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Abstract

Background

PET-based tumor delineation is an error prone and labor intensive part of image analysis.

Especially for patients with advanced disease showing bulky tumor FDG load, segmenta-

tions are challenging. Reducing the amount of user-interaction in the segmentation might

help to facilitate segmentation tasks especially when labeling bulky and complex tumors.

Therefore, this study reports on segmentation workflows/strategies that may reduce the

inter-observer variability for large tumors with complex shapes with different levels of user-

interaction.

Methods

Twenty PET images of bulky tumors were delineated independently by six observers using

four strategies: (I) manual, (II) interactive threshold-based, (III) interactive threshold-based

segmentation with the additional presentation of the PET-gradient image and (IV) the selec-

tion of the most reasonable result out of four established semi-automatic segmentation algo-

rithms (Select-the-best approach). The segmentations were compared using Jaccard

coefficients (JC) and percentage volume differences. To obtain a reference standard, a

majority vote (MV) segmentation was calculated including all segmentations of experienced

observers. Performed and MV segmentations were compared regarding positive predictive

value (PPV), sensitivity (SE), and percentage volume differences.

Results

The results show that with decreasing user-interaction the inter-observer variability

decreases. JC values and percentage volume differences of Select-the-best and a workflow

including gradient information were significantly better than the measurements of the other
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segmentation strategies (p-value<0.01). Interactive threshold-based and manual segmen-

tations also result in significant lower and more variable PPV/SE values when compared

with the MV segmentation.

Conclusions

FDG PET segmentations of bulky tumors using strategies with lower user-interaction

showed less inter-observer variability. None of the methods led to good results in all cases,

but use of either the gradient or the Select-the-best workflow did outperform the other strate-

gies tested and may be a good candidate for fast and reliable labeling of bulky and heteroge-

neous tumors.

Introduction

In oncology, Positron Emission Tomography combined with Computed Tomography (PET/

CT) using the tracer fluorodeoxyglucose (FDG) is important for cancer diagnosis [1–3]. In

order to assess tumor staging and response to therapy, the most commonly used measure-

ments are the maximum Standardized Uptake Value (SUVMAX), the mean SUV (SUVMEAN),

and total lesion glycolysis (TLG) which is defined as tumor volume times SUVMEAN, which are

extracted from the segmented tumor. Recently, features containing more detailed information

about tumor phenotype and intra-tumor heterogeneity have been reported. Previous studies

demonstrated the clinical relevance of these feature values [4–6]. Especially for patients with

advanced stage cancer with bulky tumors, analysis and evaluation of these feature values can

add valuable information and help to direct treatment.

Since these features are highly sensitive to tumor delineation [5,7], a reliable and reproduc-

ible segmentation is essential. For this purpose, a segmentation strategy with low inter-

observer variability is important. Due to patient motion, image noise, and varying intrinsic

contrast, the tumor borders are not clearly defined in a PET image, which makes a segmenta-

tion challenging [8]. Up to now, tumors are still mainly segmented manually what is time-con-

suming, subjective, and leads to a high inter-observer variability [9–11]. One important aspect

influencing manual segmentation performance is that the tumor appearance depends on the

intensity window used for displaying the image. This intensity window can be changed by the

observer and changes the tumor appearance (i.e. makes the tumor to appear bigger or smaller)

in the visualization due to the partial volume effect. Especially for large tumors (metabolic

active tumor volume (MATV) > 300mL) with irregular and complex shapes, a manual seg-

mentation is very time consuming and prone to segmentation errors.

In order to facilitate the segmentation task, several automatic segmentation algorithms

have been developed. Some methods use simple thresholding, defining all values above a per-

centage value of SUVMAX or a fixed SUV (usually 4 or 2.5) as tumor [12]. Other adaptive

thresholding techniques take into account the tumor-to-background ratio or the object size

[13,14]. Furthermore, segmentation approaches using advanced stochastic techniques or

machine learning algorithms have been proposed and evaluated, showing good results for

both phantom and patient studies [15]. However, the majority of these approaches are not

publicly available and have only been tested on specific datasets. Moreover, none of these

methods is used in clinical practice, as all of them have limitations.

