
Citation: Sparano, C.; Moog, S.;

Hadoux, J.; Dupuy, C.; Al Ghuzlan,

A.; Breuskin, I.; Guerlain, J.; Hartl, D.;

Baudin, E.; Lamartina, L. Strategies

for Radioiodine Treatment: What’s

New. Cancers 2022, 14, 3800. https://

doi.org/10.3390/cancers14153800

Academic Editors: David Wong

and Barbara Jarzab

Received: 30 June 2022

Accepted: 2 August 2022

Published: 4 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Strategies for Radioiodine Treatment: What’s New
Clotilde Sparano 1,2 , Sophie Moog 2, Julien Hadoux 2, Corinne Dupuy 3, Abir Al Ghuzlan 4 , Ingrid Breuskin 5,
Joanne Guerlain 5, Dana Hartl 5 , Eric Baudin 2 and Livia Lamartina 2,*

1 Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”,
University of Florence, 50139 Florence, Italy

2 Service d’oncologie Endocrinienne, Département d’Imagerie Médicale, Gustave Roussy,
112 rue Edouard Vaillant, 94805 Villejuif, France

3 UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, 94800 Villejuif, France
4 Département de Biologie et Pathologie Médicales, Gustave Roussy, 112 rue Edouard Vaillant,

94805 Villejuif, France
5 Département Anesthésie Chirurgie et Interventionnel, Gustave Roussy, 112 rue Edouard Vaillant,

94805 Villejuif, France
* Correspondence: livia.lamartina@gustaveroussy.fr

Simple Summary: Radioactive iodine treatment is the oldest targeted therapy for differentiated
thyroid cancer. It can be used for normal thyroid remnant ablation (in order to increase the sensitivity
and the specificity of the serum marker thyroglobulin), as an adjuvant treatment (in order to improve
recurrence-free survival), or to treat radioiodine avid residual disease. Thanks to the use of sensible
diagnostic tools, reliable prognostic classifications, and molecular profiling, the indication and
modalities of radioiodine treatment are shifting from a one-size-fits-all to a tailored approach. This
review provides insights into the most recent and high-quality evidence relating to radioactive
iodine treatment.

Abstract: Radioiodine treatment (RAI) represents the most widespread and effective therapy for
differentiated thyroid cancer (DTC). RAI goals encompass ablative (destruction of thyroid remnants,
to enhance thyroglobulin predictive value), adjuvant (destruction of microscopic disease to reduce
recurrences), and therapeutic (in case of macroscopic iodine avid lesions) purposes, but its use has
evolved over time. Randomized trial results have enabled the refinement of RAI indications, moving
from a standardized practice to a tailored approach. In most cases, low-risk patients may safely
avoid RAI, but where necessary, a simplified protocol, based on lower iodine activities and human
recombinant TSH preparation, proved to be just as effective, reducing overtreatment or useless
impairment of quality of life. In pediatric DTC, RAI treatments may allow tumor healing even at
the advanced stages. Finally, new challenges have arisen with the advancement in redifferentiation
protocols, through which RAI still represents a leading therapy, even in former iodine refractory
cases. RAI therapy is usually well-tolerated at low activities rates, but some concerns exist concerning
higher cumulative doses and long-term outcomes. Despite these achievements, several issues still
need to be addressed in terms of RAI indications and protocols, heading toward the RAI strategy of
the future.

Keywords: radioiodine; thyroid cancer; quality of life; risk assessment; overtreatment; redifferentiation

1. Differentiated Thyroid Cancer: Mortality and Recurrence Risks

Differentiated thyroid cancer (DTC) represents the most common endocrine tumor,
showing an increasing incidence trend during the last decades [1]. Papillary thyroid
carcinoma (PTC) is the most common histological subtype [2] and a large number of new
cases are related to small and indolent PTC, often found incidentally due to the increased
use of diagnostic investigations [3,4]. Despite the steep increase in DTC incidence, the
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specific five-year-survival rates are about 98% [1] and the related age-adjusted mortality
remains stable (about 0.5 per 100,000 per year), with no further expected change according
to recent global estimates [4]. The extremely good prognosis of DTC and an increased
awareness of the risks of treatments possibly resulting in life-long quality of life (QoL)
impairment, has promoted a wide revision of diagnostic and management strategies [2].
This management shift is reflected in the recently observed decrease in indolent tumors
(PTC ≤ 1.0 cm and localized disease) incidence in the United States (14.5 vs. 13.48 per
100,000 person-years in 2014 and 2018, respectively) [5] with a stable rate of loco-regional
and advanced DTC [5]. In Europe, a similar trend emerged from the French registries,
where a decrease in microcarcinomas and a slight, but constant, increase in larger DTC
(>40 mm) diagnoses were observed [6].

The upfront therapeutic approach for DTC classically relies on surgery followed by
radioiodine (RAI) treatment. The recourse to RAI has deeply changed throughout DTC
history, evolving from a “one-size-fits-all” approach to a more selective choice. In fact,
the observation of RAI effectiveness in reducing DTC recurrences and mortality initially
promoted its use for all cases, irrespective of the disease extension and recurrence risks [7].
At that time, it was considered impossible to carry out adequately powered randomized
trials in lower-risk thyroid cancer due to their indolent nature and the relative rarity of the
disease. Two European academic studies, the ESTIMABL [8] and the HiLo [9] trial broke
this paradigm, paving the way for an evidence-based approach for lower-risk DTCs.

Moreover, observational data on large cohorts found no survival benefit for lower
stage patients (corresponding to patients at lower risk) treated with or without RAI [10],
and several retrospective works highlighted the good prognosis of small and localized
DTC, treated or not treated with RAI, questioning the paradigm of indiscriminate RAI
use [11].

Accurate disease risk stratification can assist in the selection of the patients who
may benefit from RAI therapy. Two key factors need to be addressed in patients’ initial
prognostic assessment: the risk of death, provided by the TNM stage from the American
Joint Committee on Cancer (AJCC) [12], and the risk of disease recurrence, based on the
American Thyroid Association (ATA) [2] guidelines. These two classifications complement
each other since the AJCC staging only predicts long-term mortality—usually very low for
DTC—and is not designed to predict tumor recurrence; while ATA classification provides a
valid medium-to-long term stratification for structural recurrent disease [13,14] (Table 1). It
is also worth noting that patients with lower-stage DTC (i.e., at low risk of death) can be at
high risk of recurrence [13].

The ATA risk of recurrence classification includes three categories: (i) low-risk DTC
(risk of recurrence being less than 5%); (ii) intermediate-risk (less than or equal to 20%);
(iii) high-risk DTC (more than 20%) [2]. Within each class, we should also consider some
additional features (e.g., the number or the extent of lymph node involvement, or the
histological variant), which provide auxiliary prognostic information. There is quite a
uniform consensus on RAI use for two opposing categories of DTC: on one hand, this
therapy is considered avoidable for (very) low-risk DTC, i.e., intrathyroidal papillary
microcarcinoma (PTMC), with an expected recurrence rate of less than 2% [14,15]; on the
other hand, the use of RAI is mandatory for high risk-patients (Table 1) [2], who represent
the rare cases burdened by a higher disease-mortality rate. Between these two extremes,
we find the largest group of low and intermediate cases (about 70% of all DTC), where the
use of radioiodine is still controversial.
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Table 1. AJCC TNM Staging 8th edition [12] and ATA risk classification and RAI recommendation
according to ATA 2015 [2].

