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Abstract. The tissue kallikrein‑kinin system (KKS) is an 
endogenous multiprotein metabolic cascade which is impli-
cated in the homeostasis of the cardiovascular, renal and 
central nervous system. Human tissue kallikrein (KLK1) is a 
serine protease, component of the KKS that has been demon-
strated to exert pleiotropic beneficial effects in protection from 
tissue injury through its anti‑inflammatory, anti‑apoptotic, 
anti‑fibrotic and anti‑oxidative actions. Mesenchymal stem 
cells (MSCs) or endothelial progenitor cells (EPCs) consti-
tute populations of well‑characterized, readily obtainable 
multipotent cells with special immunomodulatory, migratory 
and paracrine properties rendering them appealing poten-
tial therapeutics in experimental animal models of various 
diseases. Genetic modification enhances their inherent proper-
ties. MSCs or EPCs are competent cellular vehicles for drug 
and/or gene delivery in the targeted treatment of diseases. 
KLK1 gene delivery using adenoviral vectors or KLK1 protein 
infusion into injured tissues of animal models has provided 
particularly encouraging results in attenuating or reversing 
myocardial, renal and cerebrovascular ischemic phenotype 
and tissue damage, thus paving the way for the administra-
tion of genetically modified MSCs or EPCs with the human 
tissue KLK1 gene. Engraftment of KLK1‑modified MSCs 
and/or KLK1‑modified EPCs resulted in advanced beneficial 
outcome regarding heart and kidney protection and recovery 
from ischemic insults. Collectively, findings from pre‑clinical 
studies raise the possibility that tissue KLK1 may be a novel 
future therapeutic target in the treatment of a wide range of 
cardiovascular, cerebrovascular and renal disorders.
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1. Introduction

The tissue kallikrein‑kinin system (KKS) is an endogenous 
multiprotein metabolic cascade which is implicated in a 
plethora of biological processes such as inflammation, vasodi-
lation, blood coagulation, fibrinolysis, blood pressure control, 
vascular permeability, cardioprotection, smooth muscle 
contraction, electrolyte balance and pain induction. Activation 
of KKS leads to synthesis of the vasoactive peptides kinins by 
enzymatic hydrolysis of precursor kininogens including high 
molecular weight kininogen (HMWK) and low molecular 
weight kininogen (LMWK) (1,2). Kininogens are physiological 
substrates for proteolytic cleavage by a family of serine prote-
ases consisting of kallikreins (KLKs) originating from plasma 
(pKLK) and tissue (tKLK)  (3). Human plasma kallikrein 
(KLKB1) is a serine protease synthesized predominantly in 
the liver that possesses a high affinity binding site for HMWK, 
which is cleaved to produce the nonapeptide bradykinin. Human 
tissue kallikrein (KLK1) is a serine protease of the S1 serine 
protease superfamily which cleaves LMWK to produce the 
decapeptide Lys‑bradykinin (kallidin) that is further processed 
to bradykinin by a second aminopeptidase cleavage. Bradykinin 
is the basic vasoactive peptide of the KKS involved in the 
regulation of blood pressure as well as flow. Bradykinin‑related 
peptides bind to B1 and B2 bradykinin receptors in order to 
activate a number of downstream targets such as nitric oxide 
(NO), cGMP, prostacyclin and cAMP, which in turn induce 
numerous biological processes implicated in angiogenesis 
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by stimulation of vascular endothelial growth factor (VEGF) 
formation through binding to B2 receptor, increase of vascular 
permeability, vasodilation, smooth muscle contraction/relax-
ation, inflammation and pain (4‑8). In addition, KLK1 protease 
showing both trypsin‑ and chymotrypsin‑like specificity, 
appears to have many physiological protein substrates including 
pro‑insulin, pro‑renin, low‑density lipoprotein, and the matrix 
metalloproteinases (MMPs) pro‑gelatinase (MMP‑2) and 
pro‑collagenase (MMP‑9) (9,10).

Human mesenchymal stem cells (MSCs) are multipotent 
fibroblast‑like somatic cells with the ability to self‑renew, 
proliferate and differentiate in order to give rise to tissue‑ or 
organ‑specific cells of the mesodermal lineage (e.g., osteoblasts, 
chondrocytes, adipocytes, stroma cells, skeletal myoblasts 
and endothelial cells). MSCs are a heterogeneous subset of 
stromal stem cells that can be isolated from many different adult 
or fetal tissue sources including bone marrow, adipose tissue, 
umbilical cord blood, amniotic fluid, synovial fluid, periph-
eral blood, dermis, liver, skin and skeletal muscle (11‑14). As 
determined by the International Society for Cellular Therapy 
(ISCT), human MSCs must meet the following minimum 
criteria: adherence to tissue culture plastic under standard 
culture conditions, expression of cell surface molecules CD105, 
CD73 and CD90 and lack of expression of CD45, CD34, CD14 
or CD11b, CD79α or CD19 and HLA class II and capability 
of differentiating into adipocytes, osteocytes and chondrocytes 
under standard experimental conditions in vitro (15).

