
sensors

Article

An Ultra-Short Baseline Underwater Positioning System with
Kalman Filtering

Qinghua Luo 1,2,3 , Xiaozhen Yan 1,2,*, Chunyu Ju 1, Yunsai Chen 4 and Zhenhua Luo 5

����������
�������

Citation: Luo, Q.; Yan, X.; Ju, C.;

Chen, Y.; Luo, Z. An Ultra-Short

Baseline Underwater Positioning

System with Kalman Filtering.

Sensors 2021, 21, 143.

https://doi.org/10.3390/s21010143

Received: 6 November 2020

Accepted: 24 December 2020

Published: 28 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China;
luoqinghua80@hit.edu.cn (Q.L.); 19s130296@stu.hit.edu.cn (C.J.)

2 Automatic Test and Control Institute, Shandong Institute of Shipbuilding Technology, Weihai 264209, China
3 Department of Technology, New Beiyang Information Technology Co., Ltd., Weihai 264203, China
4 China National Deep Sea Center, Qingdao 266237, China; cys@ndsc.org.cn
5 School of Water Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK;

Z.Luo@cranfield.ac.uk
* Correspondence: yanxiaozhen@hit.edu.cn; Tel.: +86-631-5678234

Abstract: The ultra-short baseline underwater positioning is one of the most widely applied methods
in underwater positioning and navigation due to its simplicity, efficiency, low cost, and accuracy.
However, there exists environmental noise, which has negative impacts on the positioning accuracy
during the ultra-short baseline (USBL) positioning process, which results in a large positioning
error. The positioning result may lead to wrong decision-making in the latter processing. So, it is
necessary to consider the error sources, and take effective measurements to minimize the negative
impact of the noise. In our work, we propose a USBL positioning system with Kalman filtering to
improve the positioning accuracy. In this system, we first explore a new kind of element array to ac-
curately capture the acoustic signals from the object. We then organically combine the Kalman filters
with the array elements to filter the acoustic signals, using the minimum mean-square error rule to
obtain accurate acoustic signals. We got the high-precision phase difference information based on the
non-equidistant quaternary original array and the phase difference acquisition mechanism. Finally,
on account of the obtained accurate phase difference information and position calculation, we de-
termined the coordinates of the underwater target. Comprehensive evaluation results demonstrate
that our proposed USBL positioning method based on the Kalman filter algorithm can effectively
enhance the positioning accuracy.

Keywords: acoustic signal detection; adaptive filters; Kalman filters; signal denoising

1. Introduction

Position information determines the accuracy and efficiency of underwater opera-
tions and exploration works, especially for deep-water operations. So, positioning services
are playing an increasingly important role in the development of marine science and
technologies [1,2]. Many scholars and researchers have a great interest in underwater posi-
tioning in many fields, including undersea target tracking, marine resource development,
and underwater vehicle positioning and navigation [2–4].

According to the baseline length of the acoustic positioning system, the positioning
systems can be classified traditionally into three types [1–3]: the long baseline (LBL) posi-
tioning system, the short baseline (SBL) positioning system, and the ultra-short baseline
(USBL) positioning system. Relative to the other two types, the USBL possesses the advan-
tages of its simplicity, efficiency, and accuracy [5–7]. However, due to the negative impact
of some uncertain factors [1,4–7], including multi-path propagation of acoustic signals,
environmental interference, and installation error during the positioning procedure, these
uncertain factors lead to poor positioning results, which cannot meet the requirements of
many applications, or even worse, it may provide a wrong reference value for the latter
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processing methods. To improve the positioning accuracy, many researchers and scholars
presented numerous works [1,6–23]. The authors in [2–9] analyzed the errors and faults
during underwater positioning; it took measurements to restrain the error. The authors
in [1,10,11] utilized filters or multiple interacting models to improve the positioning accuracy.
References [12–16] proposed some new kinds of positioning methods to improve the posi-
tioning accuracy. References [17,18] focused on different types of element arrays to enhance
the underwater positioning system. In [19–21], the jumping point problem and large delay
difference between the positioning data were dealt with. References [22–24] proposed
some integrated navigation methods based on acoustic localization, which played a critical
role in improving the positioning accuracy. However, due to the limitations of the method,
including the enormous scope of system redundancy information, the improvement was
not promising.

In this paper, considering the measurement error sources and their influence mech-
anism on the positioning results, we propose a USBL positioning system based on the
Kalman filtering algorithm to improve the positioning accuracy. In summary, the main
contributions of this paper are as follows.

(1) Considering the error source and its impact on the positioning results, we present the
Kalman filter-based, non-equidistant quaternary array. We organically combine the
Kalman filtering and array element to accurately capture the acoustic signals.