T N M Additional Features
Stage

≥55 Year
Stage

<55 Year
Risk of Death (%) 2015

ATA Risk
Risk of

Recurrence (%)
RAIT

Recommended≥55 Year <55 Year

1a 0 0 - I I <2 <2 L <5 No

1–2 0 0 Uni or Multifocal * I I <2 <2 L <5 Not routine

1–3 0 0 FTC minimal
vascular invasion I/II I 2–5 <2 L <5 Not routine

3 0 0 - II I ~5 <2 L <5 Not routine

1–3 1a 0 ≤5 microscopic N1
(<2 mm) II I ~5 <2 L <5 Not routine

1–3 0 0 Minimal ETE I/II I 2–5 <2 I 5–20 Favored
(consider size)

1–3 1a/b 0 >5 N1 of <3 cm II I ~5 <2 I 5–20 Favored

1b–3 0 0 BRAF mutation I/II I 2–5 <2 I 5–20 Favored

1–3 any 0 Aggressive
histology * I/II I 2–5 <2 I 5–20 Favored

1–3 any 0
Uptake outside
thyroid bed on

RxWBS
I/II I 2–5 <2 I 5–20 Favored

1–3 any 0 Vascular invasion * I/II I 2–5 <2 I 5–20 Favored

1–3 any 0 FTC > 4 foci of
vascular invasion I/II I 2–5 <2 H >20 Yes

1–3 1a/b 0 N1 > 3 cm II I ~5 <2 H 20 Yes

4a any 0 - III I 5–20 <2 H 20 Yes

4b any 0 IVa I >50 <2 H 20 Yes

Any T Any N 1 - IVb II >80 ~5 H 20 Yes

Any T Any N 0 Incomplete tumor
resection - I <2 H 20 Yes

Any T Any N 0
Tg out of proportion

with RxWBS
findings

- I <2 H 20 -

* Aggressive histology (e.g., tall cell, columnar, insular, and poorly differentiated), vascular invasion and multifocal
foci in combination with size, lymph node status, and age can increase the risk of the patient and may be an argu-
ment for radioiodine remnant ablation for the ATA 2009 guidelines. Acronyms: AJCC, American Joint Committee
on Cancer; ATA, American Thyroid Association; yr, year; RAIT, radioiodine treatment; T, tumor; N, node; M,
metastasis; L, low-risk; I, intermediate risk; H, high risk; FTC, follicular thyroid carcinoma; ETE, extrathyroidal
extension; RxWBS: post-therapeutic whole-body scan; N1, positive lymph nodes; Tg, thyroglobulin.

2. Radioiodine Treatment Goals

The administration of RAI pursues different objectives. According to the 2015 ATA
guidelines [2], the goals of RAI are: (i) ablative, i.e., the destruction of normal thyroidal
remnants, in order to simplify follow-up management; (ii) adjuvant, i.e., the destruction of
microscopic tumor foci, in order to improve disease-free survival; (iii) therapeutic, where
pathological tissue is expected or diagnosed; (iv) to provide a whole-body evaluation
by whole-body scan/Single Photon Emission Computed Tomography (WBS/SPECT-CT),
which can potentially change the initial staging, uncovering loco-regional or distant tumor
foci. The 2022 European Consensus statement [16] was signed by four societies involved in
thyroid cancer management: i.e., the American Thyroid Association (ATA), the European
Thyroid Association (ETA), the European Association of Nuclear Medicine, and the Society
of Nuclear Medicine and Molecular Imaging. Their purpose was to clarify some key points
in RAI treatment indications for DTC and a revision of the traditional nomenclature was
also proposed. In particular, they suggested replacing the conventional term “ablative
RAI”—i.e., the first radioiodine administration—with the general label of “radioiodine
therapy”, which includes all of the potential therapeutic goals: ablative, adjuvant, and
(consequently) therapeutic [16].

In order to enhance the administration of radioiodine, a significant increase in thy-
rotropin (TSH) levels is needed to improve cellular uptake. The required and most accepted
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value of TSH is conventionally set above 30 mU/L [2]. The ways to obtain this value
are: by thyroid hormone withdrawal (THW) performed for four weeks, or after a period
of liothyronine (LT3), to reduce deep hypothyroidism sides effects (about for 2–3 weeks
before a complete THW); or by recombinant human TSH (rhTSH) stimulation. Before
rhTSH availability, THW was the standard protocol for RAI preparation. Hypothyroidism
subsequent to THW is associated with transient impairment of QoL and cognitive status,
general discomfort, and several adverse events, including cardiovascular and renal func-
tion deterioration [2,17–20]. Thereafter, the equivalence of rhTSH and THW for ablation
preparation has been suggested by several studies [20–23], also showing the advantages of
rhTSH in terms of preserving QoL [17,20–23], lower absorbed RAI activity for abdominal
organs [24], and the significant reduction of global radiation exposure in sensitive organs,
including bone marrow [25].

2.1. Remnant Ablation

As explained above, the most widespread application of radioiodine is the ablation
of residual thyroid tissue, also known as radioiodine remnant ablation (RRA), and its
therapeutic protocol underwent numerous revisions over time [16,26].

Serum thyroglobulin (Tg) is a tissue-specific rather than a tumor-specific marker, hence
the elimination of all normal thyroid remnants renders the interpretation of this serum
marker easier. The main purpose of RRA is to simplify follow-up management, enhancing
the diagnostic performance of Tg concentration, rather than improving recurrences or
survival [27,28]. Another possible goal of RRA is to facilitate the neutralization of anti-Tg
antibodies (TgAb), which could produce interferences in Tg measurement resulting in false-
negative, or more rarely, in false-positive results rendering the Tg value not interpretable.
Two randomized clinical trials (RCT), ESTIMABL1 [8] and HiLo [9] studies, were designed
to explore the non-inferiority of low activity (1.1 GBq) vs. the standard high activity
(3.7 GBq) of RAI and to compare different RRA preparations for each therapeutic arm, both
with THW and rhTSH stimulations (for a total of four comparison groups). The results
of the ESTIMABL1 trial [8] showed that, at the eight-month evaluation, a low-ablative
activity of 1.1 GBq was equivalent to a higher one, irrespective of the treatment preparation
(complete ablation of 91.7% vs. 92.9% of rhTSH and THW, respectively). THW provoked
a significant deterioration of quality of life [17] and more cases of lachrymal dysfunction
when compared with rhTSH stimulation. Similarly, the HiLo study [9] confirmed the
equivalence of low 131I activity (1.1 GBq) vs. the former standard of care. On the whole, the
ESTIMABL1 [8] and HiLo [9] trials independently support the use of 1.1 GBq of radioiodine
under rhTSH stimulation for RRA in low-, but also intermediate-risk DTC. The equivalence
of low radioiodine activity for RRA was also confirmed by several meta-analyses [29,30].

However, patients with very large thyroid remnants might require higher iodine
activity to achieve a complete remnant ablation. At this regard, Jin et al. [31] showed that
an approach in which the activity of RAI therapy is based on Tg values and on RAI uptake
on a diagnostic RAI scan can achieve a better ablation rate compared with a fixed activity.
This approach might be appropriate for those subjects with huge residual tissue eventually
avoiding the need for repeated RAI treatments.

Follow-Up Tools for DTC Patients Treated with Surgery Alone

Along with RRA refinement strategies, the available follow-up tools have evolved as
well. The main allies of DTC management are neck ultrasound (US), and the dosage of Tg
and TgAb. The introduction of highly sensitive Tg (hsTg), whose functional sensitivity is
about 0.1 or 0.2 ng/mL, allows for the simplification of the follow-up protocol, avoiding
the need for stimulated Tg (stTg). In fact, hsTg proved its equivalence in revealing distant
metastases compared with stTg, even in patients without RRA [32–35].

In patients treated with total thyroidectomy alone (i.e., not followed by RAI), small
thyroid remnants might persist resulting in low-detectable Tg [32,36,37]. In these cases,
a stable or decreasing trend is associated with remission, while a rising trend is highly
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suspicious of persistent/recurrent disease [14]. The same consideration can be made for
TgAb, as we observe in most cases a spontaneous decline [2,38,39]. Nonetheless, at least
half of patients will already have an undetectable Tg after 12 months of follow-up [32,36,37],
particularly when surgery is performed in an experienced center. As a consequence, the
presence of residual traces of Tg or TgAb should not be considered to be an automatic
indication for RAI treatment in lower-risk patients.