Another stem cell population which has been proposed as 
remarkable candidate for stem cell therapy is human endothe-
lial progenitor cells (EPCs). EPCs are precursor cells that have 
the potential to differentiate into mature endothelial cells and 
can be isolated from bone marrow aspirate or peripheral blood 
of adult organisms. EPCs participate in the processes of post-
natal formation of new blood vessels and recovery of damaged 
tissues by incorporating into the vasculature and by secreting 
vasculogenic cytokines and proangiogenic factors such as 
VEGF, angiopoietin‑1 (Ang1), hepatocyte growth factor 
(HGF), platelet‑derived growth factor (PDGF), monocyte 
chemoattractant protein‑1 (MCP‑1), and macrophage inflam-
matory protein‑1 (MIP‑1)  (16‑20). Vasculogenic cytokines 
recruit EPCs to the process of healing in response to hypoxia 
or ischemia, whereas proangiogenic cytokines regulate EPC 
mobilization, homing, proliferation, and differentiation. The 
angiogenic potency of EPCs is also demonstrated through their 
tube formation capacity in in vitro assays or when injected 
to murine models. EPCs also contribute to neovasculariza-
tion and tissue repair of musculoskeletal and neural tissue 
including the bone and spinal cord. Transplantation of EPCs 
has been used to treat ischemic diseases in animal models and 
clinical trials (20‑22).

2. Stem cell properties

Key properties of human MSCs are their immunomodulatory 
capability and their marked propensity to migrate towards sites 
of injury or inflammation (tropism). Due to these special char-
acteristics, MSCs have been highlighted as promising tools for 
clinical use in regenerative medicine as well as targeted cell 
therapy of various diseases including cardiovascular, cerebro-
vascular, renal, autoimmune disorders and cancer (13,23,24). 

MSCs of various origin can be readily extracted from adult 
tissues and expanded in vitro without the loss of their potential 
for clinical applications or differentiation into multiple cell 
lineages (14,25).

One of the most intriguing features of MSCs is that they 
can interact with cells of both the innate and adaptive immune 
systems and modulate their effector functions by secreting 
several cytokines. Interleukins 10 (IL‑10) and 8 (IL‑8) and 
transforming growth factor‑β (TGF‑β) produced by MSCs lead 
to repression of immune responses and promotion of tissue 
healing. MSC‑mediated immunomodulation results in MSC 
escape from host immunological recognition and rejection in 
allogeneic injection due to lack of major histocompatibility 
complex MHC‑II and only minimal MHC‑I protein expres-
sion (13,24,26).

The other crucial feature of MSCs is that they can physi-
ologically perfuse into the peripheral blood and migrate to 
injured or inflamed tissues (tropism), where they can inhibit 
the release of pro‑inflammatory cytokines and promote the 
survival of damaged cells (24,27). MSC tropism is mediated 
through paracrine signaling between the site of injury and 
corresponding receptor expression on MSCs (23). For example, 
stromal cell‑derived factor‑1 (SDF‑1) is one of the main 
chemokines mediating the mobilization and homing of stem 
cells to damaged tissues and was found to improve repairing 
efficiency (28). These unique properties render MSCs ideal 
vehicles for cellular gene transfer.

Interestingly, there is an MSC population that has been 
particularly highlighted for its unique characteristics: The 
MSCs derived from the Wharton's Jelly (WJ‑MSCs) ‑   an 
anatomic region within the umbilical cord. WJ‑MSCs are 
primitive cells categorized somewhere between embryonic 
stem cells (ESCs) and adult stem cells. Due to their immu-
nogenic and functional superiority to other MSCs, a special 
mention of WJ‑MSCs should be made. Similar to ESCs and 
unlike adult MSCs, they are consistently positive for pluri-
potency and self‑renewal markers  (29). Importantly, they 
are safer to use since they do not form teratomas in vivo (in 
contrast to ESCs) and sustain high proliferation rates for 
extended periods in culture with no signs of transformation, 
in contrast to adult MSCs that have been linked to transforma-
tion events as a result of replicative senescence (30). The most 
remarkable feature of WJ‑MSCs is their hypo‑immunogenic 
profile (a key requirement for allogeneic transplantation) and 
their capacity for immunomodulation  (31). WJ‑MSCs are 
capable of evading immune recognition due to their lack of 
co‑stimulatory molecule expression, which is normally impli-
cated in activation of T and B cell responses and they can also 
suppress allogeneically stimulated T cells to a greater extent 
than adult MSCs (32).