(2) During the USBL positioning process, we utilize an array element and a corresponding
processing method to eliminate the ambiguity problem of a phase difference, which
can improve the accuracy of our proposed USBL positioning system.

(3) Based on the capture of the acoustic signal and calculation of the phase difference, we
present an ultra-short baseline underwater positioning system with Kalman filtering
to enhance the positioning accuracy.

The structure of the paper is organized as follows: Section 2 reviews the related
works. Section 3 puts forward the proposed USBL positioning method based on the Kalman
filtering acoustic signals, to obtain accurate phase differences. Section 4 verifies and eval-
uates the performance of the proposed positioning algorithm. Finally, we conclude the
research work.

2. Related Works

Many researchers have been focusing on the array elements designing and positioning
problems of USBL positioning systems in recent years. They proposed various types of
array element types [1,2,15–18]. Many positioning methods also have been presented to
improve the positioning accuracy [4–16,19–24].

2.1. The Array Types

According to the deployment of primitive elements, there are numerous array types,
including the traditional triangular matrix, the orthogonal, and non-orthogonal element
arrays. To improve the calibration efficiency and enhance the adaptability of the calibra-
tion, the authors in [1] proposed multiple interacting models and unscented Kalman filter
calibration to gain a faster convergence rate based on a traditional array. Reference [2]
studied different installation errors in the USBL transceiver array and proposed a dynamic
calibration algorithm based on an incremental iteration. Reference [15] designed a complete
traditional USBL positioning system. The literature also presented an orthogonal eight
elements array and an orthogonal quaternary array. Compared with the traditional array,
they could improve the positioning accuracy 8-fold. Underwater positioning provides
a critical service for underwater acoustic (UWA) networks [16,17]; Reference [18] employed
the paradigm of the software-defined networking (SDN) technology and proposed an SDN-
based underwater cooperative searching framework for autonomous underwater vehicle
(AUV)-based underwater wireless networks (UWNs). The simulation results demonstrated
the proposed scheme’s validation, but the experimental system was not deployed and eval-
uated. In [19,20], a quaternary array with an unequal spacing was proposed. This method,
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with the same positioning accuracy as the orthogonal array composed of eight elements,
can reduce the number of primitive elements and increase the utilization of primitive
elements. From the view of signal noise reduction, most systems took advantage of the
adaptive filtering algorithm or adaptive residual optimization algorithm to filter signals to
obtain the signal phase difference [4,10], but the result was not promising. Reference [21]
proposed a novel non-equidistant, quaternary array. This method could improve the posi-
tioning accuracy 8-fold, with much fewer array elements. However, they did not consider
the ambiguity problem of a phase difference. In summary, the research works focused on de-
veloping different kinds of arrays to capture the acoustic signals from the target. We should
consider the signal error and ambiguity problem of a phase for high position accuracy.

2.2. Positioning Methods

Wang et al. proposed a robust Student’s t-based Kalman filter for the strap-down iner-
tial navigation system (SINS) and the ultra-short baseline (USBL) integration system [3],
which was utilized to suppress the measurement uncertainty induced by the acoustic
outliers. Reference [4] established a USBL observation model and a grid SINS/Doppler
Velocity Log (DVL)/USBL-integrated navigation system to restrain the SINS errors. When
the marine environment changed in the shallow sea area, the propagation speed model
needed to be corrected. The authors in [5] proposed a combined ray-tracing method to
determine whether to use the constant acoustic speed ray-tracing method or the equal gra-
dient ray-tracing method. References [6,7] considered the installation error and multi-path
error during underwater positioning and proposed calibration and reduction methods to
enhance the positioning method. Reference [8] analyzed the USBL sea-trial calibration and
its application to a real diving environment; the experimental results illustrated that the
positioning performance is consistent with the calibration results. Reference [9] presented
a combined ray-tracing method to reduce the error of slant distance. In [10], an adaptive
Kalman filter to improve the positioning accuracy was adopted. References [11,12] de-
signed a new SINS/USBL-coupled, integrated navigation algorithm based on the phase
difference measurement. In [13,14], they proposed some underwater positioning tech-
niques and demonstrated how to apply them to beam formation in multi-user underwater
acoustic communications. Reference [15] investigated the impact of different array designs
on the accuracy of object location. They proposed the designing method based on the
Johnson solids and devised a specific algorithm to evaluate the positioning performance.
By employing the paradigm of SDN technology, Reference [18] proposed an SDN-based
underwater cooperative searching framework for the AUV-based UWNs. Considering the
location solution, in [22] the target depth information, to remove the influence of a large
delay difference on a specified axis, was used. Reference [23] put forward an identification
and elimination method of the outlier point in the positioning data during processing.
However, because of the more restrictive scope of the above two applications, the improve-
ment was limited. In [24], a Student’s t-based Kalman filter, to process the uncertainty
of the SINS/GPS integration application, was proposed. For indoor tracking of dynamic
positioning, the authors in [25] presented a scheme based on the distributed, multi-sensor
data-fusion method to improve positioning accuracy. Reference [26] presented an under-
water positioning algorithm based on a SINS/LBL integrated system. The algorithm is
just applied to the LBL positioning environment. In brief, there are many uncertain fac-
tors during underwater positioning computation. We should pay special attention to the
error resources and the corresponding processing strategies to improve the underwater
positioning performance.

