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ABSTRACT

Motivation: A recently developed DNaseI assay has given us our first
genome-wide view of chromatin structure. In addition to cataloging
DNaseI hypersensitive sites, these data allows us to more completely
characterize overall features of chromatin accessibility. We employed
a Bayesian hierarchical change-point model (CPM), a generalization
of a hidden Markov Model (HMM), to characterize tiled microarray
DNaseI sensitivity data available from the ENCODE project.
Results: Our analysis shows that the accessibility of chromatin to
cleavage by DNaseI is well described by a four state model of
local segments with each state described by a continuous mixture
of Gaussian variables. The CPM produces a better fit to the observed
data than the HMM. The large posterior probability for the four-state
CPM suggests that the data falls naturally into four classes of
regions, which we call major and minor DNaseI hypersensitive sites
(DHSs), regions of intermediate sensitivity, and insensitive regions.
These classes agree well with a model of chromatin in which
local disruptions (DHSs) are concentrated within larger domains of
intermediate sensitivity, the accessibility islands. The CPM assigns
92% of the bases within the ENCODE regions to the insensitive
regions. The 5.8% of the bases that are in regions of intermediate
sensitivity are clearly enriched in functional elements, including genes
and activating histone modifications, while the remaining 2.2% of
the bases in hypersensitive regions are very strongly enriched in
these elements.
Availability: The CPM software is available upon request from the
authors.
Contact: jstam@stamlab.org; noble@gs.washington.edu; Charles_
Lawrence@brown.edu
Supplementary information: Supplementary data are available at
Bioinformatics online. Source code is available at http://noble.gs.
washington.edu/proj/segment.

1 INTRODUCTION
In the nucleus of a living cell, genomic DNA is packaged
into a complex molecular structure known as chromatin.

∗To whom correspondence should be addressed.

This structure mediates the interaction between the genome and
all types of regulatory and transcriptional molecules. Consequently,
understanding chromatin structure is essential if we are to understand
how the cell accesses the information stored in the genome.

Perhaps the best understood features of chromatin structure are
local disruptions, which correspond to the displacement of a single
nucleosome by a collection of transcription factors. These are called
DNaseI hypersensitive sites (DHSs) because they are identified
using assays that depend upon the small, non-specific endonuclease
DNaseI (Crawford et al., 2006; Dorschner et al., 2004; Keene et al.,
1981; Sabo et al., 2004a, b; Wu, 1980).

We recently developed an array-based assay for measuring
chromatin accessibility in a high-throughput fashion, and we have
applied it to the ENCODE regions of the human genome (Sabo et al.,
2006). In addition to identifying classical DHSs, this data gives us
the first opportunity to measure experimentally chromatin structure
on a large scale.

We undertook this study to characterize DNaseI accessibility via a
multi-state model comprised of local regions of similar accessibility.
While a hidden Markov model (HMM) makes a natural starting
point for this modeling effort, we found that the lengths of segments
were not well described by geometric distributions and, as Figure 4
indicates, that the emissions of this HMM could not be effectively
captured using Gaussian models. To address these shortcomings, we
employed a generalization of the HMM. Specifically, we employed
a hierarchical change-point model (CPM) with a continuous mixture
of Gaussians at each state and Gamma distributions for the lengths
of segments. Because of the large number of observations in this
study we employed an empirical Bayesian approach and obtained
maximum a posteriori (MAP) estimates for the parameters of the
hierarchical models and those of the length distribution.

Another important feature of these data is that there are a large
number of regions of the genome for which data are missing.
These missing blocks of observation arise because the human
genome contains a large number of repeated elements (Smit et al.,
2004). Because the high similarity of the sequences in these repeats
would render localization of observations to genome coordinates
nearly impossible, probes for these repeat regions were not included
in the array design, leading to gaps in the observed data. As shown
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subsequently, by treating these gaps as missing data, the resulting
algorithm enjoys the advantage of having a linear time and space
complexity in the length of the dataset.

The resulting model fits the observed data much better than a
HMM. Furthermore, we find that the posterior probability for a four-
state CPM approaches 1, and thus the data strongly recommmends
a four-state model.

2 METHODS AND RESULTS

2.1 Tiling array data
Data for this study was collected using the ENCODE Nimblegen tiled
arrays, using a previously described protocol (Sabo et al., 2006). On these
arrays, each probe is 50 bp long, and probes are spaced 38 bp apart (i.e.
with a 12-bp overlap). Probes that overlap repetitive elements, as identified
by RepeatMasker (Smit et al., 2004), are not included on the array. The
ENCODE Nimblegen array contains 382 884 probes.