3. Therapeutic implications of naïve stem cells

Clinical trials using human MSCs of various origin as well as 
EPCs are currently underway to treat cardiovascular, cerebro-
vascular, renal, intestinal and autoimmune diseases.

Implications in cardiovascular disorders. Accumulating 
evidence from a variety of animal models of acute myocar-
dial infarction (MI) injected or transplanted with MSCs, has 
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demonstrated that MSCs constitute promising therapeutic tools 
for repairing and regenerating cardiac cells, interrupting the 
progress of left ventricular remodeling following acute MI and 
restoring heart structure and function by reducing infarct size 
and enhancing angiogenesis and arteriogenesis in the ischemic 
tissue (11,33‑39). Their effects are attributed to their special 
properties of homing to injured tissues, self‑proliferating and 
differentiating into cardiomyocytes in the damaged area. 
Indeed, MSCs are able to differentiate into cells that exhibit 
cardiomyocyte features in vitro, however, the proportion of 
MSCs that differentiate into cardiomyocytes in vivo and those 
that actually survive for a long period is very small (40,41). 
As known, ischemia induces the production of reactive oxygen 
species (ROS) and a number of inflammatory molecules, 
such as tumor necrosis factor (TNF)‑α, intercellular adhesion 
molecule‑1 (ICAM‑1) and MCP‑1 (42). After transplantation 
into the body, MSCs exhibit paracrine activity by secreting 
various cytokines including growth factors (e.g., VEGF) 
that produce anti‑inflammatory as well as reparative effects. 
These molecules can decrease gene expression of inflam-
matory agents such as TNF‑α and IL‑1β and IL‑6 and they 
can also promote survival, growth, or differentiation of other 
cells in the area of the MI, and this is considered the major 
contribution of MSCs in treatment efficacy (37,41,43,44). The 
functionally superior WJ‑MSCs transplanted by direct injec-
tion into the infarcted area of myocardium could survive and 
differentiate into cardiomyocytes and endothelial cells and 
also promoted recruitment and differentiation of cardiac stem 
cells in a porcine model. In addition, WJ‑MSC transplanta-
tion was shown to reduce apoptosis and fibrosis, enhance 
viable myocardium, and improve ventricular remodeling and 
function (45). Scheduled and ongoing clinical trials test the 
efficacy and safety of these cells in patients with MI (e.g., 
clinicaltrials.gov; NCT01291329).

Implications in neurological disorders. MSCs have been  
reported as having significant neural differentiation poten-
tial  in culture and being neurogenic after transplantation 
in rodent models, therefore they have gained interest in 
their potential usefulness in cell‑based therapy strategies 
for neurodegenerative diseases and traumatic injuries of 
the nervous system (11,46,47). Indeed, prolonged cultured 
bone  marrow‑derived MSCs can differentiate into 
neuron‑like cells (48). Transplantation of bone marrow‑derived 
MSCs to animal models of neurodegenerative disorders 
including Parkinson's disease and ischemic brain injury has 
been reported to ameliorate functional deficits (49,50). The 
main challenge to stem cell therapy of central nervous system 
(CNS) diseases is getting MSCs into the CNS through the 
blood‑brain barrier (51). When transplanted into the brain, 
MSCs produce neurotrophic and growth factors that protect 
and induce regeneration of damaged tissue. It has been shown 
that MSCs can differentiate into neurons and glial cells. 
Additionally, transplantation of MSCs enables the formation 
of new blood vessels, thereby increasing blood flow in the 
ischemic region. It has been shown that intravenous injection 
of umbilical cord blood‑derived MSCs to transgenic mice with 
Alzheimer's disease results in a decline of cerebral amyloid β 
(Aβ) peptide and an increase of this peptide in blood plasma 
due to its excretion from the brain through the blood‑brain 

barrier, as well as a reduction of pro‑inflammatory responses 
in the brain and periphery (52‑55). Moreover, WJ‑MSCs have 
been used for induction of neurons and glial cells (56) and 
they have been shown to promote functional and morphologic 
recovery of peripheral nerves after axonotmesis and neurot-
mesis injuries in a rat model (57). WJ‑MSCs effectivity in 
patients with chronic traumatic spinal cord injury is under 
clinical trial (clinicaltrials.gov; NCT03003364).