In this study, we present a USBL positioning method based on Kalman filtering
to improve the positioning accuracy. Different from other research works, we explore
the error resources appearing during the phase difference acquisition and positioning
process. We utilize Kalman filters combined with each array element to filter the received
acoustic signals, to obtain accurate signals with the minimum mean-square error rule as
the best estimation criterion. As the filtering of the received signals can be performed in
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parallel, the phase difference is gained accurately. The Kalman filtering-based underwater
positioning system has the advantage of a high accuracy and low complexity.

3. The USBL Positioning System Based on Kalman Filtering

In the following content, we first introduced the framework of our proposed posi-
tioning method. We then describe the detailed function and specific implementation of
each sub-module.

3.1. The Framework of the USBL Positioning Method Based on Kalman Filtering

We show the framework of the underwater positioning system as Figure 1. It is
composed of three main components: “Array Deployment”, “Kalman Filtering”, and
“Positioning Computing”.
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3.1.1. Array Deployment

In the framework, we can adopt any type of element array. For a higher accuracy,
in this work, we adopted a new array: the non-equidistant, quaternary array. It reuses
an array element three times and utilizes a specific processing method, which can improve
the positioning accuracy. The array elements received the acoustic signals from the target.
Since there are position differences between the primitive elements in the array, each of
the primitive element will receive the same acoustic signal from the target with different
delays. So, the received acoustic signals of these primitive elements have phase differences.
The purpose of the array setting is to receive the acoustic signal, obtain the phase difference,
and facilitate the next coordinate calculation.

3.1.2. Kalman Filtering

The Kalman filtering algorithm is exploited with an array to reduce the signal noise;
i.e., to filter out the Gaussian white noise in the received acoustic signal and improve the
signal quality. We can obtain the phase differences between different received acoustic
signals to provide prior information for the next step by setting an adjustable threshold.

3.1.3. Positioning Computing

After obtaining the phase difference with high accuracy between the received signals,
we obtain the positioning result through positioning computing by a mathematical model.

3.2. Array Deployment

In this section, we first illustrate the traditional array and its characteristics. To over-
come its limitation, we adopt a new type of array. We then describe the non-equidistance,
quaternary array.
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3.2.1. Traditional Array

A traditional ultra-short baseline (USBL) usually utilizes a triangular matrix or a cross
orthogonality matrix, whose baseline size is smaller than a half-wavelength of the trans-
mitted signal. The USBL is applied widely to various underwater positioning systems due
to its small size and easy installation. Furthermore, the USBL positioning system utilizes
the phase difference between the received signals of each primitive element to calculate the
target orientation and distance.

A traditional USBL orthogonal array is demonstrated in Figure 2. The three array
elements are deployed in an isosceles, right-angled triangle, and the array element distance
is d. Usually d is smaller than λ, where λ = 80 mm. λ is the wavelength of the acoustic wave
to avoid ambiguity in phase measurement. If we use such a small array size alone, it will
be difficult to locate the remote target to achieve the positioning accuracy of 0.5%, while
the positioning accuracy of a traditional USBL is about 3%. From the analysis of principle,
increasing the baseline length of the array can reduce the positioning errors. By reducing
the operating frequency band of the system and increasing the dimension between array
elements, high accuracy positioning can be achieved. The multi-array element processing
technique is another effective way to improve system positioning accuracy.
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3.2.2. Non-Equidistant, Quaternary Array

In our study, we deployed the non-equidistance, quaternary array of the proposed
USBL positioning system. It is demonstrated in Figure 3. The array element spacing is d,
and the parameter settings are the same as the traditional USBL orthogonal array. The angle
between the x-axis and Element 1 is equal to 45◦. The distance L between Element 3 and
Element 2 is 8-fold that of d; the same to distance L exist between Element 3 and Element
4. To solve the ambiguity phenomenon of the phase difference between Array Element 2
and Array Element 3, and between Array Element 3 and Array Element 4, we utilized the
projection of the signal received by Element 1 and Element 3 on the x-axes and the y-axes,
respectively. The advantage of the new array is that it could reuse the signals received by
Array Element 3 three times, reducing the design of additional, redundant array elements.
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3.3. Signal Noise Reduction