In addition, neck US provides an accurate evaluation of thyroid bed and loco-regional
lymph nodes (LN), limiting the need for WBS or more invasive imaging [40]. The diagnostic
accuracy of neck US coupled with cytology and Tg washout measurement in LN is close to
100% [2,41]. A large proportion of ATA low-risk patients (about 60%) [41] can be classified as
being in excellent response after surgery (i.e., post-surgical undetectable hsTg < 0.2 ng/mL
or stTg values < 1 ng/mL, without TgAb, and an absence of structural disease at US
evaluation). In these cases, RRA does not improve disease outcomes [42].

2.2. Adjuvant Treatment

Adjuvant RAI has the purpose to treat (and eventually reveal) microscopic tumor foci,
improving disease-free survival. As explained above, the first administration of RAI may
encompass both the ablative and adjuvant aims.

2.2.1. Low-Risk Patients

Low-risk patients represent the largest DTC subgroup.
Several retrospective or observational research works have questioned the useful-

ness of adjuvant RAI in low-risk patients, since no benefit in terms of survival has been
proved [10,14,27,28,43].

From this perspective, the updated results of the ESTIMABL1 [44] and HiLo [45]
trials found no differences in disease recurrence after RRA within any analyzed subgroup,
considering a median follow-up of 5.4 (ESTIMABL1) [44] and 6.5 [45] years, with only the
1.5% and 4.8% rate of abnormal findings for the ESTIMABL1 and HiLo study, respectively.
The higher percentage of events in the HiLo study is due to the larger proportion of
intermediate-risk patients enrolled in the study (about 40%), [45]. Observational studies
with longer follow-up data [46] showed no difference in recurrence rate after 10 years in a
DTC series treated for RRA, after both THW and rhTSH stimulation.

On the whole, observational and RCT results suggest not only the effectiveness of the
low activity of 1.1 GBq of 131I under rhTSH for RAI therapy, but also the potential futility
of adjuvant treatment in a lower-risk setting of DTC patients.

Two RCTs, the ESTIMABL2 Trial [47] in France and IoN trial (NCT01398085) in the
United Kingdom, have been designed to explore the effectiveness of RAI vs. no RAI treat-
ment in low-risk patients after surgery. While IoN results are still pending, the ESTIMABL2
results have recently been published [47]. A total of 776 low-risk DTC patients, either
pT1am Nx/0 or pT1b Nx/N0, were randomized to postoperative RAI treatment 1.1 GBq
under rhTSH stimulation (N = 389) or to follow-up (N = 387). The study was designed to
prove the non-inferiority of follow-up when compared with postoperative RAI treatment in
the percentage of patients free from events during the three years following randomization.
The event was a composite outcome, including any neck US abnormality (confirmed on
cytology or Tg washout), the need for subsequent treatment or serum markers abnormali-
ties (any Tg value above 5 ng/mL, or a Tg on LT4 treatment above 1 ng/mL confirmed on
two measurements 6 months apart for the RAI treatment group or a Tg on LT4 treatment
above 2 ng/mL confirmed on two measurements 6 months apart for the follow-up group;
the appearance of TgAb or an increase of >50% of the Tg Ab titers on two consecutive
measurements) [47].

The results of the study were positive and demonstrated no difference in the rate of
event-free patients in the two groups (95.6% vs. 95.9% of RAI-treated cases and follow-up
groups, respectively 90%CI −2.7–2.2) [47]. Biological events were the more common kind
of events and structural (abnormal neck US) or functional (abnormal RAI uptake) events
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occurred in only eight patients (three in the follow-up group and five in the RAI group).
Interestingly, serum Tg above three different cutoffs (0.2, 0.5, and 1ng/mL) was associated
with more events at 3 years after randomization, but with a statistically significative
difference only of the two latter ones [OR = 3.2 (1.4–7.5) and OR = 5.2 (2.0–13.5)] [47]. Finally,
no prognostic value of BRAF-mutation was found in the subgroup of the population from
which the molecular profile was performed [47]. While waiting for further results from
IoN, ESTIMABL2 is the first study to provide strong evidence against the routine use of
RAI therapy for low-risk patients, at least on a short-term basis [47].

It is worth noting that with contemporary diagnostic tools, in cases with disease-free
status after initial treatment, at least half of the DTC recurrences are observed within 3 years
and up to 80% are detected within 5 years of diagnosis [36]. However, the slow-growing
attitude of DTC may result in some delayed cancer relapses observed decades after surgery
and initial treatments [48,49], and the ESTIMABL2 trial results will need to be confirmed
after a longer follow-up of the study population.

2.2.2. Lower-Intermediate Risk Patients

Intermediate-risk DTC represents a very heterogeneous subgroup of DTC, showing
variable overlap with low-risk patients in terms of RAI indications and concerns [28,50].
Lower-intermediate risk DTC may be considered as DTC with microscopical extra-thyroidal
extension (mETE) and ≤5LN micro-metastases (in the central compartment), but not
extrathyroidal invasion, aggressive histology, clinically evident N1 (cN1), lateral neck or
mediastinal LN involvement (N1b) [2,51]. For this subset of patients, the risk of recurrence
ranges from between 5% and 10%, but it drops to less than 4% if an excellent response is
achieved after initial treatment, even in cases with additional risk features [26,52,53]. As a
result, the systematic use of adjuvant RAI is controversial in this category [50,53].

The limited utility of RAI in reducing cancer mortality [54] or improving progno-
sis was observed in several retrospective or observational series [55–57]. For instance,
Hay et al. [58] analyzed a large cohort of low-risk PTC followed at the Rochester Mayo
Clinic, covering a long time span of six decades. The patients were classified as low-
risk according to MACIS score <6 (a prognostic score calculated as follows: 3.1 (if aged
less than or equal to 39 years) or 0.08 × age (if aged greater than or equal to 40 years),
+0.3 × tumor size (in centimeters), +1 (if incompletely resected), +1 (if locally invasive),
+3 (if distant metastases present)). It is worth noting that, unlike the ATA risk classification,
MACIS is more of a survival rather than a recurrence prognostication tool. This population
includes low and intermediate patients according to the ATA risk stratifications [58]. The
authors observed no benefit in terms of 20-year mortality and recurrence rates in their pop-
ulation comparing patients undergoing and not undergoing RAI treatment. Interestingly,
during the most recent twelve years (1995–2014), the authors found in 740 N1 patients a
significantly higher regional recurrence rate for the groups who performed RAI rather than
surgery alone (p = 0.007) [58]. A possible interpretation of the worse outcome in RAI-treated
N1 low-risk patients is the number of metastatic LN on surgical reports: the higher the
number of metastatic LN, the higher the probability that patients received RAI (p < 0.001),
thus indirectly selecting a subset of more aggressive tumors [58]. This same paradox effect
was found by other authors and disappears when a propensity matching is performed [10].

Further conflicting data can be found in the literature. A large retrospective analysis
by Kim et al. of 8297 intermediate-risk patients [59] failed to prove that RAI reduced
the risk of loco-regional recurrence (HR = 0.852, p = 0.413), even in cases with additional
negative features, such as larger tumor size, multifocality, mETE, lymph node metastases,
and BRAF mutations. A longitudinal study of 470 PTC patients with mETE N0 or Nx found
no significant difference in terms of a structural incomplete response at 1 year in patients
treated with or without RAI [60], which was consistent with the results of a retrospective
study with a smaller population but a longer follow-up period (median 7 years) [61].
Another study, based on the SEER registry showed some benefits in disease-specific
survival, but only in particular subgroups, i.e., male gender (p = 0.005), age > 45 years
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(p < 0.001), and larger tumors (p = 0.007) [62]. On the other side, Ruel et al. [63] observed
a better OS with a 29% chance of decreased risk of death (HR = 0.71; CI 95% 0.62–0.82,
p = 0.001) in intermediate-risk patients undergoing adjuvant treatment (excluding aggres-
sive variants and multiple primaries) on a large sample of 21 870 DTCs from the National
Cancer Database. The authors found the same results even in younger patients (HR = 0.64;
CI 95%:0.45–0.92, p = 0.016) [63]. Considering RAI activity, lower iodine protocols have been
proposed for intermediate-risk patients with mainly lower risk features, but controversial
results are available [53,64–67] (Table 2) and different practices can be observed according
to each centers’ experience.