Implications in renal disorders. Mounting evidence from 
ongoing or completed clinical trials indicates that MSC 
therapy is feasible, safe, well tolerated, and can effectively 
improve renal pathologies including acute kidney injury (AKI) 
and chronic kidney disease (CKD), diabetic nephropathy, 
focal segmental glomerulosclerosis (FSGS), systemic lupus 
erythematous (SLE), and kidney transplantation. Since regen-
erative capability of renal cells in humans is very limited, 
damage in these cells usually lead to devastating diseases. 
Numerous preclinical studies in various murine models have 
paved the way for novel therapeutic strategies with the use of 
MSCs and/or EPCs in a wide range of renal disorders both 
acute and chronic (58‑60).

MSCs have a renoprotective and regenerative action on 
injured kidney tissues via paracrine mechanisms: anti-fibrotic, 
anti-apoptotic, pro-angiogenic, proliferative, differentiative, 
antioxidative, immunosuppressive and immunomodulatory. 
More specifically, paracrine release of extracellular vesicles 
including exosomes that contain genetic and protein mate-
rial by MSCs has been proposed to exert trophic and 
reparative effects, which can activate mechanisms to amelio-
rate renal injury (21,60). It has been shown that implantation 
of bone marrow‑derived MSCs after ischemia/reperfusion 
(I/R)‑induced acute renal failure promotes restoring of renal 
function and morphology, thereby implicating the great thera-
peutic potential of MSCs in healing damaged kidneys (61‑63). 
Administration of MSCs has demonstrated significant reduc-
tion of intrarenal inflammatory infiltrate, decreased fibrosis, 
and glomerulosclerosis in animal models of CKD  (59). 
Moreover, in animal models of diabetic nephropathy, MSCs 
reduced glomerulosclerosis and oxidative stress  (64‑66). 
Intrarenal delivery of MSCs and EPCs in a porcine model 
of renovascular hypertension resulted in decreased myocar-
dial injury induced by renovascular hypertension as well as 
decreased renal injury (67,68). In addition, the identification 
and characterization of adult renal progenitor cells from 
rodents as well as humans has provided further insights 
concerning stem cell regenerative potential in renal tubular 
injuries  (58,69,70). A meta‑analysis of studies in animal 
models by Papazova et al demonstrated that cell‑based therapy 
reduced development and progression of CKD by decreasing 
urinary protein and urea associated with glomerulosclerosis 
and interstitial fibrosis (71). Although MSC delivery in in vivo 
models of FSGS has been scarcely studied, results were 
promising as MSCs were shown to stabilize and attenuate 
the progression of FSGS (72,73). Studies have shown that 
allogeneic bone marrow or umbilical cord‑derived MSC trans-
plantation results in amelioration of disease and could reverse 
multiorgan dysfunction in SLE (74,75). Treatment with MSCs 
exhibiting anti‑inflammatory and immunomodulatory proper-
ties had either beneficial or no adverse effect on autoimmune 
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lupus nephritis (the major clinical manifestation of SLE) as 
well as inflammatory bowel disease (IBD), but more research 
as to whether MSCs could actually benefit these patients is 
still underway (76,77). Furthermore, WJ‑MSCs were shown 
to improve renal function in a xenogeneic mouse model of 
acute renal injury by increasing proliferation and decreasing 
apoptosis of renal tubular cells, a function mediated through 
the mitochondrial pathway, and through the increase of Akt 
phosphorylation (78). WJ‑MSCs are being clinically tested 
in patients with diabetic nephropathy (clinicaltrials.gov; 
NCT03288571).

EPCs are reduced in number and impaired in angiogenic 
function in patients with atherosclerosis, cardiovascular and 
chronic renal diseases. Preclinical studies have shown that 
EPCs are mobilized from the bone marrow to peripheral 
blood in response to VEGF or other chemotactic molecules, 
home in at injured or inflamed tissues and differentiate into 
vessel‑forming endothelial cells and/or regulate pre‑existing 
endothelial cells (19,79‑81). Moreover, EPCs attenuate vascular 
inflammation and improve left ventricular function both 
in vitro and in vivo, thereby being regarded as promising tools 
for post‑MI therapy. Indeed, post‑MI implantation of EPCs 
into ischemic myocardium of animal models can home to sites 
of injury and enhance recovery. The number and function of 
circulating EPCs has been inversely correlated with cardio-
vascular disease risk as a potential biomarker for patients 
with hypertension and coronary artery disease (18,80,82‑86). 
Furthermore, EPCs have been proposed as useful tools in 
cell‑based treatment of renal and ischemic cerebrovascular 
diseases. Studies have shown that mobilization of EPCs 
contributes to endothelial repair in the kidney immediately 
after I/R  (87,88). EPCs have been also shown to decrease 
neuronal apoptosis and promote the proliferation and migra-
tion of neural stem cells by repairing vascular endothelial cells 
and inducing neo‑vascularization in animal models of cere-
bral ischemia. Growth factor (e.g., VEGF) secretion by EPCs 
contributes to post-stroke angiogenesis and neurogenesis, 
thereby reconstructing the functions and structures of vascular 
and neural networks (22,89,90).

