to the differences between specific

metabolic pathways.58 Therapy for a specific gene or path-

way will have a positive impact on improving the patient’s

survival prognosis.136,137

D-cyclin (D1, D2 and D3) and the associated cyclin-

dependent kinases (CDK4 and CDK6) are part of the core

cell cycle machinery that drives cell proliferation. CDK4

is involved in the G1-S phase, CDK6 is a regulator of the

G1 phase and the product of CDKN2A, p16INK4a, parti-

cipates in tumor angiogenesis by regulating CDK4/6, pro-

moting cell cycle and participating in metabolism. MYC

only amplifies existing transcriptional programs in cells

and it is unclear how MYC regulates the ratio between

growth-promoting and growth-inhibiting genes to stimu-

late growth and proliferation.65 MDM2 and TP53 interact

by automatic negative feedback adjustment. Mutations of

CDKN2A have been detected in many human cancer

types. In this respect, CDKN2A is similar to the typical

tumor suppressor gene TP53. TP53 prevents cell cycle

progression by increasing the expression of the paralogous

gene of the cyclin-dependent kinase inhibitor CDKN2A,

CDKN1A.138 TP53 plays an important role in maintaining

genetic stability including DNA repair, cell cycle and

apoptosis.139 MDM2 phosphorylation can affect

CDKN2A expression changes.140 CDKN1A, MDM2,

TP53 are included in the TP53 signal pathway in

PDAC.129 In the process of cell division, the major

transcription factor of the TP53 pathway and its cofactor

CDKN2A prevent the proliferating cells from repairing the

damage by strongly fighting the MYC pathway, or initiate

an orderly suicide if the damage cannot be repaired, in

order to protect the integrity of the entire tissue.141,142

TP53 and CDKN2A are often biallelically inactivated in

human malignancies, which has a significant impact on

treatment.143,144 MYC induces the inactivation or loss of

TP53 by activating the tumor suppressor p19ARF, at this

time p19ARF and MYC have a significant carcinogenic

synergy.145 Disruption of the TP53 pathway in PDAC may

lose the intrinsic proliferation pathway triggered by MYC

activation through mechanisms other than apoptosis inhi-

bition and promote tumorigenesis.145 MYC can fight

growth inhibition mediated by the CDK inhibitor

CDKN2A.146 CDK4 can inhibit the activity of

CDKN2A, which is a transcription target of MYC.146

After CDKN2A deletion, MYC amplification and non-

silent mutations and/or deletions are significantly

enhanced, which contributes to the metastatic function of

PDAC cells.135,147 Subsequently, MYC regulates the rapid

rise of CDK4 mRNA levels through four highly conserved

MYC binding sites in the CDK4 promoter, promoting

tumorigenicity and cell cycle regulation.146 Cells are defi-

cient in MYC, the amount of CDK4 protein is reduced and

cell cycle progression is delayed.146 After MYC deletion,

the level of apoptotic regulator TP53 was significantly up-

regulated and the proliferation rate of cancer cells was

slowed down, possibly due to the presence of TP53

mutation.135 The downregulation of MYC may trigger

other cell death mechanisms besides apoptosis, such as

autophagic cell death, which is of great significance for

the treatment of PDAC.148

Conclusion
Of the relationship between CDKN2A and five genes for

which we searched on the STRING webpage and KRAS

and TP53, a CDKN2A-centric network regulation may

exist in PDAC, although the relationships between CDK6

and MYC in PDAC require further research for their better

understanding. Early identification of this cancer is of

critical importance to better prognosis and survival. Since

no specific biomarkers have been identified to date, novel

and more sensitive biomarkers need to be discovered and

developed to diagnose early this deadly disease.149,150

Both CDKN2A and these genes involved in the cell

cycle or oncogenic transcriptional machinery can be used

for tumor therapy by regulating the oncogenic
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transcriptional regulation mechanism and cell cycle

progression.151 Understanding the precise cell cycle and

metabolic characteristics, as well as the convergent effects

of oncogenic pathways in different types of cancer and

exploring the relationship between CDKN2A and these

genes is critical for determining the optimal combination

strategy and using the advances in tumor biology for

achieving more effective treatment of PDAC.58,152

Data Sharing Statement
● The way we get the network regulation network in this

paper includes the following steps.
● Open the STRING website.
● Enter the Protein Name “CDKN2A”, select the

Organism “Homo sapiens”, press the blue button

“Select” and press “SEARCH”.
● Select the first default option on the website and press the

blue button “Continue” of the upper right corner on this

website.
● Select the minimum required interaction score “highest

confidence (0.900)” and 1st shell of the max number of

interactors to show “no more than five interactors”,

press “UPDATE”.
● In the end you will see a CDKN2A-related interaction

network picture on this website.
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