To measure DNaseI sensitivity, we treat with DNaseI a sample of intact
nuclei and a control sample of bare genomic DNA. We then label the resulting
collections of fragments with fluorescent tags (Cy5 and Cy3, respectively)
and hybridize the mixture to the Nimblegen array. For a given oligonucleotide
probe, a small Cy5 intensity relative to Cy3 intensity indicates that the
DNaseI failed to cleave the intact nuclear DNA at that genomic position.
Hence, the ratio of Cy5/Cy3 is inversely proportional to DNaseI sensitivity.

For the data used in this study, the assay was performed using the primary
Epstein-Barr virus-transformed B-lymphoblastoid cell line GM06990, which
is designated as a common reagent by the ENCODE consortium. The
resulting collection of 382 884 fluorescence log-ratios, spanning the entire
set of ENCODE regions, is available via the UCSC Genome Browser
(http://genome.ucsc.edu). Our algorithm models a sequence of fluorescent
log-ratios, and the only information about the sequence taken into account
by the model is the distance between the probes (for the purpose of spanning
the gaps).

2.2 The change point segmentation model
To segment our data, we developed a CPM that uses a recursive algorithm
similar to that described by Liu and Lawrence (1999). Here we only give
a brief description of the model; details can be found in the Supplementary
Material.

Previously, multi-state single Gaussian HMMs have been successfully
applied to tiled array data (ENCODE Consortium, 2007; Li et al., 2005;
Thurman et al., 2007). However, we found that this approach produces a
poor fit to the DNaseI array data, with many outlier log ratios (see Fig. 4).
Such outliers have an adverse impact on state predictions of HMMs in two
important ways: first, the outliers from one state can be incorrectly predicted
to be members of adjacent states, and second, for many distributions,
including the Gaussian, outlying observations have an unduly large impact
on parameter estimates characterizing individual states.

The CPM and the HMM both assume that the observed data was generated
by a hidden process consisting of a fixed number of hidden states. However,
in the HMM, it is common to characterize each hidden state by a single
Gaussian distribution. The CPM, in contrast, employs a hierarchical model
that uses a continuous mixture of Gaussians at each state. This type of
model has been used previously to model oligonucleotide array data at the
individual probe level (Ji and Wong, 2005). In a hierarchical model, instead
of having a single mean and variance for each state, these two parameters are
themselves taken as random variables following a probability distribution.
Thus, within each CPM state, there can be different means and variances for
different segments (or substrings) of the data, with each substring having its
own mean and variance. The hyperparameters of the hierarchial model are
global, while those describing individual substrings are local. This structure
permits integration over the substring parameters—the means and variances
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Fig. 1. The figure shows a sample segmentation for a 27 kb region within
ENr212. The x-axis is the probe number and two probes with no gaps in
between are connected by solid line so that the gaps becomes visually obvious
in this figure. The figure contains four change points (c1,...,c4) and five
regions (δ0,...,δ4), with each region assigned to a particular model state.
Within each region, the mean and SD is shown by horizontal red dashed
lines. Note that δ3 and δ4 are both in state 0, even though there is a change
point at c4.

of the substring intensities—for given values of the hyperparameters. In
this way we marginalize over these high-dimensional missing data. We take
an empirical Bayes approach and iteratively find the MAP estimates of the
low-dimensional hyperparameters. However, all the means and variances
of the substrings of a state are drawn from a common model, described
by a specific hierarchical probability distribution. The states differ from one
another because the parameters of their hierarchical models differ. In essence,
the CPM assumes that within-state sequences are not homogeneous, but
instead are characterized by substrings of unknown length, each of which is
homogeneous.

For example, consider the data shown in Figure 1. The figure contains three
segments in state 0 (δ0, δ3 and δ4), each with its own mean and variance.
While the means of these segments differ from one another, all three means
are lower than those of the substrings from higher states (δ1 and δ2), because
the means of segments in state 0 are drawn from a distribution that is shifted
toward lower values. Because each state of the hierarchical CPM is described
by a family of normal distributions, rather than by a single distribution, the
model gains flexibility to capture complex variability in the data.