Stem cell therapy using naïve MSCs and/or EPCs for tissue 
regeneration confronts many challenges regarding stem cell 
viability, vitality and functionality. After extensive debate on 
these issues, research advances could finally provide safer appli-
cable solutions.

4. Genetically‑modified stem cells in treatment of human 
diseases

Genetic modification of human stem or progenitor cells (e.g., 
MSCs and/or EPCs) for targeted delivery of specific thera-
peutic agents or genes has been proven to be a very significant 
advancement in regenerative medicine, since it can improve 
viability, proliferative capability and metabolic features of 
these cells which are sensitive to the hypoxic and inflam-
matory environment in ischemic tissue. For example, MSCs 
overexpressing the anti‑apoptotic gene Akt1 (Akt‑MSCs) were 
shown to be more resistant to apoptosis in vitro and in vivo (91). 
Moreover, the efficacy of MSCs for clinical use can be opti-
mized by pre‑treatment with drugs, cytokines, and growth 
factors (92,93).

MSCs can be genetically modified by viral and non‑viral 
methods. Non‑viral physical and chemical methods of 
gene transfer are able to deliver larger transgenes than viral 
methods, but their main drawback is the low transfection 
efficiency and transient gene expression (94). MSCs can be 
efficiently transduced with viral vectors such as lentiviruses, 
retroviruses, baculoviruses and adenoviruses without affecting 
their stem cell properties. Viruses can be useful as delivery 
vectors after being considerably modified in order to become 
replication incompetent with attenuated cytopathic effects 
and immunogenicity. Viral vectors are particularly appealing 
because they can enable high transduction efficiency and, 
depending on the type of virus used, can deliver long‑term 
stable transgene expression. The safety of cell‑based therapy 
with the use of viral vectors is a crucial issue that has not 
been resolved yet, but advances in vector design have helped 
towards this direction (23,95). For example, MSCs genetically 
modified to express VEGF have been shown to enhance the 
cardioprotective effects of MSCs followed by angiogenesis 
effects for the treatment of acute MI, whereas Akt gene‑ or 
heme oxygenase‑1 (HO‑1) gene‑modified MSCs have been 
shown to dramatically improve ischemic cardiac function and 
MSC viability and prevent ventricular remodeling and apop-
tosis of cardiomyocytes and endothelial cells, thus restoring 
the function of infarcted hearts (91,96‑98). In addition, MSCs 
genetically modified with HGF or VEGF ameliorated acute 
renal damage, inflammation and apoptosis (99,100).

Genes such as tissue KLK1 that have been shown to inhibit 
inflammation, apoptosis, fibrosis and ROS formation, would be 
a choice for the genetic modification of MSCs and/or EPCs that 
are intended against organ or tissue injury in human diseases. 
Indeed, tissue KLK1‑modified MSCs (KLK1‑MSCs) have been 
reported to play a protective role in cardiovascular, cerebro-
vascular and renal disorders in vivo as well as in vitro (63). In 
this review we discuss the advances in the use of KLK1‑MSCs 
and/or KLK1‑EPCs in cell‑based therapy of human diseases.

5. Tissue KLK1‑modified stem cells in cardiac and vascular 
diseases

The KKS through its components is a crucial regulator of 
homeostasis of the cardiovascular system throughout the life 
of an individual and has been implicated in blood pressure 
regulation (vasodilation) as well as pathogenesis of hyperten-
sion (6,101). Since the discovery of tissue KLK1 localization in 
cardiac and vascular tissues (102‑104), multiple experimental 
studies have investigated its role and potential therapeutic 
application both in vitro and in vivo. Tissue KLK1 has been 
demonstrated to exert pleiotropic beneficial effects in cardio-
vascular system function by reducing hypertension, attenuating 
cardiac inflammation and myocardial fibrosis, increasing NO 
formation, restoring coronary blood flow, decreasing infarct 
size, promoting neo‑vascularization and capillary density and 
preventing restenosis after acute MI through the VEGF and 
kinin B2 receptor‑Akt‑glycogen synthase kinase (GSK)‑3β 
signaling pathways (105‑110). Many of these beneficial effects 
of KLK1 are mediated by the activation of NO signaling path-
ways, which are responsible for a decrease in oxidative stress 
in animal models. In vivo studies with gene delivery using 
adenoviral vectors that contained the human KLK1 gene or 
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with KLK1 protein infusion have shown that KLK1 reduces 
cardiac inflammation, hypertrophy, fibrosis and apoptosis of 
cardiomyocytes in animal models of MI (105‑108,111‑113). 
In vitro studies on cardiomyocytes and endothelial cells showed 
that tissue KLK1 expression inhibited hypoxia‑induced ROS 
formation as well as cardiomyocyte apoptosis via activation 
of Akt‑mediated signaling cascades (Akt‑GSK‑3β and Akt‑
Bad‑14‑3‑3) (4,108,109,114). Moreover, KLK1 gene delivery 
increases the population of cardiac progenitor cells (CPCs) 
and promotes viability, increases the regional blood flow and 
neo‑vascularization in the peri‑infarct myocardium  (115). 
Adenovirus‑mediated KLK1 gene delivery in rodent models 
was also found to induce endogenous angiogenesis in response 
to  ischemia, and to reduce neointima formation in injured 
vessels or after balloon angioplasty via activation of Akt and 
NO‑cGMP signaling pathways (116‑119). These data suggest 
that KLK1 gene  therapy might be applicable to peripheral 
occlusive vascular diseases.

