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INTRODUCTION 
 

With advances in medical biology and healthcare 

technology over recent decades, human lifespans are 

increasing worldwide, with lifespan expectations of up 

to 100 years in developed countries by 2025 [1], 

resulting in a proportionate increase in the aged 

population. As early as 50 years of age, the frequency of 

aging-associated cutaneous disorders increases, in 

parallel with epidermal dysfunction, including 

compromised permeability homeostasis and reductions 

in levels of stratum corneum hydration, as well as 

elevations in skin surface pH, the most prominent 

features associated with chronic aging. Studies have 

shown that epidermal dysfunction, in turn, predisposes 

to the development of a variety of cutaneous 

abnormalities, including atopic dermatitis, contact  

 

dermatitis, pruritus and xerosis, and possibly aging-

associated systemic disorders [2–5]. In this review, we 

discuss aging-associated alterations in epidermal 

function and their link to cutaneous disorders. 

 

Aging-associated alterations in epidermal 

function 
 

Compromised epidermal permeability barrier 

homeostasis 
 

Aging-associated changes in baseline transepidermal 

water loss (TEWL) rates, an indicator of epidermal 

permeability barrier, vary greatly with gender, body 

sites and pigment types. While some studies have 

shown that baseline TEWL rates on several body sites 

are lower in the aged than in young skin [6–12], other 
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ABSTRACT 
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chronic, low-grade systemic inflammation, termed ‘inflammaging,’ which is linked to the development of aging-
associated systemic disorders. Thus, correction of epidermal dysfunction could comprise a novel strategy in the 
prevention and treatment of aging-associated systemic disorders as well. In this review, we summarize aging-
associated alterations in epidermal function, their underlying mechanisms, and their clinical significance. 
Regimens to improve epidermal function in the elderly are also discussed. 
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study demonstrated that TEWL rates on the décolleté 

region correlated positively with age, but TEWL rates 

on the neck, forearm and hand were comparable 

between young and aged women [13]. Moreover, 

TEWL rates are higher in aged females than in aged 

males [10]. Yet, in both aged humans and mice, 

following acute disruption of permeability barrier 

function, permeability barrier recovery is significantly 

delayed in comparison to younger age groups [7, 14]. In 

addition, stratum corneum integrity also decreases in 

both aged humans and mice [7]. Taken together, aged 

epidermis displays defects in permeability barrier 

homeostasis. 

 

Several alterations in the aged skin contribute to a 

defective permeability barrier function. The epidermal 

permeability barrier resides in the stratum corneum, the 

outermost layer of the epidermis. According to the 

‘brick and mortar’ model, this permeability barrier is 

largely determined by quality and quantity of 

differentiation-related proteins and extracellular lipids 

in the stratum corneum. Previous studies demonstrated 

that levels of epidermal growth factor reduced in 

parallel with a decline in keratinocyte proliferation in 

the aged epidermis, while keratinocyte apoptosis 

increased, leading to reductions in the thickness of both 

the epidermis and the stratum corneum [15–17]. 

Because high calcium concentration inhibits human 

keratinocyte proliferation [18], thinning epidermis could 

also be attributed to an increased calcium gradient in the 

basal and spinous layers [19], where the keratinocyte 

proliferation is most active in the epidermis. Moreover, 

levels of structural proteins for the epidermal 

permeability barrier, including filaggrin, loricrin and 

other late cornified envelope proteins, markedly decline 

in aged skin in comparison to young skin [20–22], 

perhaps due to reductions in calcium content in the 

stratum granulosum, leading to defective ‘bricks’ [21]. 

Deficiencies in these proteins can result in a defective 

permeability barrier [3].  

 

In addition to such defective ‘bricks,’ reductions in 

production of the lipid-enriched ‘mortar,’ i.e., the 

epidermal lipids, are also evident in the aged epidermis. 