Figure 1 also illustrates a second important feature of the CPM. Note that
the two segments δ3 and δ4 are generated by model state 0, even though there
is a change point at c4. Thus, segments of the data from a single state are
comprised of subsegments, each following its own Gaussian distribution.
This feature, and the fact that distances between change points are not
geometrically distributed, are the distinguishing features of the CPM.

Formally, the CPM can be described as follows. Assume for now that we
know the distribution on the length of each segment, for each of the states,
and we know the transition probabilities between the states. Suppose the
maximum number of change points is kmax . Denote a segmentation by A=
{δ0,c1,δ1,c2,...,δk−1,ck,δk}, 1≤c1 <c2 < ···<ck ≤n, ci is the i-th change
point, and δi is the state between its neighboring change points taking value
in the set S ={0,1,...,D}. The prior probability of A before observing the
data is

p(A)=
k∏

i=0

pδi (ci+1 −ci +1)·π (δ0)
k−1∏

i=0

K(δi,δi+1),

1912

http://genome.ucsc.edu


Chromatin structure in ENCODE

where pδ(l) is the probability of the length of one ungapped data segment
being l, given the segment state is δ, and K is the transition probability
between states with initial distribution π . Note that we put transition
probabilities between segments, instead of between each data point as in
the traditional HMM. Also, transitions between the same state are allowed.
We set c0 =0 and ck+1 to be the last data point.

Given the segmentation A, the mean and variance for each segment is
generated from a normal-inverse-χ2 distribution:

µi|σ 2
i ,A∼N(µ(h)

δi
,

σ 2
i

k(h)
δi

)

σ 2
i |A∼ Inv−χ2(ν(h)

δi
,σ 2

δi

(h)
)

Those parameters with superscript (h) are hyperparameters that need to be
specified.

With segmentation A and µi, σi given for each segment, the observations
are naturally modeled as normal with given mean and variance:

yci+1:ci+1 |µi,σ
2
i ,A

iid∼N(µi,σ
2
i )

where we use the notation yi:j ={yk |k = i,i+1,...,j}
In general, the lengths of the segments generated from each model state

are not known ahead of time. Consequently, we employ a Bayesian recursive
algorithm similar to that described by Liu et al. (1995) to infer the change
points from the data. The recursive character of this model allows us to
sample directly from the posterior distribution of the change points and
the changes in state. This property is beneficial because, in discrete high-
dimensional settings like the one we face here, there is no assurance that a
maximum likelihood or MAP estimate will characterize the posterior space
well (Carvalho and Lawrence, 2008). Here our main interest is in a high-
dimensional discrete unknown, the assignment of states to all of the probes.
In order to make better inferences about these variables we employ a centroid
estimator (Carvalho and Lawrence, 2008).

To address the lower dimensional variables of these models, we employ an
empirical Bayes approach. In this approach, the low-dimensional parameters
of the prior hierarchical models are estimated from the data, rather than
being set a priori. We estimate these parameters using the expectation
maximization algorithm, as detailed in Section 2.

2.3 Spanning the gaps
The analysis of tiled array data is complicated by the absence from the
array of many oligonucleotide probes, which correspond to repetitive DNA
elements. To handle this missing data, the CPM includes terms that describe
the probability of changing state as a function of distance along the
chromosome. In general, when a gap is very long, the state probability
distribution at one end of the gap is effectively independent of the state
probability distribution at the other end of the gap. However, when these
gaps are short, we expect adjacent data fragments to affect one another, with
an increased likelihood that the bases at either end of the gap will be in
the same state. For the CPM we can calculate the magnitude of this effect
analytically. Figure 2 illustrates, for our four-state model, the probability of
being in a given state at the end of a gap of a given length, given the state at
the beginning of the gap. This is calculated using the transition probabilities
as well as the distribution of segment lengths estimated with empirical Bayes.
Using distributions like those in Figure 2, the CPM accounts for the effects of
adjacent data substrings across gaps while retaining linear time complexity
of the algorithm with respect to the size of the full dataset.