Engineered MSCs can be used as vehicles to deliver thera-
peutic agents such as tissue KLK1 to injured end‑organs. It has 
been shown that MSCs transduced with adenovirus containing 
the human tissue KLK1 gene (KLK1‑MSCs) acquire improved 
properties that augment their protective role in cardiovascular 
diseases. KLK1‑MSCs secrete KLK1 which may contribute 
to the reduction in myocardial fibrosis via proteolytic activa-
tion of pro‑MMP‑2 and ‑9. MMPs are known to degrade the 
physiological collagen scaffold of the myocardium and other 
extracellular matrix (ECM) proteins. KLK1‑MSCs also express 
higher levels of VEGF and VEGF‑R compared to unmodified 
MSCs (39,107,120,121). The upregulation of VEGF and its 
receptor could partly account for KLK1‑induced neo‑vascu-
larization in the infarct myocardium  (107). The in  vivo 
pro‑angiogenic effects of KLK1‑MSCs exhibiting augmented 
VEGF secretion were additionally confirmed in  vitro in 
cultured endothelial cells wherein a significant increase of 
proliferation, migration and tube formation was observed (39). 
KLK1 can also inhibit collagen synthesis and promote 
collagen breakdown. Notably, administration of KLK1‑MSCs 
to rats reduces cardiac collagen deposition and cardiomyocyte 
hypertrophy (39,122). Moreover, KLK1‑MSCs show reduced 
caspase‑3 activity compared to controls and their administra-
tion to rats decreased myocardial apoptosis after MI. Cultured 
KLK1‑MSCs are more resistant to hypoxia‑induced apoptosis 
compared to control MSCs and this resistance possibly enables 
engraftment of KLK1‑MSCs to the infarct area in larger 
amount than control MSCs. Administration of KLK1‑MSCs 
to rats also resulted in significant decrease of inflammatory 
cell (neutrophil and monocyte/macrophage) accumulation 
in the myocardium and parallel downregulation of TNF‑α, 
ICAM‑1 and MCP‑1 after MI (39). It has also been suggested 
that KLK1‑MSCs could provide significant cardioprotection 
possibly due to the ability of KLK1 to activate the kinin B2 
receptor to either form kinins or not, thereby attenuating 
myocardial damage through Akt signaling and NO produc-
tion (39,106). Taken together, the aforementioned findings 
converge to the notion that MSCs modified with human tissue 
KLK1 gene constitute appealing therapeutics with multifac-
eted potential in cell‑based therapy of myocardial ischemia.

EPCs have also been transduced with adenovirus containing 
the human tissue KLK1 gene and studied in vitro and in vivo 

for the effects of their implantation in animal models of isch-
emia. Yao et al reported that genetic modification of EPCs 
with the human KLK1 gene induces Akt phosphorylation and 
VEGF expression in response to oxidative stress. KLK1‑EPCs 
provided enhanced cardioprotection in rats by preventing 
cardiomyocyte apoptosis, reducing infarct size, restoring left 
ventricular function and increasing therapeutic angiogenesis 
and arteriogenesis after acute ischemia‑induced MI (85,123). 
The angiogenic activity of cultured KLK1‑EPCs is promoted 
by increased expression of endothelial NO synthase (eNOS) 
and integrin αvβ3 on the surface of EPCs (19). Furthermore, 
the increased KLK1 expression levels lead to enhanced cell 
proliferation, adhesion, migration, invasion, and tube forma-
tion and decreased hypoxia‑induced apoptosis in cultured 
KLK1‑EPCs  (19,85). Importantly, KLK1‑EPCs exhibited 
significant retention and viability in ischemic heart which is an 
important factor for preservation of cardiac function. Fu et al 
also found that the administration of KLK1‑EPCs into the 
caudal vein of ischemic rats results in a more effective increase 
of muscular capillary density, blood flow and myofiber number 
in an induced hindlimb ischemia rat model in comparison to 
administration of unmodified or control EPCs (19).