Table 2. Overview of studies considering lower RAI activity in intermediate-risk patients with mainly
lower risk features.

Authors,
Reference Study Design

Intermediate-
Risk

(N/Total)

THW
Preparation

(%)

Iodine
Activity-GBq

(N)

Median
Follow-Up

[Range]
Main Outcomes

Welsh et al.
[64] Prospective 53/53 100 1.1 (53) 24 years

(4–34)

51% of unsuccessfully
ablated patients;
30 years DSS and OS of 87%
and 62%, respectively, in
unsuccessfully ablated
patients, without significant
differences between groups.

Rosario et al.
[53] Retrospective 152/152 72.4 1.1 (152) 76 months

(18–140)
Persistent/recurrent disease
in 6% of patients.

Han et al.
[65] Retrospective 176/176 100 1.1 (96) vs. 5.5

(80)
7.2 years
(3.3–9.4)

No significant differences in
BIR/SIR between high vs.
low RAI activity groups.

Jeong et al.
[66] Retrospective 204/204 100 1.1 (80) vs.

3.7–5.5 (124)
10 years

(NA)

BIR/SIR 10.5% vs. 25% in
high vs. low RAI activity
groups, respectively
(p = 0.01);
Need for additional RAI in
6% vs. 22% of high vs. low
RAI activity groups,
respectively (p = 0.001).

Gomez-
Perez et al. [67] Retrospective 47/174 - 1.1 (13) vs. ≥1.1

(34) -

Recurrent disease for 67%
vs. 24% of low vs. high RAI
activity groups, respectively
(p = 0.003).

Abbreviations: N, number; THW, thyroid hormonal withdrawal; DSS, disease-specific survival; OS, overall
survival; NA, not available; BIR, biochemical indeterminate response; SIR, structural indeterminate response;
RAI, radioiodine.

2.2.3. Selective Use of Adjuvant RAI in Low and Lower-Intermediate Risk, According to
Ongoing Risk Classification

ATA guidelines suggest taking into account several clinical factors for the decision
to administer RAI, such as the biochemical and radiological post-operative status of the
patient, the quality of post-operative tools (Tg concentration, and neck US), the experience
of the thyroid surgeons, and patients’ opinions.

Based on these premises, evidence from the literature advocates more and more a wait-
and-see attitude in low and lower-intermediate-risks DTC, where delayed treatment does
not seem to affect the final outcome, while effectively stratifying the recurrence risk and
thus reducing the rate of unnecessary RAI [50,51,68,69]. Conversely, emerging structural
or biochemical incomplete responses might arouse suspicions even in formerly low-risk
patients, supporting additional adjuvant treatment in these selected cases [51,70,71]. The
results of the available studies are summarized in Table 3.
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Table 3. Selected use of RAI in intermediate-risk patients after ongoing risk stratifications.

Authors,
Reference Study Design Population

(N)

ATA-Risk
Patients

(N)

Group
Comparison

(N)

Follow-Up
(Range/SD)

Disease
Recurrences

Ballal et al. [70] Retrospective 254 IR (254)

(A) surgically
ablated (125)
(B) non-surgically
ablated a (129)

median 10.3 years
(1–21)

No significant
differences

Grani, Lamartina
et al. [51] Retrospective 252 LR (204)

IR (68)

(A) Cohort 1 (116):
TT and RAI
(B) Cohort 2 (156):
TT and DRS b

(A) median
8 years (3–12)
(B) median
4 years (3–6)

No significant
differences

Abelleira et al.
[71] Retrospective 307 LR (191)

IR (116)

(A) Low-dynamic c

LR+ IR (166)
(B) High-dynamic c

LR+IR (141)

(A) and (B) mean
59.5 months
(±22.31)

SIR for LR:
A (2%) vs. B (5%),
p = 0.3
SIR for IR:
A (5%) vs. B
(22%) p = 0.008

a, non-surgically ablated patients showed evidence of disease at diagnostic whole-body scan and were referred to
RAI; c, dynamic risk stratification has been assessed after initial treatment: patient at low-risk didn’t undergo RAI;
b, after total thyroidectomy the decision to perform RAI was deferred for around 12 months for appropriate DRS.
Abbreviations: N, number; SD; standard deviation; SIR, Structural incomplete response; LR, low-risk patients; IR,
intermediate-risk; THW, thyroid hormonal withdrawal; TT, total thyroidectomy; RAI, radioiodine therapy; DRS,
dynamic risk stratification.

The INTERMEDIATE trial (NCT04290663) is an RCT that is enrolling lower-intermed-
iate DTCs that is ongoing in France. The aim is to compare a systematic RAI treatment with
3.7 GBq of 131I after rhTSH vs. RAI treatment indication guided by postoperative results
(serum Tg values and diagnostic RAI scintigraphy, all patients having normal neck US at
study entry). While waiting for higher quality results, the actual evidence is in favor of a
careful selection of intermediate-risk DTC to be eligible for adjuvant RAI, notably for those
with lower-risk features.

2.2.4. Higher-Intermediate and High Risk

A global agreement is observed in favor of RAI treatment for both higher-intermediate
risk and high-risk patients [2,10].

Higher-intermediate risk includes patients with aggressive histology, or extensive
lymph node involvement, i.e., >5 metastatic LN, lateral neck metastases, cN1, the presence
of ≥3 LN metastases with extranodal extension. In these cases, the risk of recurrence is
≥20% (Table 1).

Considering specific features, some aggressive variants of PTC—i.e., insular, tall cell
(TCV), or diffuse sclerosing (DSV) variants—have a recognized worse prognostic role,
irrespective of tumor size or other histological factors [72,73]. The five-year survival rate
observed was 87.5% and 80.6% for DSV and TCV, respectively, while RAI therapy resulted
in effectively reducing mortality (p = 0.026) [72]. Insular variant and poorly-differentiated
thyroid cancer (PDTC) are rare and aggressive types of DTC, with frequent LN and distant
metastatic involvement and a ten-year survival of 50% or less [74]. In these cases, adjuvant
RAI therapy is usually recommended even if the benefits remain controversial; some studies
have reported some benefits [75,76]. A large retrospective SEER analysis found a longer
overall survival after RAI treatment (p = 0.001), even without improving the cancer-specific
survival (p = 0.083) [77].

The preferred RAI activity for these higher-risk classes is usually ≥3.7 GBq, while the
treatment preparation mainly relies on THW [16]. However, the most effective protocols
are still debated, with several studies showing variable results, according to different
preparations and RAI activities.

Considering the timing of RAI administration in higher-risk categories, Yu et al.
observed that early RAI therapy (within 3 months) was associated with less biochemical
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incomplete responses, but it had no influence on the rate of structural disease recurrence [78]
while Kim et al. found no such difference within 6 months of surgery [79].

In summary, adjuvant RAI is recommended in all higher-risk patients based on obser-
vational evidence demonstrating advantages in recurrences and survival rates. The best
RAI administration protocol has not yet been fully identified [80]. Some studies support the
higher activity (averagely 3.7–5.55 GBq) of iodine, and THW is the preparation of reference.

2.3. Therapeutic RAI

Therapeutic RAI refers to radioiodine administration for persistent/recurrent disease
or distant metastases. Loco-regional metastases (i.e., LN metastases and the thyroid bed) are
the most frequent sites of recurrence (20–30% of all cases) [81] and, in these cases, patients
are often referred for surgery. Distant metastases are rare (<10%) and the most frequently
involved organs are the lungs and the bones. RAI therapy is the favored starting approach
for metastatic DTC [2]. All metastatic DTC cases should be discussed in a multidisciplinary
tumor board. The presence of bulky or threatening metastatic sites should lead us to
consider focal treatments (e.g., surgery, interventional radiology, and radiotherapy) as an
alternative, or in association with RAI therapy, as well as in the case of single or oligo
metastatic disease, in order to limit repeated RAI administrations.