It is important to note that especially for large heterogeneous bulky tumors, a user-interac-

tion step will remain necessary in order to get a valid and plausible segmentation as one (semi-
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) automatic segmentation method is unlikely to provide good results in all cases [16]. In order

to illustrate the special challenges coming with complex tumors, we evaluated three automatic

segmentation algorithms and applied them on the dataset used in this study. The results are

displayed in the S1 Material. As can be seen, none of the automatic segmentation algorithms

was able to properly segment all tumors. In order to reduce the inter-observer variability and

to overcome the limitations of automatic segmentation algorithms, it might be advantageous

to reduce the user-interaction in the segmentation process without making the segmentation

fully automatic.

For this purpose, three new segmentation workflows were evaluated in this study aiming to

reduce user-interaction and thereby potentially improving inter-observer variability. In the

first introduced workflow the user is asked to change the percentage of the SUVMAX threshold

interactively until a satisfactory segmentation is achieved. I.e. the user adapts the boundary of

the segmentation by only changing the threshold using an interactive slider rather than the

common use of a fixed predefined threshold value. The second strategy is inspired by the auto-

matic gradient-based segmentation approaches: the observer was presented with both the

PET-intensity as well as the PET-gradient image, highlighting tumor boundaries. Next, the

user was asked to change the percentage of the SUVMAX threshold interactively as described

above. This workflow was implemented in order to mitigate the effect of the chosen intensity

window on the segmentation outcome as the gradient image displays the tumor boundaries

independent of the intensity window. In the last new workflow, the user needed to select the

preferred result from four predefined segmentations based on four widely known delineation

algorithms.

These strategies are especially suited for the segmentation of bulky tumors, e.g. for the use

of MATV as prognostic factor in lymphoma patients or to use metabolic information to mea-

sure treatment response [17]. Furthermore, the strategies can, for example, also be used for the

fast generation of reliable training sets for Convolutional Neural Networks (CNN) which are

used more and more frequently for segmentation tasks [18–20]. The aim of this study was to

investigate the potential improvements in the inter-observer variability of tumor segmentation

results using these new workflows compared with more standard segmentation approaches,

while allowing for the generation of plausible and reliable segmentations. The strategies were

applied on patients with advanced oncological diseases suffering from especially large and het-

erogeneous tumors, being the most challenging cases for which traditional workflows fail.

Materials and methods

This study has been approved by the Institutional Review Board (IRB), and the need for writ-

ten informed consent was waived (IRB case number 2016.984) as well as by the Medical Ethics

Review Committee of the VUMC and registered in the Dutch trial register (trialregister.nl,

NTR3508). Data were collected as part of several ongoing and past studies and all patients gave

informed consent for study participation and use of their data for (retrospective) scientific re-

search. Twenty datasets of patients with stage III or IV cancer were included in this study. The

patients suffered from four cancer types (five patients each): Non-Small-Cell-Lung-Cancer

(NSCLC), High-grade lymphoma, melanoma and locally advanced extremity soft tissue sar-

coma. Sarcoma and NSCLC patients were included in previous studies [21–23]. These studies

were chosen to assure that we would have a wide range of tumor sizes, shapes, locations and

uptake distributions allowing us to determine a segmentation strategy that would work best in

a large ranges of bulky tumors. The scans were performed at two institutes. Melanoma and sar-

coma patients were scanned on a Siemens Biograph mCT64 and the images were iteratively

reconstructed using the vendor provided PSF+TOF reconstruction method with three
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iterations and 21 subsets (PSF+TOF 3i21s) and a post-reconstruction smoothing with a 6.5

mm full-width-at-half-maximum Gaussian kernel. Images were reconstructed to a voxel size

of 3.1819 mm x 3.1819 mm x 2 mm. NSCLC and lymphoma images were acquired on a Philips

Gemini TF/TOF scanner and reconstructed using the BLOB-OS-TF reconstruction with 6.5

mm full-width-at-half-maximum pre-reconstruction smoothing. All these images yielded a

voxel-size of 4 x 4 x 4 mm. All images were converted from Becquerel/ml to SUV as it is com-

monly done in PET image analysis. SUV is calculated as the ratio of the activity concentration

displayed in the image and the injected activity divided by the patient weight. A conversion of

the image to SUV is beneficial as it removes variability coming with differences in patient size

and injected FDG activity across images. All twenty PET images contain comparable image

statistics and quality as they are EARL compliant. The maximum intensity projection of every

patient is displayed in Fig 1. The corresponding patient information such as weight and

injected dose can be found in the S1 Material (S1 Table).