Noise can cause significant disturbance to the underwater object’s positioning calcu-
lation. So, it is necessary to conduct noise reductions in the underwater acoustic signal
to achieve a higher accuracy of the target’s positioning. However, the propagation of the
acoustic signal in the water propagation is affected by the temperature, waves, and internal
waves. It will make noise distribution random and irregular. We chose the least-square
error rule as the best estimation criterion for the noise reduction of the signals received to
reduce the noise interference and improve the positioning accuracy. According to this idea,
the paper utilizes the Kalman filtering algorithm to process the obtained acoustic signals
based on the minimum mean-square error estimation.

Kalman filtering estimates the system state from the sequences of uncertain observa-
tions using the predict–update cycle. First, the next system state and its uncertainty are
predicted by an existing physical model and a statistical model, which describes any uncer-
tain factors, including the process noise. This prediction is updated using the procedure
observation and the difference between the prediction value and the observation value.
Once the updated estimation is done, we can estimate a new predictive value.

The Kalman filtering algorithm requires only the system estimation data of the previ-
ous moment and the current measurement data in each operation; the algorithm is simple
and easy to implement. It also has a wide range of applications in the field of underwater
navigation. In this study, we utilize the Kalman filter algorithm to smooth the acoustic
signal. The specific method we used is as follows.

In the underwater positioning array, shown in Figure 3, the array elements receive
acoustic signals from the underwater target. We sample the received signals and get a se-
quence S = {s1, s2, s3, . . . , sk, . . . , sn}, where k is the kth moment stamp, n is the total number
of sampling, and 1 ≤ k ≤ n.

uk = sk/(max(S)− min(S)) (1)

To reduce the negative impact of noise, we utilize a Kalman filter to filter the signal
{uk} using Equations (2) and (3).

Xk = H ∗ Xk−1 + G ∗ Wk−1 (2)

uk = H ∗ Xk (3)

Here, X = {X1, X2, X3, . . . , Xk, . . . , Xn} is the state information of the system. H is the
transition matrix (we set it to be a unit matrix), and G denotes the gain matrix; Wk−1 is the
system noise at the moment k (we treat it as Gaussian white noise); {uk} presents the system
observation information of the system; Xk denotes the state value of the system at moment
k; and u = {u1, u2, u3, . . . , uk, . . . , un} is the observation signal of the system.

There are two procedures durin Kalman filtering: estimation and correction. In the
estimation stage, we estimate the system state X̂k at the moment k by Equation (4), and the
prior state estimate X̂−

k is estimated recursively at the kth moment by state X̂−
k−1 at moment

k−1, where there is no control input.

X̂−
k = AX̂−

k−1 (4)

Equation (5) predicts the mean-squared error P−
k of the system, and the prior co-

variance estimation Pk−1 is obtained recursively at the kth moment through the posterior
covariance P−

k at the previous time.

P−
k = APk−1 AT + Q (5)

Equation (6) calculates the Kalman gain of the system, and the system Kalman gain Kk
is calculated at the kth moment through the covariance estimation P−

k at moment k.

Kk = P−
k HT(HP−

k HT + R)
−1

(6)
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Equation (7) calculates the estimated value of the system state, and the system state
value Xk is calculated at the kth moment through the prior state estimation at the kth
moment.

Xk = H ∗ Xk−1 + G ∗ Wk−1 (7)

We estimate the posterior error covariance Pk of the system by Equation (8). Here, Kk is
the system gain and P−

k denotes the prior error covariance.

Pk = (I − Kk H)P−
k (8)

Finally, we can obtain the processing result ûk by Equation (9).

ûk = X̂k (9)

In these analyses, X̂ = {X̂1, X̂2, X̂3, . . . , X̂k, . . . , X̂n} is the state information of the system
and X̂ is the state variable of the system at moment k. X̂− = {X̂−

1 , X̂−
2 , X̂−

3 , . . . , X̂−
k , . . . , X̂−

n }
is the prior state estimation of the system. X̂−

k is the prior estimation of the state variable
at the kth moment, obtained from the state variable at moment k−1. A = 1 is the state
transform coefficient acting on X̂−

k−1. H = 1 is the observation model matrix, which maps
the real state space into observation space. P−= {P̂−

1 , P−
2 , P−

3 , . . . , P−
k , . . . , P−

n } is a 1 × n
prior estimation error covariance matrix; P = {P1, P2, P3, . . . , Pk, . . . , Pn} denotes a 1 × n
posterior estimation error covariance matrix; Q = 0.1 represents the process noise covariance
coefficient; R = 0.25 is the process noise covariance coefficient; the value of I is set to be 1;
and K denotes the Kalman gain or mixing factor, calculated from the specific data. Its role
is to minimize the posterior estimation error covariance. û = {û1, û2, û3, . . . , ûk, . . . , ûn}
denotes the filtered value of the acoustic signal, and ûk denotes the filtered value of the
acoustic signal at moment k.