6. Tissue KLK1‑modified stem cells in renal diseases

The renal KKS is involved in electrolyte and water homeostasis, 
blood pressure regulation and inflammation. Historically, 
tissue KLK1 was discovered in human urine at the beginning 
of the twentieth century as a substance exerting hypotensive 
action. KLK1 is localized in the collecting segment of the renal 
distal tubule and its release into the tubules can be induced 
by the electrolyte balance (low sodium levels, high potassium 
levels) and antidiuretic hormone (114,124). KLK1 renal excre-
tion in urine is decreased in hypertensive rodents and humans 
to an extent that is proportional to the severity of renal failure. 
This decrease might result from a decrease in kinin generation 
(e.g., bradykinin) in hypertensive conditions, since kininogen 
levels and kinin‑forming factors are reduced in essential and 
malignant hypertension. It has been suggested that the role of 
renal bradykinin is to excrete the excess sodium. Therefore, 
decrease in renal bradykinin generation may lead to sodium 
accumulation in the body which in turn could result in the 
development of hypertension (124‑126).

Several studies have shown that KLK1 improves renal func-
tion by increasing glomerular filtration rate and renal blood 
flow via its anti‑inflammatory, anti‑oxidative, anti‑fibrotic and 
anti‑apoptotic actions in animal models of renal injury. For 
example, KLK1 gene delivery using an adenovirus vector or 
KLK1 protein infusion in hypertensive Dahl salt‑sensitive rats 
has been shown to attenuate renal dysfunction, induce NO 
production and reverse the process of renal inflammation and 
fibrosis in bradykinin B2 receptor‑mediated manner (127‑131). 
Liu et al confirmed the previous findings by blocking endog-
enous KLK1 activity in a rat model of CKD which resulted 
in increased inflammatory cell (macrophages/monocytes) 
infiltration and myofibroblast and collagen deposition in 
kidneys (132). Specifically, endogenous KLK1 was shown to 
inhibit angiotensin II‑induced ROS and superoxide forma-
tion as well as renal NADH oxidase activity through NO 
production in deoxycorticosterone acetate (DOCA)‑salt 
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hypertensive rats, which exhibit high renal KLK1 levels. 
Moreover, KLK1 significantly increased MMP‑2 activity and 
inhibited synthesis of tissue inhibitor of MMP‑2 (TIMP‑2) 
as well as plasminogen activator inhibitor‑1 (PAI‑1), thereby 
promoting degradation of ECM protein components (e.g., 
collagen I and fibronectin) as demonstrated both in vivo and 
in cultured renal cells (63,132,133). Most likely, KLK1 exerts 
its anti‑fibrotic effect by increasing ECM degradation which 
leads to a decrease of mesenchymal fibroblast accumulation 
in the interstitium of the cortex and medulla. Moreover, KLK1 
was demonstrated to decrease renal hypertrophy, namely 
kidney weight, glomerular size, and proliferation of epithelial 
tubular cells. KLK1 protein infusion in rats also promoted the 
recovery of gentamicin‑induced nephrotoxicity by inhibiting 
apoptosis and caspase‑3 activity and increasing Akt phosphor-
ylation in proximal tubular renal cells. Therefore, endogenous 
tissue KLK1 can attenuate and reverse renal injury by reducing 
oxidative stress, apoptosis, inflammation and fibrosis in vivo 
through activation of bradykinin B2 receptor (63,114,133‑135). 
Overall, these studies outline the beneficial role of tissue 
KLK1 in the preservation of kidney structure and function by 
promoting tissue repair and regeneration in AKI and modu-
lating the progression of CKD.