All tumors were delineated independently by six observers with different levels of experi-

ence blinded by each other: Two experienced nuclear physicians (more than ten years of expe-

rience), one experienced medical physicist (more than twenty years of experience) and three

observers with less than three years of experience in tumor delineation.

All segmentations were performed using an in-house software developed for the analysis of

PET images, already used and described in previous studies [22,24,25]. The software allows the

user to delineate volume-of-interests (VOI) using various segmentation techniques. The

default intensity window setting displayed SUV in the range from 0–10. Yet, the observers

were allowed to change the intensity window as is also often done in clinical practice. Before

the start of the experiment, every tumor region was manually marked roughly with a mask.

PET and corresponding low-dose CT images containing this mask were presented to the

observers simultaneously (S1 Fig). Subsequently, every observer delineated the images using

four strategies:

Manual segmentation

The first segmentation was performed manually. Therefore, it was permitted to shrink the pre-

defined mask to a smaller size using a percentage threshold of the SUVMAX. The percentage

threshold was set by each observer individually per lesion. All voxels with an intensity value

above this threshold were included in the segmented volume. The observers manually modi-

fied this segmentation by adding or deleting voxels.

Interactive threshold-based segmentation

Secondly, an interactive threshold-based segmentation was evaluated which was restricted to

the inside of the predefined mask. The user changed the percentage threshold value (range

from 0–100%) of the SUVMAX interactively (as described above) until the segmentation was

considered satisfactory on visual inspection This workflow is illustrated in Fig 2.

Threshold-based segmentation including a gradient image

Next, the same interactive threshold-based approach was used but this time, the presented CT-

image was replaced by the PET-gradient image that emphasizes the boundaries of the high-

uptake regions. The user was asked to set the percentage threshold so that the border of the

VOI collided with the borders pronounced in the gradient image. In the gradient image, the

tumor boundaries are displayed independent of the intensity window set by the observer (see

Fig 3). Therefore, this workflow was chosen in order to mitigate the possible effects of using

different intensity windows by the observers on the segmentation results.
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Selection of the best result from four automatic segmentation algorithm

Finally, low-dose CT and PET image containing the results of four automatic threshold-based

segmentation algorithms were presented to the user. All four algorithms are commonly used

and established in the literature [24,26,27]. From these segmentations, the user selected the

segmentation that resembled the tumor boundary best in his/her opinion. An example is illus-

trated in Fig 4. The segmentations of the following algorithms were presented to the observers:

• 41% SUVMAX: Voxels yielding a SUV higher than 41% of the SUVMAX

Fig 1. MIP of every patient included in the study ordered by tumor type: a) lung cancer, b) lymphoma, c) melanoma, d)

sarcoma.

https://doi.org/10.1371/journal.pone.0230901.g001
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• SUV4: Voxels with a SUV higher than 4

• SUV2.5: Voxels with a SUV higher than 2.5

• AUTO: All voxels with a SUV value higher than 50% of the SUVPEAK with local background

correction are included in the segmentation (i.e. a contrast oriented/adapted method). For

the calculation of the SUVPEAK, a spherical neighborhood of 1 mL (1.2 cm diameter) is

defined for each voxel conform the specifications in the EANM and UPICT guidelines

[28,29]. The highest mean value of all neighborhoods is defined as SUVPEAK.

The segmentation workflows were performed in the order listed above. By following this

order, every new applied segmentation strategy required less user-interaction than the previ-

ous one.

Data analysis

Data analysis and figure visualization were performed in Python 3.6.3 using the packages

numPy, sciPy [30], and matplotlib [31].