The above process is repeated recursively to implement the filtering processing of the
acoustic signal received. We transform the original signal u = {u1, u2, u3, . . . , uk, . . . , un}
into a new signal û = {û1, û2, û3, . . . , ûk, . . . , ûn}. Similarly, we can get the processed signals
ûx, ûy, and ûo from the x-axis array element, the y-axis array element, and the original
array element, respectively. The filtering method adjusts the relevant parameters by an
estimation error condition and realizes higher-quality signal filtering.

3.4. Positioning Computing
3.4.1. Positioning Principle

Firstly, we introduce the traditional principle of phase difference positioning. For the
single-frequency CW signal, the phase information is the most commonly used for the
ultra-short baseline positioning system. The phase difference between the received signals
is measured to solve the positioning problem. We utilize different frequencies to distinguish
the target response signals in multi-target situations. The following describes the principle
of target location using the phase difference between single-frequency CW signals.

We performed underwater positioning, as shown in Figure 4. In the specific coordi-
nate system, we need to determine the coordinate (x, y, z) of target S. We deployed two
orthogonal linear arrays on the x-axis and y-axis, respectively, and the array center is the
origin of the coordinates.

The target radius is OS, and its direction cosine is

cos α = x/R (10)

cos β = y/R (11)

R =
√

x2 + y2 + z2 (12)

Here, α represents the radius OS and the x-axis angle; β denotes the radius OS and
y-axis angle; R is the target slant distance; and S’ is the projection of S on the “xoy” plane,
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and the angle θ between it and the x-axis is the target horizontal azimuth. We can obtain
the angle θ:

cos α = x/Rθ = tg−1(y/x) = tg−1(cos β/cos α) (13)

r =
√

x2 + y2 (14)

z =
√

R2 − r2 (15)

Here, r is the target horizontal slant distance and z is the target depth. We can determine
it through a depth measurement sensor.
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Equations (10)–(15) are the basic formulas for positioning calculation. The above equa-
tions can work out the target position parameters. Considering the propagation of the
acoustic signals between the element array and object, and the propagation differences
between the elements, we can get the equations approximately.

φ = (2πd cos α)/λ (16)

ψ = (2πd cos β)/λ (17)

Here, φ is the phase difference of the received signal from the adjacent array element
on the x-axis; λ represents the wavelength of the acoustic signal; and ψ denotes the phase
difference of the received signal from the adjacent array element on the y-axis.

With Equations (10) and (11), we can obtain Equations (18) and (19). We determine the
coordinate (x, y, z) of the target relative to the USBL’s position.

x = (λφR)/2πd (18)

y = (λψR)/2πd (19)

In the formulas above, R = c × ∆t/2, c is the acoustic velocity in water and ∆t is the
time difference from the transmission to the receiver. So, the distance R is equal to c × ∆t/2,
so the actual measurements are φ, ψ, c, and ∆t.

3.4.2. Ambiguity Problem Solution for the Phase Difference

During the actual measurement, the acoustic velocity c is the same. The error ∆t is
negligible, and the accuracy of the slope distance R estimated by the response ranging
method is high enough. The estimation accuracy of R is called the vertical estimation
accuracy. The estimation accuracy of x and y is called the horizontal coordinate estimation
accuracy. It follows from Equations (17)–(19) that they mainly depend on the measurement
accuracy of the phase differences φ and ψ.
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After the noise reduction in Section 3.3, we analyze the signals ûx, ûy, and ûo to obtain
the phase difference between the signals. Then we plug the phase differences φ and ψ into
Equations (18) and (19) to get the coordinates (x, y) of the target; the values of x and y
are then plugged into Equation (12). We calculate the depth z of the target to achieve the
positioning calculation.

However, there exist ambiguity issues of a phase difference. We solve this problem
as follows. According to Equations (18) and (19), considering the distance between Ele-
ment 1 and Element 3, and the distance between Element 2 and Element 3 on the x-axis,
Equations (20) and (21) are obtained, respectively.

xd = (λφ13R)/2πd (20)

xL = (λφ23R)/2πL (21)

Here, xd and xL are the projections of the distance R on the x-axis and in the Array
Element 1 direction, respectively.