Repeated therapeutic activities are administrated (every 3, 6, or 12 months) until a
complete response is obtained or refractory disease occurs [50,82,83]. The 10-year disease-
specific survival is 92% for those patients who show uptake and respond to RAI treatment,
while it drops to 30% and 10% for the patients who do not achieve a complete response
to RAI despite uptake and those who do not uptake RAI, respectively [84]. Predictors
of a good response to RAI usually are: younger age, iodine avid metastases, a small
metastatic disease burden, well-differentiated histology, and lower Tg values at the first RAI
treatment [81,84–89]. In contrast, the presence of PDTC, bone metastases, macronodular
lung lesions, and the absence of RAI uptake are independent predictors of RAI failure and
worse prognosis [86,90,91].

Unfortunately, even in the presence of significative RAI uptake, disease progression
can occur in favor of RAI refractory disease, as observed in follicular thyroid carcinoma
(FTC) [81], and RAS mutated tumors [92].

Miliary lung metastases, sometimes evident only on WBS without radiologic evidence
of disease, along with younger age groups (<40 years), have a better response after RAI
therapies, allowing for a 10-year survival rate of 90.9% vs. 68.9% and 30.6% for patients
with detectable subcentimetric or larger metastases, respectively [93].

Bone metastases are the second-most-frequent metastatic site. Up to 13% of patients
will develop bone lesions [94] and they represent a negative prognostic factor, reducing
patients’ overall survival and quality of life, due to pain or skeletal complications [86,94,95].
In almost 32% of cases, patients may achieve a complete response with a combination of
RAI and loco-regional treatments [96,97], which significantly improves the overall survival
(7.7 years vs. 3.9 years, for combined therapies and RAI alone, respectively) [96]. However,
according to a multicenter survey, up to 37.1% of patients will show harmful or fatal skeletal
events [98]. Favorable prognostic factors are younger age (<45 years old) and less than
three metastases [94]. In particular, cases where only RAI uptake at WBS scans is detectable,
without corresponding lesions on conventional radiologic studies, have the highest chance
of a complete response [95,99].

In the event of metastatic disease, higher RAI activity (≥3.7 GBq) is necessary to
produce a therapeutic effect and two approaches can be used: fixed doses or dosimetry
protocols. An empiric fixed RAI activity between 3.7–7.4 GBq is the most frequently
used strategy, as this approach is easier and represents a good compromise in terms of
effectiveness and adverse events. However, empiric doses ignore the individual radioiodine
kinetics and safety concerns have been raised as fixed activities often exceed the maximum
tolerated dose in older subjects, even in cases with normal renal function [100]. On the other
hand, the dosimetry approach is based on the assessment of the lesions’ radioiodine uptake
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and bone marrow tolerance, respecting the “as high as safely administrable” rule [101].
Dosimetry is supposed to provide advantages in several situations: from limited loco-
regional disease to advanced stages, where tumor burden can be measured by conventional
radiologic tools; in younger patients, where lower activities may be equally effective, as well
as desirable; or also in disseminated lung metastases, in order to prevent lung fibrosis [101].
However, dosimetry requires more time and resources, along with specific skills and the
administration of low 124Iodine activities to test lesions’ iodine metabolism, which could
also result in stunning the metastases, reducing the final effectiveness of the therapeutic
RAI [101–103]. It is worth noting that the activity administered at each RAI course is usually
greater with the dosimetry approach than with the empiric approach. Despite the theoretical
advantages of dosimetry, Deandreis et al. [104] found no differences in terms of survival,
comparing patients who underwent fixed doses (3.7 GBq) or whole-body dosimetry in two
major oncological centers. No difference in survival was found after stratifying for the
major predictive factors of RAI response (age and metastatic burden) [104]. Interestingly,
the patients treated with the dosimetric approach received larger cumulative activities than
those treated with fixed activity [cumulative activity 14.8 GBq (range, 1.8–52.5 GBq) at
Gustave Roussy vs. 24.2 GBq (range, 2.7–112 GBq) at Memorial Sloan-Kettering Cancer
Center (p < 0.01)].

Another issue concerns hormonal preparation, i.e., rhTSH or THW. THW results in
a higher uptake and a longer half-life in the metastatic lesions of RAI [105] and can also
reveal more metastatic foci [106].

However, due to the well-known drawbacks and potential health risks of THW,
rhTSH has been explored as an alternative protocol for metastatic patients [107]. Some
studies showed benefits and the same effectiveness of rhTSH preparation compared with
THW [108–115]. However, most of these cohorts are small and retrospective, and the
follow-up of the patients treated with rhTSH is most often significantly shorter than that of
the patients treated after THW, preventing any reliable conclusions (Table 4). A systematic
review confirmed rhTSH and THW equivalence for ablative purposes, while the authors
found insufficient data to conclude the same in a metastatic framework [116]. THW is
still the standard preparation for therapeutic RAI administration for patients with distant
metastases and rhTSH should be considered to be an alternative option only in rare cases
in which THW is contraindicated.
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Table 4. Overview of studies exploring rhTSH preparation for therapeutic radioiodine treatment in patients with distant metastases.

Authors,
Reference Study Design Number of Patients

(rhTSH/Total)
Median Age (Years)

[Range] rhTSH
Aggressive

Histology a (%) Type of RAI Protocol Metastatic Sites Median Follow-Up
[Range/SD] Response (N) OS Difference

with THW

Lippi et al.
[108] Retrospective 12/12 -

[48–75] 83.3 Dosimetry(100%)
lung, bones, and

other b
12 months

[-]

Biochemical c (10)
Tg reduction 40%;
Tg stability 20%;
Tg increase 40%

NA

De Keizer et al.
[109] Prospective 16/16 73.1

[41–87] 68.7 Empiric doses
(100%)

lung, bones, and
other b

3 months
[-]

Biochemical c (11)
Tg reduction 27%;
Tg stability 18%;
Tg increase 55%

NA

Tala et al.
[110] Retrospective

58/175
(82 THW and

rhTSH)

60
[20–89] d 63.8 c Dosimetry

(100%) lung and/or bones
3.4 years

[1.3–10.3] d

Structural (43) d

CR 19%; PR 0%;
SD 35%; PD 46%

No difference

Zagar et al.
[112] Prospective 18/18 72

[37–83] 77.8 Empiric doses
(100%)

lung, bones, and
other b 50 months [15–19]

Biochemical c (18)
Tg reduction 17%;
Tg stability 22%;
Tg increase 61%

NA

Klubo-
Gwiezdzinska et al.

[111]
Retrospective 15/56 62.4 e

[±12.6] 35.7 Dosimetry (80%)
lung, bones, and

other b
72 months e

[±36.2]

Structural (15)
CR 7%; PR 0%;

SD 73%; PD 20%
No difference

Rani et al.
[113] Prospective 37/37 48.7

[14–70] 24.3 Dosimetry (100%) lung and/or bones - - -

Simoes Pereira et al.
[81] Retrospective 68/95 65.5

[22–85] d 11.8 Empiric doses
(100%)

lung, bones, and
other b 82 months [8–332]

Structural (67) d

CR 6%; PR 4%;
SD 30%; PD 60%

No difference

Gomes-Lima et al.
[115] Retrospective 27/55 59

[47.5–65.5] d 30.0 Dosimetry (89%)
lung, bones, and

other b
4.2 years

[3.3–5.5] d

Structural (27)
CR 0%; PR 63%;
SD 11%; PD 56%

No difference

Tsai et al.
[114] Retrospective 37/88 46.1

[-] 0 Empiric doses
(100%)

lung, bones, and
other b

6.5 years
[1.0–18.1] - No difference

a, including follicular thyroid cancer, Hürtle cell, poorly differentiated thyroid cancer, or aggressive histotypes (i.e., tall cell variant). b, including neck recurrences and/or liver, brain, or
other rare metastatic sites. c, Biochemical response refers to the change of Tg levels after therapy. d, data refers to the group treated exclusively with rhTSH. e, age and follow-up are
expressed as mean (standard deviations). Abbreviations: rhTSH recombinant human TSH; SD, standard deviations; RAI, radioiodine; N, number; OS, overall survival; CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease; NA, not applicable.
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Figure 1 summarizes the indications for RAI therapy considering both dynamic risk
assessment and 18FDG-PET information.
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Figure 1. Indications for RAI therapy considering both dynamic risk assessment and 18FDG-PET
information. Abbreviations: RAI, radioiodine; ATA, American Thyroid Association; FDG-PET,
fluorodeoxyglucose-positron emission tomography; Tg, thyroglobulin; rhTSH, human recombinant
thyroid stimulating hormone; THW, thyroid hormone withdrawal; ER, excellent response; SIR,
structural incomplete response; BIR, biochemical incomplete response; IndR, indeterminate response.