Inter-observer variability

The Jaccard Coefficient (JC) is a measurement for the agreement of two sets A and B and is

defined as:

JCA;B ¼
jA \ Bj
jA [ Bj

Fig 2. Illustrates the workflow for the interactive threshold approach. Initially, CT and PET image are presented to the user including a mask

marking roughly the tumor. The user changes then interactively the threshold until the segmentation is considered as satisfactory.

https://doi.org/10.1371/journal.pone.0230901.g002
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A JC of 1 represents perfect agreement. For every segmentation approach, the JC was calcu-

lated for all possible combinations of segmentations performed by the observers.

Furthermore, in order to assess size similarity, the percentage MATV differences were cal-

culated. The approach with the lowest inter-observer variability was determined by evaluating

the JC and MATV difference values with the Kruskal-Wallis test. The Kruskal-Wallis test

ranks JC and MATV values of all approaches together. These ranks are then compared across

approaches. In this way, the approach with the lowest inter-observer variability is determined

not only based on the lowest mean or median value as the ranking of all JC/MATV values is

taken into account. The Benjamini-Hochberg procedure with a false discovery rate of 10% is

applied in order to correct for multiple comparisons.

Majority vote comparison

A problem in the evaluation of segmentation algorithms is that in the majority of the cases no

ground truth exists. Therefore, in order to obtain a reference segmentation, a majority vote

segmentation (MV) was calculated for every image as it has been shown that a MV segmenta-

tion represents a reliable segmentation [32]. A MV compares segmentations of the same object

and regards the voxels marked by more than half of the segmentations as part of the VOI [33].

All other voxels are considered as segmentation error. The segmentations performed by the

three experienced observers were included in the calculation of the MV segmentation. More-

over, for comparison, a MV segmentation including the segmentations of all six observers was

calculated as well. All MV segmentations were visually checked for plausibility.

Fig 3. Illustrates the workflow of the interactive gradient based segmentation. Gradient and PET image are presented to the user. Also here, the user changes

interactively the threshold until the segmentation is satisfactory on both PET and gradient image.

https://doi.org/10.1371/journal.pone.0230901.g003
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Reference and performed segmentations were compared regarding their sensitivity (SE)

and positive predictive value (PPV). PPV and SE also measure the agreement of two sets, con-

sidering one set as reference standard [34]. Hence, SE and PPV include knowledge about vox-

els which are incorrectly not included (false negatives (FN)) or incorrectly included (false

positives (FP)) in the comparable segmentation [34]. SE of set A and reference standard B is

defined as ratio between number of voxels correctly included in the segmentation (true posi-

tives (TP)) and number of voxels of set A:

SEA;B ¼
jTPj

jTPj þ jFNj
¼
jA \ Bj
jAj

While PPV is defined as ratio of numbers of TP and sum of number of voxels of TP and FP:

PPVA;B ¼
jTPj

jTPj þ jFPj
¼
jA \ Bj
jBj

PPV and SE values are often combined in one value as a weighted sum. The sum weights

depend on the purpose of the segmentation. In our case, in order to combine both

Fig 4. Displays an example for the Select-the-best method. The user chooses the best result out of four segmentations that were acquired automatically.

https://doi.org/10.1371/journal.pone.0230901.g004
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measurements in a single value, the mean of both values was calculated:

PPV=SE ¼
SEþ PPV

2

PPV/SE values were calculated per tumor. Moreover, percentage MATV differences were

calculated between MV and every performed segmentation. For every image, inter-observer

differences and range of both metrics were compared across approaches using the Kruskal-

Wallis test as explained above. In order to assess the influence of user experience, percentage

MATV differences were compared between observers using the Wilcoxon signed rank test.

Feature value comparison

To measure the variability of feature values across segmentations, percentage feature differ-

ences of performed and MV segmentation were calculated. In this study, the focus lies on the

most frequently reported and most established features: SUVMAX, SUVMEAN, and TLG. Also

here, variability and range of percentage differences were compared across approaches.

Select-the-best evaluation

Fixed threshold-based segmentation methods are often used as standard approach in clinical

practice, but none of them are able to generate proper segmentations in all cases and often fail

in case of large heterogeneous tumors. Yet, we will report how often the result of one of the 4

automatic methods was regarded as best segmentation in the Select-the-best-approach.