Because formation of a competent epidermal 

permeability barrier requires an approximately equal 

molar ratio of cholesterol, free fatty acids and ceramides 

[23, 24], which are synthesized by epidermal 

keratinocytes [25, 26], deficiencies in any of these lipids 

can result in a defective epidermal permeability barrier 

[25]. Prior studies have shown that the aged stratum 

corneum displays a >30% reduction in total lipid 

content in comparison to young stratum corneum [7], 

due to reduced epidermal lipid synthesis, particularly in 

cholesterol synthesis, both under basal conditions and 

after barrier disruption [14]. Notably, aging-associated 

reduction in ceramide 2 was only observed in females, 

not in males, although ceramide levels did not differ 

significantly between aged males and females [27]. In 

support of evidence that reduced lipid levels contribute 

to aging-associated dysfunction in epidermal per-

meability barrier, topical applications of stratum 

corneum physiologic lipid mixtures can improve 

epidermal permeability barrier function in aged humans 

and mice [28]. Thus, these reductions in lipid 

production and differentiation marker-related protein 

levels could be causing the compromised epidermal 

permeability barrier homeostasis in aged skin. The 

epidermal permeability barrier is also largely made up 

of extracellular multilamellar bilayers, whose formation 

requires enzymatic processing of lipid precursors within 

the extracellular spaces of the stratum corneum [29–31]. 

The optimal pH for these enzyme activities is ≈5.0 [30, 

31]. Yet, aged skin manifests an elevation in skin 

surface pH in comparison to young skin [32–34]. While 

topical applications of buffers at neutral pH delay 

barrier recovery [35], acidification of stratum corneum 

accelerates barrier recovery in both young and aged 

murine skin [34, 36, 37]. Hence, the elevated stratum 

corneum pH of aged skin likely contributes to the delay 

in permeability barrier recovery. 

 

Chronological aging is accompanied by an increase in 

glucocorticoid secretion and cortisol content in the skin 

[15, 38], which can cause epidermal dysfunction. 

Previous studies have shown that either systemic or 

topical applications of glucocorticoids compromise 

epidermal function, including permeability barrier 

homeostasis and epidermal proliferation [39, 40]. 

Moreover, glucocorticoid action requires the peripheral 

conversion of cortisone to cortisol by 11β 

hydroxysteroid dehydrogenase 1 [41]. In comparison to 

young skin, aged skin exhibits higher levels and activity 

of 11β hydroxysteroid dehydrogenase 1 [42], and this 

epidermal 11β hydroxysteroid dehydrogenase 1 activity 

correlates negatively with epidermal per-meability 

barrier function [43]. Conversely, inhibition of 11β 

hydroxysteroid dehydrogenase 1 not only corrects 

glucocorticoid-induced epidermal functional abnor-

malities, but also improves aging-associated structural 

and functional alterations [44, 45]. Thus, the aging-

associated increase in epidermal 11β hydroxysteroid 

dehydrogenase 1 and cortisol content can contribute to 

defective permeability barrier function in aged skin. 

 

Additionally, other aging-associated changes in the skin 

can also contribute to altered epidermal function. For 

example, the aged epidermis displays over 60% reduction 

in IL-1 receptor antagonist protein in comparison to 

young epidermis, and a deficiency in IL-1α receptor type 

1 delays barrier recovery [46]. Conversely, either 

upregulation or administration of IL-1α enhances 
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epidermal permeability barrier function in both aged and 

fetal skin [47, 48]. Similarly, aged skin also exhibits 

reduced levels of hyaluronic acid [49]. Previous studies 

have shown that topical applications of hyaluronic acid 

stimulate keratinocyte differentiation and lipid 

production, leading to enhancement of epidermal 

permeability barrier function in both young and aged skin 

[50, 51]. Finally, aging-associated reductions in 

epidermal aquaporin 3 expression have also been 

observed [52–54], while knockout of epidermal 

aquaporin 3 delays permeability barrier recovery [55]. 

Conversely, upregulations of epidermal aquaporin 3 

expression improve epidermal permeability barrier 

function [54, 56]. Collectively, aged epidermis displays 

multiple alterations in keratinocyte function, including 

altered signaling pathways of calcium, cytokine and 

hyaluronic acid, stratum corneum acidification, 

keratinocyte proliferation, differentiation, lipid 

production, as well as decreased epidermal aquaporin 3 

expression, consequently leading to compromised 

epidermal permeability barrier function (Figure 1).  