3. Pediatric DTC

DTC in the pediatric and adolescent populations represents a rare disease with a
higher rate of local and distant metastatic disease compared with adult DTCs [117]. Despite
the aggressive presentation [117–122], pediatric DTCs are the most RAI-sensitive cancers,
and a cure can be achieved in up to 52% of the cases [121]. These young patients have
similar recurrence rates but lower specific mortality rates than adults in studies with long
follow-up periods [117–120,122], and the rare cases of cancer-related deaths occur at an
adult age [117].

Overall, RAI treatment after bilateral thyroid surgery is associated with an improved
outcome [123]. The activity of RAI to be administered is calculated according to the body
weight of the young patient (1–1.5 mCi/Kg) and the preferred preparation method is
THW, although some experiences with rhTSH report non-inferior results [124]. Multi-
ple RAI treatment courses are often necessary to obtain complete disease remission, and
in a retrospective analysis of 125 children, 22% of patients required three or more RAI
courses [120]. Considering metastatic cases, the cumulative RAI activity ranges from an
average of 11.98 GBq to a maximum activity of 22.2 GBq, according to surveys [121,125],
although Pires et al. found no therapeutic benefit after 14.8 GBq of iodine administration
in their cohort of 118 patients [126]. Interestingly, some delayed responses to RAI were
observed in pediatric patients with lung metastases on simple surveillance after repeated
RAI treatments [127] supporting a less frequent RAI treatment schedule in these patients.
Due to the more aggressive therapeutic approach applied to pediatric DTC, several con-
cerns about iodine safety have arisen over time, notably regarding fertility and additional
oncological risks.
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4. Side Effects of RAI

Even if RAI therapy is universally considered a safe and well-tolerated treatment [14],
some side effects are possible. In fact, in addition to the thyroid gland, the presence of
sodium/iodine symporter (NIS) has been shown in several organs, allowing significant
iodine uptake, but also leading to an increased susceptibility to adverse events (AEs)
during RAI treatments [128]. The most frequently involved non-thyroidal tissues are the
salivary and nasolacrimal glands, but potential toxicity on gastrointestinal tissues, bone
marrow, and gonads has also been described during the course of succeeding radioiodine
administrations [128–133]. The real incidence of RAI-related AEs varies, according to the
studies and the detection methods. The risk of any RAI-related toxicities increases with the
increasing cumulative administered activity of RAI [134–136], even if few reliable data are
available about the rate of AEs after very high RAI doses. However, potential AEs may
develop anyway, even after one RAI treatment or low activity administration, according to
individual susceptibility.

The most common chronic side effects are summarized in Table 5.

Table 5. Summary of radioiodine side effects.

Site Description Frequency
(%) Activity (GBq) References Commentary

Eye

Inflammation of the lacrimal
gland and xerophthalmia

16 (92% at least one
altered lacrimal test) 2.96–22.2

[131,135,137–142] Test alteration is not related
to patient’s symptoms.

Obstruction of lacrimal duct
and epiphora 2.2–18 >5.55

Conjunctivitis (chronic or
recurrent) 23 3.7–70.3

Salivary glands

Sialadenitis:

[137,142–146]

Linear correlation to
cumulative activity, more
than half of patients develop
xerostomia even in the
absence of acute
post-treatment symptoms.
5% of xerostomia with
1.5 GBq

- acute 2–67 3.7–48.1

- chronic (xerostomia,
obstruction) 2–43 1.48–48.1

Atrophy 21–78 3.7–7.4

Taste and Smell Transient loss or change in
taste and smell 2–58 1.48–48.1 [137,143,144] Dependent on administered

activity.

Nose Pain
Epistaxis Rare > 7.4 [144]

Thyroid

Radiation thyroiditis

>2.8 [147]

- total thyroidectomy
without large
remnants

Rare

- lobectomy 60

Gastrointestinal system

Nausea 5–67 1.48–16.5

[144,145,148]

Correlation with
administered activity. No
symptoms with an activity
of 1.1 GBq or less. Nausea
starting from 1.5 GBq.
Vomiting 1% with <3.7 GBq.

Vomiting 1–15 3.7–16.5

Bone marrow Any hematological
abnormality 1—100 3.7–38.5 [137,144,149]

Risk increases with
cumulative dose and
frequency of treatments.
Grade > 3 abnormalities
are rare.

Fertility

Transient ovarian failure 8 1.1–40.7

[27,150]

Consider cryopreservation if
repeated treatments are
necessary or activities higher
than 3.7 GBq are required in
fertile men.

Transient or permanent
testicular failure 100 1.1–49.4

Prolonged or permanent
hormonal impairment (FSH
increase)

81 >22
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Table 5. Cont.

Site Description Frequency
(%) Activity (GBq) References Commentary

Second
Malignancy Solid cancer and leukemia Rare >7.4 [151–154]

Linear correlation to dose.
+27% increase in risk
compared to general
population.

Lung Pulmonary fibrosis Rare 21–71 [155,156]

Usually pediatric DTC
patients with lung
metastasis; increased risk
after several consecutive RAI
courses and higher
cumulative activity.

Abbreviations: DTC, differentiated thyroid cancer; RAI, radioiodine.

Although extremely rare, the onset of RAI-related second malignancies represents
a controversial and feared late AE. Growing concerns have risen especially for younger
DTC patients, due to the more aggressive therapeutic approaches applied and the long life
expectancy. A study based on a SEER large sample of 27050 pediatric DTC patients showed
that the risk of second neoplasms appeared concrete for both hematologic (RR = 1.51;
CI 95: 1.08 to 2.01)—including leukemia (RR = 1.92; CI 95:1.04 to 3.56)—and solid cancers
(RR = 1.47; CI 95: 1.24 to 1.74)—including breast cancer (RR = 1.46; CI 95: 1.10 to 1.95) [157].
Younger DTC survivors of ≥20 years disclosed the greater risks of secondary neoplasms,
and RAI-related cancers were estimated to be 6% and 14% for solid and hematologic tumors,
respectively [157]. Another SEER-based study showed a higher rate of second breast cancer
in younger DTC patients who performed RAI therapy compared with both non-RAI-
treated patients (HR 1.65; CI 95: 1.33–2.05, p < 0.001) and the general population (HR 1.21;
CI 95:1.02–1.44, p < 0.05) [158]. However, breast cancer risk remains controversial and the
above results have not been confirmed in a large and focused metanalysis of 200247 DTC
patients treated with or without radioiodine [159]. Similarly, Kim et al. [160] performed
a propensity-score analysis on a wide retrospective multicenter sample of 24318 patients,
including RAI-treated and non-RAI-treated subjects, concluding that there was an absence
of significant risk of the occurrence of second tumors.