2.4 The four-state model
Consider first the determination of the number of states. Because of the large
number of observations, from over 800 000 probes on the microarray, we
needed to employ only a fraction (15%) of the observed probe intensity
values to estimate the population parameters of this model. Here ‘population
parameters’ refers to those hyperparameters associated with each state as well
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Fig. 2. Each figure plots the probability of being in a given state at the end
of a gap of a given length. (a) assumes that the data prior to the gap is
generated from state 0, and (b) assumes state 1, similarly for (c) and (d).
After 200 probes (i.e. 7.6 kb), all probability distributions approach the same
equilibrium.
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Fig. 3. Selecting the number of states using the likelihood value on the data.
The figure plots the log-likelihood value as a function of the number of states
in the CPM. The four-state model is optimal by this metric.

as the parameters for the underlying Markov chain since these parameters
are not specific to a segment. Using the resulting point estimates with the
remaining 85% of the data we marginalize over all the remaining unknowns
using recursions of the CPM. Note that the hyperparameters do not need to be
marginalized over as in traditional Bayesian model selection, since separate
data are used for model comparison in our application. Figure 3 plots the
log of the marginal probabilities of the data conditional on these population
parameter estimates for models with 1 to 5 states. Assuming that these five
models were equally likely a priori, the posterior probability of a four state
model is nearly 1, with a five state model being the next most probable with
a probability <10−15. This indicates, perhaps not surprisingly, that this large
amount of data renders a strong preference for just one of these models, the
one with four states.

2.5 Quality of the fit to the data
Next, we investigated the extent to which the four-state CPM and a four-
state HMM Viterbi segmentation with normal distributions for each state
fit the observed data. Both of these models assert that the residuals—
the difference between the observed values and the local mean—follow a
Gaussian distribution. Figure 4 shows quantile/quantile plots for each of
the four states. A quantile gives the value of the residual corresponding to a
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Fig. 4. Each figure plots, for a given model state, the quantiles of the
theoretical Gaussian distribution versus the quantiles of the observed
residuals. A perfect fit would follow the line y=x. In each plot, the two
series correspond to the residuals from a four-state, single-Gaussian HMM
and from the four-state CPM.

Table 1. Base-level coverage and segment lengths for the four states in the
CPM segmentation

Major DHS Minor DHS Intermediate Insensitive
(State 3) (State 2) (State 1) (State 0)

Number of segs 492 521 1085 1062
Number of bases 162 kb 518 kb 1772 kb 28 007 kb
Percent of bases 0.5% 1.7% 5.8% 92.0%
Mean seg length 329 994 1633 26 371
Median seg length 228 646 950 13 718
Hyperprior mean 1.7 0.66 0.0 −0.65
Length parameter (0.8 475) (1.4 480) (1.0 950) (1.9 1266)

specified cumulative frequency of the residual. For example, the 0.75 quantile
of a random variable X gives the value x such that P(X ≤x)=0.75. In these
figures, the quantiles of the assumed theoretical Gaussian distribution are
plotted against the quantiles of the observed data, whence the axes have been
transformed to the Gaussian scale. If the observed data reasonably follow
the Gaussian distribution, then the plot will follow a straight line. The HMM
parameters were learned using unsupervised expectation maximization. As
shown in Figure 4, while the residuals for States 1 and 2 are reasonably
modeled by normal distributions for both the HMM and CPM, the residuals
for States 0 and 3 depart substantially from this assumption for the HMM
but not the CPM.

2.6 Properties of chromatin domains
Table 1 shows the base-level coverage of the four states, as well as the mean
and median segment lengths. The median size of the major DHSs agrees
well with experimentally observed sizes of DHSs, which generally range
from 225–250 bp (Sabo et al., 2004b).

Figure 5 shows histograms of the distribution of segment lengths, and
Figure 6 shows histograms of probe intensities and segment mean intensities
for the four states. These two figures show that there is considerable overlap
between the probe intensities of adjacent states, but little overlap in the
mean values of the four states. Thus, Figure 6 supports the use of subinterval
averaging of the CPM as an effective means of averaging across noisy probes
for these data. A key feature of the CPM is that we average over adjacent
probes by using the hierarchical model and do not require that the means and
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Table 2. Transition probabilities estimated from the data, where the rows
represent the states being transitioned from

Insensitive Intermediate Minor DHS Major DHS
(State 0) (State 1) (State 2) (State 3)

State 0 0.34 0.66 1e−6 1e−6
State 1 0.67 1e−6 0.33 1e−6
State 2 0.08 0.45 1e-6 0.47
State 3 1e−6 1e−6 0.999 1e−6

variances of the four classes are fixed, but rather are drawn from state specific
models. The strong evidence for four classes also likely stems from this
strong separation. The CPM assigns 92% of the bases to the insensitive state,
5.8% to the intermediate sensitivity states and 2.2% to the hypersensitive
state.