Results

Inter-observer variability

The variability of JC values and percentage MATV differences are demonstrated in Fig 5. With

increasing user-interaction the variability of both metrics increases. Median and third quartile

JC values are the highest, while median and IQR of percentage MATV differences are lowest

for select-the-best, followed by gradient, interactive threshold and manual approach. All

median, quartile values and IQR are listed in S2 Table.

A comparison between the strategies using the Kruskal-Wallis test showed that JC and per-

centage MATV differences of select-the-best and gradient based strategies are significantly dif-

ferent than the values of the other two strategies (p-value<0.01). While select-the-best and

gradient, as well as interactive threshold-based and manual segmentations show no significant

differences when compared with each other (see Table 1).

Majority vote comparison

Fig 6 illustrates the variability of PPV/SE values of performed and MV reference segmentation.

Select-the-best and gradient workflow result in similar values with slightly higher values for

select-the-best method (Select-the-best: IQR: 0.91–0.99; Gradient: IQR: 0.90–0.97). The differ-

ences between these and the other two strategies are more pronounced (Threshold-based:

IQR: 0.88–0.97; Manual: IQR: 0.86–0.92). The higher values of Select-the-best and Gradient

strategy support the hypothesis that these two strategies lead to more reliable segmentations.

Fig 7 illustrates the percentage MATV differences as well as the PPV/SE values of per-

formed and reference segmentations for every observer separately. Observers are ordered

according to their experience level, with observer 1 being the most experienced. All segmenta-

tion strategies show significantly lower percentage MATV differences than the manual
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segmentation. Also Select-the-best and interactive threshold-based segmentation result in sig-

nificant differences (p-value<0.01).

Comparing percentage MATV differences and PPV/SE values between observers showed

no significant differences with exception of the manual segmentation. For this method, two

less experienced observers (observer 4a and 4b) showed a significant worse performance than

the other observers (p-value<0.01).

Performing the same comparisons with the MV segmentation including the segmentations

of experienced and less experienced observers had almost no influence on the results. Some

values changed slightly but the overall findings were the same.

Feature value comparison

The variability of percentage differences of MATV, SUVMAX, SUVMEAN, and TLG is plotted in

Fig 8. Regarding percentage MATV differences, the gradient workflow leads to the lowest IQR

and median, followed by select-the-best segmentations. Interactive threshold-based and man-

ual segmentations result in higher IQR and lower median values (S3 Table). Significant

Fig 5. Illustrates the variability of the JC values (left) and percentage MATV differences (right) for all images. The amount of user-interaction increases from left to right

(for both plots: left: Select-the-best (S), middle-left: Gradient (G); middle-right: Threshold-based (T), right: Manual (M)).

https://doi.org/10.1371/journal.pone.0230901.g005

Table 1. P-values obtained with the Kruskal-Wallis test. Non-significant results are marked with ‘n.s.‘.

All images JC All images percentage MATV

Select-the-best vs. Gradient n.s. n.s.

Select-the-best vs. Threshold <0.01 <0.01

Select-the-best vs. Manual <0.01 <0.01

Gradient vs. Threshold <0.01 n.s.

Gradient vs. Manual <0.01 <0.01

Threshold vs. Manual n.s. <0.01

https://doi.org/10.1371/journal.pone.0230901.t001

PLOS ONE Inter-observer variability PET segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0230901 March 30, 2020 10 / 18

https://doi.org/10.1371/journal.pone.0230901.g005
https://doi.org/10.1371/journal.pone.0230901.t001
https://doi.org/10.1371/journal.pone.0230901


differences in percentage MATV differences were observed between select-the-best and

threshold strategy, as well as between all segmentation workflows and the manual segmenta-

tions (p-value<0.01).