 

Reduction in stratum corneum hydration  

 

In humans, stratum corneum hydration over a lifetime 

increases to a peak level at age 40 years, followed by a 

decline, especially on the face and neck in males [10, 

32, 57, 58]. The age-dependent differences in hydration 

are most prominent at a depth of 10-30 µm (on the 

forearm) in the stratum corneum [59]. It also appears 

that age-dependent changes in stratum corneum 

hydration vary with ethnicity. For example, the skin 

dryness index on the forearm markedly increases in 

aged African-American and Caucasian skin, but not in 

aged Chinese and Mexican skin, in comparison to 

young people of the same ethnicity [60]. The 

mechanisms underlying reduced stratum corneum 

hydration in the aged skin can be ascribed to the 

reduced content of natural humectants in the skin. 

Firstly, lipid content decreases in the stratum corneum 

of aged skin [7, 14, 61, 62]. Among these stratum 

corneum lipids, ceramides exhibit water-holding 

properties [63]. Prior studies have demonstrated that 

either oral or topical administration of ceramides can 

increase stratum corneum hydration [64, 65]. Secondly, 

aged epidermis exhibits reduced levels of filaggrin [22] 

and its metabolites, including trans-urocanic acid and 

pyrrolidone carboxylic acid, which are natural 

moisturizers in the skin [66]. Thirdly, both sebum and 

glycerol contents are reduced in aged versus young skin 

[32, 67]. Deficiency in either sebum or glycerol 

decreases stratum corneum hydration [68, 69], while 

topical applications of glycerol improve stratum 

corneum hydration [56, 69–71]. Finally, levels of 

aquaporin 3 decrease in aged versus young epidermis 

[53–55], leading to reduction in stratum corneum 

 

 
 

Figure 1. Aging-associated changes in epidermal function and their clinical significance. 
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hydration. Aquaporin 3 deficiency-induced reduction in 

stratum corneum hydration is likely due to decreased 

glycerol content in the stratum corneum [70, 71]. 

Accordingly, upregulation of epidermal aquaporin 3 

expression or topical glycerol improves stratum 

corneum hydration in aquaporin 3-deficient mice [71, 

72]. Thus, aging-associated reductions in stratum 

corneum hydration can be attributed, in large part, to a 

reduced content of natural moisturizers in the epidermis 

(Figure 1). 

 

Elevation in skin surface pH 

 

In humans, skin surface pH is generally higher in the 

first 2 weeks of life, followed by a decline by 5-6 weeks 

old [73]. Skin surface pH begins to increase at 55 years 

of age [32, 34]. Marked elevations in skin surface pH 

occur in aged humans, particularly in those over 70 

years old [32, 34, 74–76]. Human skin surface pH 

varies with gender and body site. For example, skin 

surface pH on the upper eyelid is 5.13 ± 0.49 (mean ± 

SD), and 5.75 ± 43 (mean ± SD) on the forearm in 

subjects aged 66-83 years [76]. Similarly, the skin 

surface of the abdomen displays a higher pH than that 

of the upper back [8]. In males [but not females], the 

highest skin surface pH was found on the forehead and 

the forearm in subjects over 70 years of age [32]. 

Moreover, skin surface pH, at least on the forehead, 

forearm, cheek and hand, is higher in aged females than 

in aged males [10, 32]. However, skin surface pH is 

comparable between males and females on both the 

axillary vault and fossa [76].  

 

In terms of etiology, at least four factors can contribute 

to the aging-associated elevation in skin surface pH. 

One is the sebum content which declines in aged skin 

[13, 32], resulting in reduced triglycerides in the stratum 

corneum. Degradation of triglycerides yields free fatty 

acids, which can acidify stratum corneum [77]. 

Likewise, generation of free fatty acids from 

phospholipids by secretory phospholipase 2 [sPLA2] 

can also acidify the stratum corneum [78]. Expression 

levels of sPLA2 markedly decreased in aged skin [79]. 