In this research work, φ13 is the phase difference between Element 1 and Element 3.
There is no phase ambiguity. So, we can utilize it to confirm there is phase ambiguity in
φ32 and φ34 for a high positioning accuracy or not. The signal delay differences between
all azimuths received by Array Element 1 and Array Element 3 are both equal to τ13 and
less than T/2. So, the phase difference φ23 is equal to 8φ13. When |φ13| is greater than
22.5◦, φ23 will be located in the multi-valued interval, and the difference between the
measured value φ23 and the true value is one or several cycles; this as long as φ23 is added
or subtracted by an integer multiple of 360◦ and compared with 8-fold of φ13. If the phase
difference is less than one cycle, we can determine that the φ23 is correct. This step will
solve the phase difference multi-valued fuzzy of a large array.

Next, we consider the positioning accuracy of the new array. φij and ψij have the same
phase difference measurement accuracy; i.e., ∆φ13 = ∆φ23 = ∆φ when the background noise
of the array elements is independent.

We regard Equation (20) as the positioning formula on the x-axis of the traditional
USBL array. We treat Equation (21) as the improved positioning formula on the x-axis
of the USBL array. Without considering the measurement errors of the slope R and the
sound speed c, we differentiate both sides of Equations (20) and (21) respectively to get the
influence factor of xd and xL:

∆xd = ∆φ13(λR)/(2πd) = ∆φ(λR)/(2πd) (22)

∆xL = ∆φ23(λR)/(2πL) = ∆φ(λR)/(2πL) (23)

Since L = 8 d, the array element with spacing L can improve the positioning accuracy
8-fold from Equations (20) and (21). The array element with spacing L can solve the po-
sitioning accuracy problem to achieve a high-precision phase measurement positioning
based on the array element with a spacing d, solving the multi-valued phase difference
measurement blurring.

From the illustration above, we analyzed the computation complexity of the proposed
Kalman filtering-based underwater positioning method. Suppose the number of positioning
points is M, the sample point number of the acoustic signal is n. The computational
complexity is O(Mn).

4. Performance Evaluation and Analysis

In this subsection, we evaluate and analyze the proposed method, which is based on
the Kalman filtering algorithm for the acquisition of the phase difference. We assessed the
performance of the proposed system. We also compared it with the related methods to
verify its feasibility and validation.

Firstly, we describe the setup of the simulation environment. We then analyze the
influence of sampling frequency on positioning accuracy in different noise environments.
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Finally, we evaluate the performance of the proposed method and make a comparison with
other related methods.

4.1. Evaluation Environment Setup
4.1.1. Evaluation Design

We first set up the simulative signal and then calculate the expected delay value
through the pre-set phase difference between the signals of the array elements. We then
utilize the dense sampling interval to approximate the real-time delay of a phase difference
between the acoustic signals. We adopt the initial phase of the signal to compensate for
the non-integer, multiple-sampling interval delay values; this will bring it as closely as
possible to the actual situation.

4.1.2. Parameters Setting

We obtain the values by calculating that ∆t12 = 6.134 × 10−6 s (the delay between Array
Element 3 and Array Element 2), and ∆t13 = 1.463 × 10−5 s (the delay between Array Element
3 and Array Element 4). The original signal is CW = A × cos (2 × π × f 0 × t−30 × π/180).
The initial phase is −π/6, the amplitude is A (A = 0.5), and the angular frequency is
2πf 0 (f 0 = 1350 Hz). We illustrate the simulation conditions in Table 1.

Table 1. Simulation conditions and parameters settings.

Symbol Quantity Value or Means

R Target slant distance 3000 m
c Acoustic velocity 1500 m/s
d Adjacent array spacing 40 mm < 0.5 λ

L Maximum array spacing 8 d = 320 mm
f 0 Transponder frequency 1.35 kHz
fs Sampling frequency 2000 kHz

Tw Pulse width 5 ms
SNR Signal-to-noise ratio (SNR) 20 dB

We show the original signals in Figure 5, which are received by Element 3, Element 2,
and Element 4, respectively. We determined the signal amplitude by the preset SNR and the
normalized noise. Taking the target with a frequency of 1.35 kHz as an example, we show
the waveform of the three-element receiving signal generated by the simulation in Figure
6. The SNR was 20 dB in these processes. We set the pulse width to 5 ms, and the sampling
frequency was 20 kHz.

Figure 6 shows that the general waveform profile is still visible after the signal plus
noise; but, the specific parameters are ambiguous, which will cause a large interference
regarding the positioning accuracy.