Considering the high rate of salivary gland AEs, several preventive strategies have
been investigated in pre-clinical and clinical settings [131,161]. Pre-clinical studies explored
the efficacy of various agents, including antioxidants (i.e., Vitamin E) and nutraceutics (i.e.,
Curcuma longa, Ocimum sanctum, and zinc), showing potential benefits in non-human subject
tests [161]. A clinical trial analyzing the influence of Vitamin C on salivary glands’ iodine
absorption found only limited effects, irrespective of the moment of administration during
RAI therapy [162]. Similarly, pilocarpine, a parasympathomimetic drug stimulating salivary
glands, did not prove to provide any substantial advantages, with potential severe toxicities
in selected categories, i.e., patients with asthma or cardiac diseases [161]. Amifostine, a
supposed salivary gland radioprotector, showed potential effectiveness in two clinical
trials [163,164], but failed to confirm the same results in a systematic review [116], and its
tolerance and costs further limited its application in clinical practice [161]. The potential
benefits of sialagogues agents, such as lemon candies and lemon juices, have been reported
thanks to the increase in salivary function and, thus, in iodine washout [161]. However,
some concerns emerged after evidence of a higher rate of AEs in early lemon candy eaters
(<24 h after iodine administration), due to the concurrent rise in blood flow to the glands,
which potentially increased iodine uptake and retention [165]. This event, also named the
“rebound effect”, has not been definitely proven [166,167], but the timing of sialagogue
administration remains controversial, as well as potential rebounds during the first 24 h
after iodine delivery [161,166,168].
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5. RAI Refractoriness
5.1. Definition and Prognostic Factors

Iodine refractoriness implies the loss of effective radioiodine uptake and the absence of
a therapeutic effect of RAI treatment. The clinical evidence of refractory disease corresponds
to a biological tumor change, due to the critical reduction or the loss of specific iodine
transporters and other fundamental proteins involved in iodine metabolism.

According to the ATA guidelines, RAI refractoriness is defined by: (i) the absence
of any RAI uptake in known metastatic sites; (ii) the loss of RAI uptake after former
evidence of RAI uptake; (iii) the presence of a heterogeneous uptake with the presence of
RAI-avid and non-RAI-avid metastases; or (iv) the evidence of disease progression after
a significative RAI uptake within 6 to 12 months of the last RAI treatment [2]. In line
with this definition, cases labeled as RAI refractory should not undergo further treatment,
due to their ineffectiveness [2]. Several experts have tried to refine the definition of RAI
refractoriness, proposing additional features [169], such as the evidence of 18FDG-PET avid-
metastases [170] or a cumulative dose exceeding an activity of 22.2 GBq (600 mCi) [169].
Another scenario that can be assimilated with that of RAI refractory disease is that of locally
advanced and unresectable DTCs; these patients have an overall survival similar to RAI
refractory patients and should be treated accordingly [171].

Overall, patients fulfilling the definition of RAI refractory disease will not achieve cure
with RAI treatment alone but sometimes can obtain some benefit from further RAI, and
these cases should be discussed in a case-by-case fashion in expert multidisciplinary boards.

In the event of discordant RAI-avid and RAI refractory metastases, patients formally fit
the definition of refractoriness, but they may still achieve some benefits from a combination
of RAI and other therapeutic strategies [169]. It is worth noting that the overall prognosis of
the patient is driven by the less-differentiated foci of disease (i.e., those that do not uptake
RAI) and the treatment of these sites should be prioritized. Even if 18FDG-PET uptake is
associated with worse OS, regardless of the RAI uptake status [172,173], some responses to
RAI can be observed in patients with distant metastases that show both 18FDG-PET and
RAI uptake [174].

Several clinical and molecular features have been associated with a worse outcome
in DTC patients and the emergence of RAI refractoriness. Considering clinical features,
older age has been traditionally associated with a worse DTC prognosis, since the elderly
carry an increased risk of metastatic disease [175] and of refractory DTC [84]. In RAI
refractory patients, an age of >60 years-old (HR = 8.498, CI 95:1.555–46.427, p = 0.0135) and
the male gender (HR = 5.435, CI 95:1.261–23.256, p = 0.0231) negatively affected patients’
survival [176]. However, Saie et al. [177] observed a reduction in the overall survival
(4.65 years, 95% CI: 2.04–5.68, p = 0.0008) only in patients older than 75 years, while
they failed to prove an association between age and progression-free survival in their
cohort. Other reports did not confirm the negative prognostic role of age in PDTCs, even
considering different thresholds [178].

Luo et al. [179] found that the presence of gross ETE, aggressive histology, BRAF-
V600E, and telomerase reverse transcriptase (TERT) promoter mutations were related to
the occurrence of refractory DTC. As stated above, aggressive histotypes usually develop
distant metastases and develop RAI refractoriness [73,81]. Histology is also associated
with RAI uptake, with FTC and Hürtle cell carcinoma (HCC) showing opposing abilities in
iodine concentration, but the same higher rate of progression after RAI [81]. Patients with a
gross disease burden, with larger pulmonary or bone metastases, usually do not benefit
from RAI treatment and most often have refractory phenotypes [91,93,95].

Considering the molecular signature of refractory DTC, the mitogen-activated protein
kinase (MAPK) pathway—mainly BRAF mutations and the TERT promoter molecular
alterations—is most frequently involved in DTC tumorigenesis and development of RAI re-
fractoriness [180]. The most frequent mutation in PTCs is BRAF-V600E, found in up to 60%
of PTC [181]. The BRAF mutation causes the uncontrolled activation of the MAPK pathway
and is associated with a more aggressive phenotype and a less favorable outcome [182].
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Moreover, BRAF mutated tumors have a less-differentiated phenotype with the down-
regulation of iodine metabolism genes, such as NIS and thyroperoxidase (TPO) [183,184]
resulting in a decreased or absent radioiodine uptake and the loss of RAI sensitivity [92].
TERT promoter mutations are considered to be a late event in DTC carcinogenesis and
are often found in more aggressive histological types, such as PDTC [185] and anaplastic
thyroid cancer [186]. The BRAF and TERT duet is associated with a poor outcome [182,187].

Refractory tumors have an enhanced expression of glucose transporters, such as
GLUT1 [188,189]. This change is reflected in the occurrence of 18FDG-PET avid-metastases and
is associated with iodine refractoriness, aggressive disease, and poor outcome [170,190,191].

The role of oxidative stress is also recognized in thyroid cancer carcinogenesis and
RAI refractoriness [192]. Indeed, the redox status of the cells influences the expression of
the NIS [193]. In BRAF-mutated tumors, an increased expression of NOX4 is observed
via a TGF-beta-SMAD3-dependent pathway and plays a role in NIS repression [194]. This
phenomenon might be due to epigenetic modifications as it has been demonstrated to be
reversible [192].

5.2. Strategies to Overcome RAI-Refractoriness

As stated above, the RAI refractory phenotype implies the loss of fundamental cellular
proteins involved in iodine uptake and metabolism. Over recent decades, growing attention
to the molecular landscape of refractory tumors has driven research into mechanisms un-
derlying refractoriness, allowing initial attempts to restore iodine sensitivity, with variable
results. The earliest molecular pathways explored in this framework have been those of
retinoid acid (RA) receptors and peroxisome proliferator-activated receptor G(PPAR G), but
with disappointing results [195].

The main breakthrough in this framework was provided by the finding of MAPK
signaling as the pathway that was the most frequently involved in the refractoriness
process [196,197]. The major trigger of the MAPK pathway is represented by BRAF-
V600E [181,185,197], a leading mutation that, by activating the downstream kinases MEK
and ERK, produces an uncontrolled stimulation, resulting in a downregulation of iodine
metabolism genes, such as NIS and TPO [183,184,196–198]. The more recent attempts to
stimulate the redifferentiation process have been built around these molecular steps, find-
ing through the selective BRAF and MEK inhibitors the pivotal therapeutic agents [196,197].
The first anti-MEK agent used in clinical practice was selumetinib, which was administrated
to a cohort of 24 iodine refractory patients with variable molecular status (RAS, BRAF mu-
tated, or wild-type) [199]. Of the 20 evaluable subjects, five had a partial RECIST response
and three had a stable disease, with RAS-mutated patients being better responders [199].
During the following years, other studies focused on specific BRAF inhibitors and on the
combination of BRAF and MEK inhibitors. In the former case, small cohorts of BRAF-V600E
mutated refractory DTC [200–202] have been treated with dabrafenib or vemurafenib alone,
finding a rate of objective response ranging from 20 to 50%. The results of these series are
listed in Table 6.