Thus, aging-associated reduction in sebum and sPLA2 

levels can contribute, at least in part, to the elevated 

skin surface pH in aged skin. Sodium-hydrogen 

exchanger 1 (NHE1) is another contributor to elevated 

skin surface pH in aged skin. Prior studies demonstrated 

that NHE1 deficiency increased skin surface pH in mice 

[80], while aged skin, at least in mice, exhibits 

significantly lower expression levels of NHE1 in 

comparison to young skin [79]. Hence, elevated skin 

surface pH in aged skin can be due to reduction in 

epidermal NHE1 expression as well. In addition, aged 

epidermis displays low expression levels of filaggrin 

[21], which can be degraded to trans-urocanic acid via a 

filaggrin-histidine-urocanic acid pathway [81]. 

Urocanic acid content in the stratum corneum correlates 

positively with skin acidity [82]. Collectively, 

reductions in sebum content and levels of NHE1, 

sPLA2 and filaggrin can contribute to aging-associated 

elevation in skin surface pH (Figure 1). 

 

Consequences of aging-associated alteration in 

epidermal function 
 

Reduced stratum corneum hydration 
 

Reductions in stratum corneum hydration have been 

implicated in the pathogenesis of senile xerosis and 

aging-associated pruritus [83, 84]. Previous studies have 

demonstrated that reductions in SC hydration increase 

inflammatory infiltration, mast cell density, mast cell 

degranulation, and histamine content in mouse dermis 

[85, 86]. Increased cytokines and histamine in the skin 

can provoke scratching due to pruritus, resulting in 

disruption of epidermal permeability barrier, 

consequently leading to a further increase in cutaneous 

inflammation. Because the epidermal permeability barrier 

homeostasis in aged skin is compromised [7, 14], it 

cannot be rapidly normalized, leading to a sustained 

increase in cutaneous inflammation and exacerbation of 

preexisting inflammatory conditions, such as atopic 

dermatitis and eczema. Moreover, the sustained increase 

in cutaneous inflammation could eventually cause 

systemic inflammation, possibly leading to the 

development of inflammaging-associated disorders  

[5, 87]. Additionally, nocturnal pruritus can cause 

insomnia, resulting in exacerbation of other disorders, 

such as cardiovascular and Parkinson diseases [88, 89]. 

Thus, reduced stratum corneum hydration can lead to the 

development of both cutaneous and extracutaneous 

disorders. 
 

Dysfunction in epidermal permeability barrier  
 

As mentioned above, permeability barrier recovery is 

delayed in aged skin, although the baseline permeability 

barrier is comparable to young subjects. Disruption of 

epidermal permeability barrier alone not only increases 

expression levels of cutaneous cytokines [90], but also 

increases inflammatory infiltration in the skin [91–94], 

leading to the development of cutaneous inflammation 

and pruritus. Moreover, when the permeability barrier is 

disrupted by scratching or other forms of insults, the 

epidermal ‘window’ would keep opening long enough 

to let harmful substances penetrate the skin, because of 

delayed barrier recovery in aged skin. Consequently, 

aged skin becomes vulnerable to the development of 

atopic dermatitis and contact dermatitis [95, 96]. Again, 

sustained cutaneous inflammation can provoke systemic 

inflammation. Finally, a defective permeability barrier 
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favors bacterial colonization in the skin [97, 98]. Thus, 

aging-associated dysfunction in epidermal permeability 

barrier can contribute to the development of cutaneous 

infections, pruritus, dermatitis, and possible systemic 

inflammation. 

 

Elevated skin surface pH 

 

Elevated skin pH can impact several aspects of cutaneous 

function. First, lamellar membrane bilayers in the stratum 

corneum are the critical structures of the epidermal 

permeability barrier. Formation of mature membrane 

bilayers requires processing of lipid precursors by several 

enzymes, including beta-glucocerebrosidase, acidic 

sphingomyelinase, and acidic secretory phospholipase A2, 

with an optimal pH range of 4.5 to 5.2 [30, 31]. Hence, 

elevated skin pH can abrogate the maturation of 

membrane bilayers, resulting in a compromised epidermal 

permeability barrier. Secondly, the antimicrobial 

properties of the skin are pH-dependent [99]. Certain 

pathogens, such as Staphylococcus aureus and fungi, 

favor a neutral pH, while an acidic pH decreases survival 

ability of Staphylococcus aureus [100–102]. Thus, the 

increased skin surface pH can contribute to a high 

prevalence of cutaneous infections in the elderly. Thirdly, 

the epidermis is rich in proteases with either optimal basic 

or acidic pH. For example, stratum corneum cathepsin-

like protease, with an optimal acidic pH, degrades 

corneodesmosin, a component of corneodesmosomes 

[103]. Elevated stratum corneum pH can decrease the 

activity of cathepsin-like protease, leading to abnormal 

desquamation. On the other hand, an elevated pH favors 

other proteases, such as kallikrein-related peptidases 5 and 

7, which are both expressed in the epidermis [104–107]. 