In the majority of the cases, the SUVMAX yielded percentage differences of 0. However, the

boxplot is missing four outliers of manual segmentations of one Lymphoma patient (Lym-

pho3) which had percentage differences of more than -100% (-292.5%, -212.5%, -270.6%,

Fig 6. Illustrates the variability of PPV/SE values for the approaches with increasing user-interaction from left to

right.

https://doi.org/10.1371/journal.pone.0230901.g006

Fig 7. Percentage MATV differences and PPV/SE values between segmentations performed by observers and MV segmentation displayed for every observer

separately. The observers are ordered by their level of experience with observer 1 being the most experienced. Observer 4a and 4b are having the same experience level.

https://doi.org/10.1371/journal.pone.0230901.g007

PLOS ONE Inter-observer variability PET segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0230901 March 30, 2020 11 / 18

https://doi.org/10.1371/journal.pone.0230901.g006
https://doi.org/10.1371/journal.pone.0230901.g007
https://doi.org/10.1371/journal.pone.0230901


-292.5%). Small discrepancies were furthermore observed for manual and select-the-best

method in one Melanoma patient (Mela4) and for all approaches in another Melanoma image

(Mela1). The differences between the different strategies were not significant.

SUVMEAN and TLG values resulted in the lowest IQR for gradient followed by select-the-

best, threshold and manual segmentations, respectively (S3 Table). Significant differences in

TLG values were observed for select-the-best and all other segmentation strategies, as well as

for gradient and manual segmentations (p-value<0.01). Regarding the SUVMEAN, all proposed

workflows showed significant different values from the manual segmentation (p-value<0.01).

Select-the-best-comparison

The SUV4 segmentation algorithm was most often considered as the best segmentation with

43 most preferred scores (35.8%). The second most chosen algorithm was the 41MAX method

which was chosen 30 times (25%) as best performing segmentation. The SUV2.5 and AUTO

approaches were considered 24 (20%) and 23 times (19.2%) as best.

Discussion

In this study, we report on the inter-observer variability of four segmentation strategies espe-

cially chosen for the segmentation of bulky tumors, each of them requiring a different level of

user-interaction. Our results show that the inter-observer variability improves with less user-

interaction in the segmentation process. Moreover, two of the proposed strategies, i.e. using

gradient information and/or predefined segmentations, seem to improve inter-observer

Fig 8. Demonstrates the feature value variability for the approaches (increasing user-interaction from left to right).

https://doi.org/10.1371/journal.pone.0230901.g008
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variability compared to more conventional approaches in most cases while still generating

plausible segmentations (as assessed by the observers). The proposed workflows did not only

improve inter-observer variability, they also allowed a much fastersegmentation process. For

the complex tumors included in the study, a manual segmentation took between twenty to

forty minutes per lesion, while the interactive threshold based approach required approxi-

mately half of this time. Gradient and select the best method took less than ten and five min-

utes, respectively.

There might still be cases when the proposed strategies will fail. Mainly, this will be the case

when the tumor is located close to another high-uptake region such as e.g. the heart. In these

cases, the proposed segmentation strategies could still be used as a starting point and as second

step be manually adjusted. However, in the current dataset that only happened once and there-

fore does not affect the overall conclusion of the paper. As the strategies improve the inter-

observer variability, also additional manual adaptation of the initial segmentations should

result in more reliable and reproducible segmentations, As it has been shown that the adjust-

ment of a (semi-) automatic segmentation is more reliable that a fully manual segmentation,

the results will still be preferable over a fully manual segmentation [35].

The use of an initial automated segmentation as starting point could also be the reason why

the differences between manual and the interactive threshold-based strategy were not signifi-

cant even if the fully interactive threshold-based approach requires less user-interaction. As

for the manual segmention, the user was first allowed to shrink the tumor mask and adapted

the segmentation afterwards. However, manual segmentations showed still the poorest perfor-

mance in the majority of the cases and led to a high inter-observer variability consistent with

finding in other previous studies [11,16].

Although manual segmentations are still considered as ground truth, it has been demon-

strated that they result in less repeatable segmentation results than (semi-) automatic segmen-

tations [36]. Repeatability of PET-based segmentations is a very important point as MATV is a

metric which is frequently used for the evaluation of treatment response [24]. It is of outermost

importance that changes in segmented volume are due to changes in the underlying biological

tissue and not to differences in segmentation results. For this purpose, several studies indicated

that segmentation accuracy is less important than repeatability [37,38] what pronounces the

limitations of manual segmentations.

Shepherd et al. compared previously thirty segmentation algorithm with different levels of

user-interaction and reported the best segmentation results for the algorithm with the highest

amount of user-interaction [39]. However, the dataset used in their study had some limitations

as they only included seven volumes extracted from phantom images and two patient datasets.