As already mentioned, KLK1 modified MSCs secrete 
recombinant human KLK1 as well as increased VEGF levels 
into culture medium, and exhibit augmented survival under 
oxidative stress conditions compared to control MSCs. 
After systemic injection in rats, KLK1‑MSCs migrated to 
the injured kidney and KLK1 overexpression was detected 
in rat glomeruli after I/R injury. KLK1‑MSCs implanta-
tion in rat kidney provided advanced protection against 
ischemia‑induced kidney injury by suppression of apoptosis 
and interstitial inflammatory cell accumulation. The engraft-
ment of KLK1‑MSCs reduced blood urea nitrogen, serum 
creatinine levels, and tubular injury. VEGF secretion from 
KLK1‑MSCs may be partly responsible for the improvement 
of renal injury, as well (114,120). Moreover, the KKS has been 
shown to be involved in the acute manifestations of lupus 
nephritis which occurs when antibodies and complement 

components accumulate and cause inflammation of the kidney 
in SLE patients (136). KLK1, among other members of the 
KLK family, was found to exert a protective role against 
SLE and anti‑glomerular basement membrane (anti‑GBM) 
antibody‑induced nephritis in rodents as well as humans (137). 
Li et al studied the effects of KLK1‑MSC administration into 
murine injured kidneys and confirmed that KLK1 attenu-
ated spontaneous lupus nephritis in mice (138). KLK1‑MSCs 
displayed a remarkable protective effect against anti‑GBM 
induced‑nephritis and lupus nephritis compared to control 
MSCs by inhibiting oxidative stress, renal cell apoptosis and 
inflammatory cell infiltration into the kidneys of nephritic 
mice, in line with findings of Hagiwara et al  (120). Taken 
together, the above presented data suggest that KLK1‑modified 
MSCs have the potential to be used as therapeutic agents in a 
wide variety of renal diseases.

7. Tissue KLK1‑gene delivery in neurological diseases

The KKS is capable of dilating cerebral arterial vessels partly 
because of the release of endothelium‑derived relaxing factor 
NO which plays a complex role in cerebral ischemia. Ischemic 
conditions trigger an excessive activation of neuronal NO 
synthase (NOS), which results in production of NO that is toxic 
to surrounding neurons, but critical in maintaining cerebral 
blood flow and reducing infarct volume. The KKS through 
participation in NOS activation and following NO formation 
is implicated in endothelial cell function in the setting of isch-
emic stroke (139).

Despite the lack of studies using KLK1 modified MSCs in 
models of cerebrovascular or neurodegenerative diseases, we 
review current knowledge on the effects of adenovirus‑medi-
ated KLK1 gene delivery in animal models of cerebral 
ischemia/ischemic stroke. Zhang et  al have demonstrated 
that KLK1 gene transfer attenuates the blood pressure rise 
and cerebral damage in hypertensive Dahl salt‑sensitive rats 
leading to a decrease in the stroke‑induced mortality rate (140). 
Subsequent studies have shown that intracerebroventricular 
injection of adenovirus carrying the KLK1 gene prevents 

Figure 1. Genetic modification strategy for the insertion of KLK1 gene into naïve stem cells and possible therapeutic applications. MSCs, mesenchymal stem 
cells; EPCs, endothelial progenitor cells; AKI, acute kidney injury; CKD, chronic kidney disease; FSGS, focal segmental glomerulosclerosis; SLE, systemic 
lupus erythematous.
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stroke‑induced ischemic brain injury (cerebral infarction) 
by inhibiting neuronal and glial apoptosis and inflammation 
while promoting neurogenesis and angiogenesis in the isch-
emic brain of a rat model as well as in vitro (139,141,142). 
Moreover, administration of tissue KLK1 can specifically 
stimulate the proliferation of murine neural stem cells only 
(no other neural cell types) independent of kinin formation, 
but without inducing their differentiation into neurons or glial 
cells (143). Tissue KLK1 administration can also suppress 
glutamate‑ or acidosis‑mediated neurotoxicity in vitro and 
protect from hypoxia/reoxygenation‑induced neuronal injury 
by promoting neuron viability at least partially through the 
KLK1‑B2R‑ERK1/2 signaling pathway (144). Collectively, 
these findings raise the possibility that tissue KLK1 may 
be a novel therapeutic target in the treatment of ischemic 
stroke‑induced brain injuries paving the way for KLK1‑MSC 
administration research in neurological diseases.

8. Conclusion

Numerous studies have outlined the pleiotropic beneficial 
effects of tissue KLK1 protease, component of the KKS, in 
the protection of cardiovascular, renal and central nervous 
systems from tissue injury. Genetic modification of stem 
cells or progenitor cells with KLK1 gene enhances their 
viability and proliferative, migratory and functional proper-
ties, thus increasing their tissue healing effects in various 
human diseases (Fig. 1). Engraftment of KLK1‑MSCs and/or 
KLK1‑EPCs into animal models provided advanced protection 
against vascular and organ damage. Aforementioned findings 
reveal the KLK1 relevance to human diseases and pave the 
way for further research on the potential therapeutic perspec-
tives of KLK1‑MSCs and/or KLK1‑EPCs that could lead to 
the translation of preclinical studies into effective and safe 
targeted therapies for cardiovascular, cerebrovascular and 
renal diseases.
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