Elevation in skin surface pH can activate kallikrein-

related peptidase 5, leading to the development of atopic 

dermatitis-like lesions in mice via proteinase-activated 

receptor-2 dependent and independent pathways [108–

110]. Moreover, kallikrein-related peptidase 7 can activate 

IL-1β [reviewed in 111]. Overexpression of epidermal 

kallikrein-related peptidase 7 results in the development 

of cutaneous inflammation [112]. Taken together, the 

elevated skin surface pH can contribute to the 

development of inflammation, infections and 

compromised permeability barrier homeostasis in aged 

skin. 
 

Approaches to emprove epidermal function in 

aged skin 
 

Because of the substantial impact of epidermal 

dysfunctions on cutaneous and extracutaneous function, 

great efforts have been made to develop regimens to 

improve epidermal functions in chronologically-aged 

skin. Several approaches have been proven to benefit 

epidermal functions in aged mice and/or humans.  

Acidification of the stratum corneum 

 

Studies have demonstrated that acidification of the 

stratum corneum alone can improve epidermal structure 

and permeability barrier homeostasis in aged skin. For 

example, acidification of aged mouse skin with topical 

lactobionic acid normalized permeability barrier 

homeostasis and the structure of corneodesmosomes in 

the stratum corneum [36]. Likewise, topical applications 

of an emollient at pH 4.0 for 29 days markedly improve 

stratum corneum hydration and lamellar bilayer 

structure, along with increased resistance to challenges 

from topical sodium dodecyl sulphate, in aged humans 

[113]. Similarly, compared to a pH 5.8 emollient, a 

topical pH 4.0 emollient accelerates permeability barrier 

recovery following acute disruption, and significantly 

improves stratum corneum integrity after 28-day 

treatments on aged humans [114]. Although acidifying 

the stratum corneum could prevent and alleviate atopic 

dermatitis-like skin lesions in young mice [115–118], 

whether the same benefits could be achieved in aged 

humans remains to be determined. Nonetheless, 

acidification of the stratum corneum can improve 

epidermal structure and function in chronologically-

aged humans. 

 

Topical applications of stratum corneum lipids 

 

Reductions in stratum corneum lipid content can largely 

contribute to the delayed permeability barrier recovery 

in aged skin [7, 14]. Accordingly, topical applications 

of a lipid mixture containing three key stratum corneum 

lipids; i.e., cholesterol, free fatty acids and ceramides, 

accelerate permeability barrier recovery in both aged 

mice and humans [27]. A recent study demonstrated 

that topical applications of an emollient containing 

stratum corneum lipids not only improved epidermal 

permeability barrier, stratum corneum hydration and 

skin surface pH, but also lowered circulating levels of 

proinflammatory cytokines in aged humans [5]. There 

are at least two possible mechanisms by which the 

topical lipid mixture improves epidermal function. One 

is that topical lipids penetrate into keratinocytes in the 

stratum granulosum, where they are packaged in 

lamellar bodies, then secreted into the stratum corneum, 

where lamellar bilayers are formed [23, 119]. The other 

mechanism is that this lipid mixture contains fatty acids, 

which can activate peroxisome proliferator-activated 

receptors (PPAR) [120]. Activation of PPARs 

stimulates epidermal lipid production and keratinocyte 

differentiation, resulting in improvement in epidermal 

permeability barrier function and inhibition of 

cutaneous inflammation [121–123]. Thus, topical 

applications of stratum corneum lipid mixtures not only 

provide lipids for membrane bilayer formation, but also 

upregulate keratinocyte function, leading to 
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improvements in epidermal function. However, whether 

topical PPAR ligands alone can improve epidermal 

functions in the elderly has not been sufficiently proved. 