For the dataset of our study, including only tumors with large volumes, heterogeneous uptakes

and complex shapes, manual delineations were extremely labor intensive and suffered from a

high observer variability. This may be explained by the profound different tumors used in our

study.

Segmentations were performed by users with different levels of experience. Significant dif-

ferences between experienced and less experienced observers were only observed for manual

segmentations. In this case, two less experienced observers showed significantly higher per-

centage MATV differences and lower PPV/SE values when compared with experienced

observers. This is in line with Giraud et al. who compared delineations of observers with differ-

ent levels of experience and demonstrated that users with less experience tend to draw smaller

VOIs [40].

The comparison of the percentage differences of SUVMAX, SUVMEAN and TLG showed that

the SUVMAX was the most stable feature that resulted only in a few cases in a difference larger

than 0. In general, the SUVMAX should not be segmentation dependent and the variability of
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the SUVMAX is due to the inclusion of background-tissue in the tumor mask. E.g. for the seg-

mentations of one lymphoma patient discrepancies of around 200% were observed using the

manual approach. The tumor of this patient had a very large volume (MATV > 5000 mL) and

was situated in the lower body close to the kidneys, three observers (two experienced and one

less experienced observer) included voxels belonging to the kidney in the manual segmentation.

This voxels were close but not part of the original tumor mask and were therefore not included

in any other segmentation approach. Furthermore, in one melanoma patient more than 40%

SUVMAX differences were observed. These tumors also resulted in the lowest PPV/SE range for

manual segmentations (when compared with the other segmentation methods). Since in this

case the tumor was located very close to the heart, the predefined mask also included parts of

the heart. In the manual segmentations, the user could exclude the heart manually, while for the

other approaches small parts of the heart were still included in the VOI.

The most voted algorithm in the select-the-best approach was the SUV4 algorithm. How-

ever, it was not selected in the majority of the cases. Moreover, there was also no algorithm

which was rejected in all cases. This underlines the fact that none of the predefined segmenta-

tion methods tested in this paper resulted in satisfying results for the complex tumors included

in this study. This is in line with previous studies which reported the limitations of these com-

monly used and widely available algorithms [12,41,42].

In summary, our results suggest that two of the proposed strategies, namely the use of the

gradient image (in combination with interactive threshold selection) or select-the-best work-

flow, led to less inter-observer variability than those seen with more conventional approaches.

Therefore, the use of one of these strategies is recommended for the segmentation of large

bulky tumors. For these tumors a fully automated method, which generate satisfactorily seg-

mentations, does not exist as illustrated in the supplemental material. In some individual

cases, e.g. when the tumor is placed close to another high uptake region, a manual correction

might still be required and/or could be applied in combination with the proposed new delinea-

tion strategies. Moreover, the two strategies could also be used for a fast and reliable generation

of a dataset of labeled images for the training of a CNN or a machine learning algorithm as

these strategies allows for a fast (< 5 to 10 min) labelling of the images.

A possible limitation of this study might be the predefined order in which the approaches

were performed. The increase in experience with the delineation software but also with the

patient data might have an influence on segmentation quality. Since the segmentation

approaches were ordered according to the level of user-interaction, this effect should be small.

Furthermore, the images were also segmented in a specific order disease wise. Thus, the differ-

ences in segmentation quality could also be due to a loss of observer patience and care when

performing segmentation tasks sequentially over an extended period. However, most observ-

ers split the work of one approach over several days, which should minimize this effect.

Conclusion

In this study, we report on the inter-observer variability of four segmentation strategies/work-

flows for very large, heterogeneous and bulky tumors in PET images. Each of these workflows

has a different level of user-interaction. In particular, this study included two new strategies

especially implemented for large and heterogeneous tumors. These strategies provided the

observer with either gradient image information (in combination with interactive threshold

setting) or several predefined segmentations. Our results suggest that for these complex

tumors, for every tumor type a separate validation on the most stable segmentation method

should be done as none of the methods led to good results in all cases. However, the use of

either gradient based or select-the-best strategy outperformed the other approaches. Hence,
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one of these two strategies seems preferable for bulky tumors for which segmentations always

require user supervision/interaction.
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