Table 2 shows the transition probabilities between states. Estimates
of transition probabilities were obtained with the training dataset, and
these parameters are estimated using an empirical Bayes method, detailed
in the Supplementary Material. As the table indicates, there is a strong
preference for transitions between adjacent states. Specifically, transitions
into a hypersensitive state are almost never permitted from the insensitive
state. Thus, hypersensitive sites almost always occur within regions of
intermediate sensitivity. The resulting regions of intermediate sensitivity
chromatin punctuated by hypersensitivity sites we call accessibility islands.
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Fig. 7. Enrichment of annotated functional elements in sensitive regions
(states 1–3) versus insensitive regions (state 0), as identified by the CPM.

Also notice that about two-thirds of the intermediate regions contain no
hypersensitive sites, and that probabilities of returning to the current state
are small for all except the insensitive state. We applied a Kolmogorov–
Smirnov test for the intensity ratios of each pair of adjacent insensitive
segments and find the average P-value to be very small (with more than
90% of the P-values <1e−3). Thus we judge that the statistical properties
of such adjacent regions are truly different.

To understand how the CPM segmentation relates to known functional
elements in the human genome, we performed an enrichment analysis. We
computed the relative enrichment/depletion relative to the insensitive state
for each of the other states with respect to functional annotation from the
UCSC Genome Browser. These included gene-like elements (KnownGenes,
mRNAs and spliced ESTs), CpG islands and a variety of activating histone
modifications (H3K4me1–3, H3ac and H4ac). The details of the calculations
are explained in the Supplementary Material. As shown in Figure 7, all these
functional tracts are moderately enriched in the intermediate state and highly
enriched in the hypersensitive states. Furthermore, the major hypersensitive
state is more highly enriched than the minor hypersensitive states for all
except two of these functional elements.

3 DISCUSSION
We have described a Bayesian model-based method for segmenting
DNaseI array data. The method relies upon a hierarchical CPM
with hyperparameters estimated using an expectation maximization
MAP estimation procedure. We have shown that the model produces
a good fit to the observed data, and that the model divides the
observed data into four classes. The model assigns 5.8% of the
bases to regions of intermediate sensitivity, and these regions are
significantly enriched in functional elements, including genes and
activating histone modifications. The remaining 2.2% of the bases
in hypersensitive regions are even more strongly enriched in these
elements. Finally, our finding that transitions to hypersensitive

states are very uncommon from the insensitive state supports
a model of chromatin in which local hypersensitive disruptions
are concentrated within larger domains of intermediate sensitivity,
forming accessibility islands.

A recently published analysis of ENCODE datasets used a
simple two-state HMM, coupled with wavelet analysis, to perform
domain-level segmentation of the ENCODE regions (Thurman
et al., 2007). That analysis differs from ours in two important
respects. First, Thurman et al. (2007) analyze multiple data types
simultaneously, whereas our analysis focuses on DNaseI. Second,
by using wavelet smoothing, the HMM focuses on a single scale
at a time, whereas our model simultaneously captures larger- and
smaller-scale phenomena. As shown, for example, in Figure 4, the
simple HMM does not fit the DNaseI data as well as the CPM. If
the same observation holds for other types of data, then a multi-data
set analysis using the CPM would likely yield an accurate picture of
both large and small genomic domains, without requiring wavelet
analysis.

Finally, some caveats are called for with respect to the results
presented here. First, while the hierarchical model we employed
does permit greater variability in sensitivity among the regions
belonging to one state and an associated improvement in the fit of
the model, it does come at a cost of two additional free parameters
per state. However, this cost seems worthwhile, given the large
size of genomic datasets. While the ratio of data to unknowns is
favorable for the population parameters describing the states and
transitions between states, the dimension of the space describing the
unknown locations of change points is extraordinarily large. Thus we
cannot expect that the favorable asymptotic characteristics of MAP
estimates will be enjoyed in the inference of change points. This
is why we employ centroid estimates of these unknowns. Second,
although this model is not specific to DNaseI array data and could
be applied in a similar fashion to other types of tiling array data, we
expect it to be effective only when features of interest span local
regions of the genome coordinates. While our findings support this
view for accessibility, further study will be required to determine
its appropriateness for other data. If this assumption is borne out
for other features, then one obvious direction for future work is to
simultaneously segment multiple genome-wide assays using a CPM.
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