Haratake et al. [124] showed that topical application of 

either cholesterol or mevalonic acid, a precursor of 

cholesterol, improved the stratum corneum integrity and 

epidermal permeability barrier recovery in mice. 

Whether topical cholesterol or mevalonic acid alone can 

improve epidermal permeability barrier in the aged 

humans remains to be determined. 

 

Natural ingredients 

 

Studies have shown that several natural ingredients 

can improve epidermal function in aged humans and 

mice. For example, oral administration of either 

vitamin C or linoleic acid improved senile xerosis 

[125]. Likewise, orally-taken wheat extract oil 

increased stratum corneum hydration [126, 127], while 

orally-taken milk, containing green tea extract, borage 

oil and vitamin E, improved epidermal permeability 

barrier [128]. Similarly, oral supplements of flaxseed 

and borage oil increased stratum corneum hydration, 

while decreasing transepidermal water loss rates in 

humans [129]. In addition, estrogen replacement can 

improve multiple epidermal functions, including 

permeability barrier homeostasis, stratum corneum 

hydration and stratum corneum integrity, in both mice 

and humans [130, 131]. Besides oral administration, 

topical applications of some natural ingredients can 

also improve epidermal functions in chronologically-

aged skin. Man et al. [79] reported that topical 

applications of hesperidin improved epidermal 

functions, including reductions in skin surface pH, 

acceleration of permeability barrier recovery and 

stimulation of keratinocyte differentiation, in aged 

mice. Other natural ingredients, such as petrolatum, 

glycerol, coconut oil and sunflower oil, can also 

improve stratum corneum hydration and epidermal 

permeability barrier [132–136]. Interestingly, bathing 

with soybean oil could also decrease transepidermal 

water loss, while increasing stratum corneum 

hydration, in comparison to bathing without soybean 

oil [137]. In addition to improving epidermal function, 

topical petrolatum and glycerol could lower circulating 

levels of cytokines in aged mice, too [87]. Taken 

together, either oral or topical administration of certain 

natural ingredients can improve epidermal function in 

aged skin. 

 

It appears that the influence of some natural ingredients 

on epidermal functions is due to upregulation of 

keratinocyte function. For instance, topical hesperidin 

can upregulate expression levels of mRNA related to 

epidermal differentiation, lipid production and 

acidification in aged skin [79]. Likewise, topical 

applications of a mixture of several plant oils increase 

ceramide content, along with improvements in stratum 

corneum hydration and epidermal permeability barrier 

function in aged skin [138]. Similarly, topical 

applications of bacterial sphingomyelinase from 

Streptococcus thermophiles also increase stratum 

corneum hydration and stratum corneum ceramide 

content in aged humans [139]. Moreover, glycerol and 

petrolatum, which are traditionally viewed as inert 

ingredients, can also stimulate keratinocyte 

differentiation [140, 141]. Of course, water holding and 

occlusive properties of glycerol and petrolatum also 

contribute to enhanced epidermal permeability barrier 

and stratum corneum hydration.  
 

In summary, chronologically-aged skin displays multiple 

alterations in epidermal functions, which can contribute to 

the development of a number of cutaneous and extra-

cutaneous disorders. Accordingly, improvements in 

epidermal function can be a valuable alternative to 

prevent and ameliorate disorders, which are linked to 

epidermal dysfunction in the elderly. A wide range of 

ingredients can improve epidermal function. However, it 

is worth noting that a substantial portion of emollients on 

the market are harmful to epidermal function, although 

some ingredients in these products may benefit epidermal 

function [142–145]. The harmful emollients often contain 

some ingredient, such as eicosadienoic acid-enriched oils, 

stearic acid, ceteareth 20, PEG-40 castor oil and PEG-100 

stearate, which all can induce cutaneous inflammation 

and/or disrupt epidermal permeability barrier [145–148]. 

Use of harmful emollients, especially in the long-term, 

could compromise epidermal function, leading to the 

development and exacerbation of some cutaneous and 

extracutaneous disorders associated with epidermal 

dysfunction. Therefore, caution should be taken when 

choosing emollients. 
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