4.1.3. Evaluation Metrics

During the evaluation of positioning accuracy, since the target coordinate positions
(x, y) are obtained by measuring the phase differences φ and ψ the errors of x and y are
introduced by the measurement errors of the phase differences φ and ψ. The errors are the
same, and the accuracy of the results, using the following simulation, is only through the
errors in x and y. Hence, the positioning accuracy is calculated as σx and σy. σx and σy can
be calculated by Equations (24) and (25), respectively.

σx =

√[
∑N

i=1 (xi − x0)
2
]
/N •(1000/R) (24)

σy =

√[
∑N

i=1 (yi − y0)
2
]
/N •(1000/R) (25)
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In Equations (24) and (25), (xi, yi) is the positioning result, and (x0, y0) denotes the ref-
erence coordinate. R is the target slant range, and its measurement error is not considered.
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4.1.4. Reference Methods

In this paper, we adopted three reference methods. They are the adaptive filtering [10],
adaptive residuals filtering [4], and new four-element methods [19]. In the adaptive filtering
method [10], a least mean-square (LMS) algorithm is utilized to update the adaptive pa-
rameters to filter noise. Due to the inaccurate estimation of the gradient value, the adaptive
filtering is with noise. To improve the position accuracy, the adaptive residuals filtering
algorithm [4] adopts adaptive residuals correction strategy, and the convergence rate is
enhanced. The new four-element method adopts the new kind of array. However, the phase
difference is gained in a traditional way. The improvement is not promising.
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4.2. Impact Analysis of Sampling Frequency on Positioning Accuracy

With the same signal-to-noise ratio (SNR), different sampling frequencies have differ-
ent effects on noise reduction during signal processing. In general, the higher the sampling
frequency, the better the noise reduction it makes. However, the computational complexity
and computational time will increase when increasing the sampling frequency, which
will affect the real-time performance of the positioning method. Therefore, a suitable
sampling frequency needs to be determined to satisfy the positioning accuracy requirement
of making the computing time as small as possible. We consider the location accuracy
and the corresponding running time when the signals are processed at different sampling
frequencies. So, we can determine a suitable sampling frequency to meet the requirement
of the application system.

We set the value of the SNR to 20 dB. We adjusted the sampling frequency from 1 MHz
to 8 MHz with an interval of 1 MHz. The signals were denoised by an adaptive algo-
rithm [10], an adaptive residuals algorithm [4], and Kalman filtering at the eight different
sampling frequencies, respectively. We show the x-axis positioning accuracy of the three
methods with different sample frequencies in Figure 7; the y-axis positioning accuracies of
the three methods are of the same level.
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Figure 7. Comparison of the positioning accuracies under different sampling frequencies.

Figure 7 shows that the proposed Kalman filtering method has a lower positioning
error than the other two methods under the same SNR. The adaptive filtering algorithm re-
places the mean squared error directly with the single-sampled data error square. It causes
an inaccurate gradient estimate in each iteration of the adaptive process. It means that
the whole adaptive process is noisy, and it will not strictly move along the real fastest
path of descent on the performance surface. The residual adaptive optimization algorithm
increases the weighted coefficient based on the adaptive filtering algorithm, making the
residual weight in the iteration processes the largest one. Although it accelerates the con-
vergence speed and reduces the adaptive weight noise, the noise cannot be ignored. Based
on the previously estimated value and the recently observed data, the Kalman filtering
algorithm takes the minimum mean-square error as the estimation criterion to estimate the
current signal value. Through denoising the observation signal, we obtain the estimated
signal with the smallest error. Figure 7 describes that when the sampling frequency is
greater than 2 MHz, the positioning accuracy with the Kalman filter is 3- to 6-fold higher
than that of the adaptive filtering result, and 1.2- to 1.6-fold the accuracy of the adaptive
residual filtering result. When the sampling frequency is more than 2 MHz, the positioning
accuracy is higher than 4‰. It meets the requirement of a general application system.

What is more, we find that the running time has a positive relationship with the
sampling frequency throughout the experiment. Considering the conditions to meet a high
accuracy and less operating time, we can state that the sampling frequency of 2 MHz is
more appropriate.
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4.3. Positioning Accuracy Evaluation with Traditional Array

With the traditional array, we evaluate the positioning accuracy of different processing
methods. We deployed the element array as in Figure 2, and the parameters’ settings are
shown in Table 2. We compared three processing methods: adaptive noise reduction, adap-
tive residual processing, and the Kalman filtering algorithm. We illustrate the positioning
accuracy in Figure 8 and Table 3; the y-axis positioning accuracy of the three methods is of
the same level.

Table 2. Simulation conditions and parameters settings.

Symbol Means Setting

f 0 Transponder frequency 1.35 kHz
fs Sampling frequency 2000 kHz

SNR Signal-to-noise ratio 16 dB–22 dB
d Element distance 10 mm
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Table 3. The positioning accuracy of the three methods with the traditional array.