Table 6. Overview of published or ongoing studies on redifferentiation with anti-MEK or anti-
BRAF drugs.

Authors/Identifier,
Reference Drug Patients

(N)

Molecular
Findings

(N)

Restored RAI
Uptake

(N)

Complete
Response [N (%)]

Partial Response
[N (%)]

Ho et al.
[199] Selumetinib + 131I 24

BRAF-V600E (9)
NRAS (5)

RET/PTC (3)
WT (3)

8 0 5 (25)

Rothenberg et al.
[200] Dabrafenib + 131I 10 BRAF-V600E (10) 6 0 2 (20)

Jaber et al.
[203]

anti-MEK and/or
anti-BRAF + 131I 13

BRAF-V600E (9)
NRAS/KRAS (3)

WT (1)
9 0 0 (0) a
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Table 6. Cont.

Authors/Identifier,
Reference Drug Patients

(N)

Molecular
Findings

(N)

Restored RAI
Uptake

(N)

Complete
Response [N (%)]

Partial Response
[N (%)]

Dunn et al.
[202] Vemurafenib + 131I 12 BRAF-V600E (10) 4 0 4 (25)

Iravani et al.
[204] anti-MEK ± anti-BRAF + 131I 6 BRAF-V600E (3)

NRAS (3) 4 0 3 (50)

Leboulleux et al.
[205]

Trametinib + dabrafenib + 131I
Trametinib

21
10

BRAF-V600E (21)
RAS (10)

20
6

0
0

8 (38)
2 (20)

Tchekmedyian et al.
[206]

Vemurafenib +
Anti-ErbB3 6 BRAF-V600E (6) 5 0 2 (40)

NCT04554680—
Japan Dabrafenib + Trametinib 5 BRAF-V600E or RAS - - -

NCT02152995—
United
States

Trametinib 34 BRAF or RAS - - -

a, all of the nine patients disclosed stable disease. Abbreviations: I, iodine; N, number; RAI, radioiodine.

A histological drug-induced change was evidenced in a patient harboring the BRAF-
K601E mutation and treated for 8 weeks with trametinib ± dabrafenib [207]. In this case, the
biopsy following the target therapies treatment showed a more differentiated pattern and a
reduced mitotic rate, compared to the initial histology. Moreover, the patient developed
overt hyperthyroidism and a metabolic response on 18FDG-PET [207].

Further insights into molecular changes during redifferentiation therapies have
emerged over time. As previously reported [208], the inhibition of the MAPK pathway
by anti-ERK agents induced the overexpression of the HER3 receptor, which reduced the
effects of these drugs. Lapatinib, a HER3 inhibitor, proved to prevent this mechanism,
improving the MAPK inhibitor effectiveness and paving the way for this therapeutic
combination. A pilot study by Tchekmedyian et al. [206] explored the combination of
vemurafenib and a monoclonal antibody anti-HER3 (CDX-3379), due to the supposed
reduction of the anti-BRAF inhibition provided by the rebound of tyrosine kinase erbB-3
(HER3). The authors [206] observed two partial responses (PR) and two progressive dis-
eases (PD) in a series of six BRAF-V600E-mutated patients and confirmed the interest of
further investigations, including these combinations [206].

Considering the promising results of MAPK inhibitors, several trials are
ongoing worldwide, in order to find an effective redifferentiation protocol. MERAIODE
(NCT03244956) is a multicenter interventional trial, promoted by the French network
TUTHYREF, and aimed to explore the effectiveness of trametinib (anti-MEK) alone in the
event of RAS-mutated DTC or a combination of dabrafenib (anti-BRAF) and trametinib,
in case of BRAF-V600E-mutated DTC. After the differentiation protocol, patients with
restored iodine sensitivity undergo RAI treatment at the fixed activity of 5.55 Gbq after
rhTSH stimulation. Preliminary results in 21 BRAF-mutated patients showed PR in 38%
(95% CI 18–61), SD in 52% (95% CI 30–74) and PD in 10% (95% CI 1–30). The tumor control
rate was 90% and objective responses were observed in 38% of cases, with no patients expe-
riencing adverse events of grade 4 or 5 [205]. The preliminary results of the 10 evaluable
patients of the RAS cohort were less promising with only two PR and seven SD [209].

Other trials with similar interventions from Japan (NCT04554680) and the United
States (NCT02152995) are actually ongoing in BRAF-V600E or RAS-mutated DTC patients.
The former is aimed at exploring the combination of dabrafenib and trametinib after one
or four weeks of therapy in a five-subject population; the latter explores the anti-MEK
trametinib after four weeks of therapy, in a cohort of thirty-four patients. The results of
these studies are pending.
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6. Concluding Remarks

Radioiodine represents the oldest therapeutic approach for DTC and the only one
capable of obtaining a complete remission at the metastatic stage. However, despite the
long tradition of its use, RAI strategies still have several unsolved issues.

Indications for RAI therapy mostly rely on the ATA recurrence risk stratification,
which provides an estimate of the risk of persistent or recurrent disease after thyroid cancer
surgery. This system is complex due to the numerous items to be taken into account and can
be hard to apply in real life practice. To achieve a fine-tuned selection for ablative, adjuvant
or therapeutic RAI and to overcome the present limitations of the ATA stratifications,
ongoing assessments with serum Tg and TgAb assessment and neck US may be considered.
Furthermore, RAI protocols and timing are not standardized, resulting in a variety of
behaviors according to single-center practice. In this light, focused studies are needed to
fill these gaps of evidence and improve our practice.

An improved risk-based selection of patients and the growing availability of high-
quality data have led to a more accurate definition of candidates for ablative RAI and
the most effective protocols for lower-risk patients. In most cases, very low and low-risk
patients may safely avoid systematic RAI therapy, and eventually be selected for a low-
dose protocol, as supported by the ESTIMABLE1, HiLO, and ESTIMABLE2 RCTs [8,9,47].
The intermediate-risk category still appears to be too heterogeneous to draw univocal
and comprehensive indications for RAI treatment. Splitting this category into lower- and
higher-intermediate-risk might help to refine the therapeutic indications in this group and
a post-surgical workup is likely to improve RAI decisions. The results of the IoN and
Intermediate RCT will probably shed light on these issues.

Adjuvant RAI is performed in patients who do not clearly show any evidence of
disease, and so, a variable proportion of them are likely to be overtreated. In this light,
high-risk patients are good candidates for adjuvant RAI, but a tailored approach is required
for most of the other risk classes, where the recurrences are rarer [2,16]. On the other hand,
the high-risk class still lacks high-quality evidence, which is partially ascribed to the rarity
of these patients and the optimal treatment schedule is yet to be established.

Some safety issues are still awaiting clarification. Prevention strategies are urgently
needed for frequent RAI AEs, such as xerostomia and salivary gland impairment. On the
other hand, due to the unclear risks of RAI-related second cancers, further insights are
required and greater caution should be exercised regarding the long-term safety of iodine.

Finally, despite broad progress in terms of knowledge about and protocols for tumor
redifferentiation, several issues are still unresolved. Patient selection still needs to be
fine-tuned, along with the whole molecular pathway underlying the refractory phenotype.
Further molecular alterations and relative targetable drugs should be explored and larger
randomized trials are needed. Moreover, the optimal schedule for redifferentiation and the
ideal sequence with other available therapeutic options, such as tyrosine-kinase inhibitors,
has yet to be established.

In conclusion, RAI therapy still represents a cornerstone of DTC treatment. A tailored
approach according to the risk features of patients and their tumors has led to a progressive
refinement of therapeutic strategies, optimizing RAI indications and patients selection.
Several questions remain unanswered and high-quality studies are needed to further clarify
the future RAI strategies.
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