SNR (dB) 16 17 18 19 20 21 22 Improvement

Adaptive Algorithm 12.3937 8.6505 5.6543 3.5464 1.3875 0.4869 0.3025 81.57%
Adaptive Residuals 2.7354 1.3014 0.4495 0.2836 0.2578 0.1453 0.0922 9.34%

Kalman Filtering 1.5905 0.8085 0.3197 0.2768 0.2456 0.1483 0.1367 -

From Figure 8 and Table 3, we can see that the proposed positioning system based
on Kalman filtering has the highest accuracy among the three methods. More specifically,
relative to adaptive filtering, the proposed method can improve the positioning accuracy by
81.57%. Especially when the SNR is below 20, the improvement is very obvious. Relative to
the adaptive residuals method, the proposed method can improve the positioning accuracy
by 9.34%; this is primarily due to the localization method proposed in this study, treating the
minimum mean-square error rule as the best estimation criteria for signal noise reduction
and adopting the Kalman filter to minimize the impact of noise.

4.4. Positioning Accuracy Evaluation with a Quaternary Array

In this section, we show the quaternary element array in Figure 3. We deployed Nodes
2–4 at the vertices of the right-angled triangle. Here, L = 8 d = 320 mm. We placed Node 1
at the right-angle sub-line. The distance between Node 1 and Node 3 is d. We adopted the
three processing methods to perform the positioning. We show the statistical positioning
accuracy in Figure 9 and Table 4, and Monte Carlo method is utilized to carry out 500
independent statistical calculations to find the positioning accuracy of various methods
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with different SNR values. We illustrate the positioning accuracy with different SNR values
in Figure 9. We compare it with the other three related methods.
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Figure 9. Comparison of the positioning accuracy of different methods with different SNR values.

Table 4. The positioning accuracy of the four methods with a quaternary array.

SNR (dB) 16 17 18 19 20 21 22 Improvement

Adaptive Algorithm 1.5492 1.0813 0.6569 0.4433 0.1734 0.0609 0.0378 82.49%
Adaptive Residuals 0.3419 0.1627 0.0687 0.0367 0.0322 0.0182 0.0115 16.14%
New Four-Element 0.2502 0.2334 0.2127 0.1850 0.1537 0.1355 0.1242 70.97%
Kalman Filtering 0.1988 0.1011 0.0400 0.0308 0.0295 0.0185 0.0151 -

Figure 9 and Table 4 illustrate that the proposed positioning method improves the
accuracy effectively compared with the other positioning methods. More specifically, rela-
tive to the adaptive filtering method, the proposed method can improve the accuracy by
82.49%. The proposed method can improve the accuracy by 16.14% compared with the
adaptive residuals-based method, especially when the SNR is below 20 dB. Relative to
the new four-element positioning method, the proposed positioning method can improve
the accuracy by 70.97%. That is because, with the quaternary element array and Kalman
filtering strategy, we can improve the positioning accuracy further.

4.5. Positioning Efficiency Evaluation

We evaluated the positioning efficiency in terms of positioning processing time and
compared it with the other three methods; i.e., the adaptive residuals-based method, the
adaptive algorithm-based method, and the new four-element array method. We illustrate
the positioning processing time in Table 5.

Table 5. The positioning processing time of the three methods.

Positioning Method Adaptive
Residuals

Adaptive
Algorithm

New
Four-Element Kalman Filtering

Positioning time (s) 552 11 1.2 48

Table 5 illustrates that the positioning processing time of the adaptive filtering algo-
rithm and the new four-element positioning method is lower than that of the adaptive
residuals algorithm and Kalman filtering positioning method. There are some filtering
processing steps in the adaptive residuals algorithm-based positioning method and the
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Kalman filtering method; its processing time is higher, so the positioning improvement is
at the cost of processing efficiency. We should determine the suitable positioning method
according to the requirement of an application system. If we consider the positioning
accuracy and efficiency comprehensively, the Kalman filtering method is applicable for
many applications.

4.6. Discussion
4.6.1. Discussion on Array Type

Figures 8 and 9 demonstrate that the array type has a large effect on the acoustic posi-
tioning accuracy. We show the positioning accuracy of different works with the quaternary
array and traditional array in Figures 10–12.

Figures 10–12 illustrate that the x-axis positioning accuracy with the quaternary
array is higher than that with the traditional array. More specifically, their accuracy with
the quaternary array is higher than that with the traditional array, 7.98-fold, 6.54-fold,
and 7.99-fold under these three positioning methods.

We performed the same comparison for the y-axis, as shown in Figures 13–15. The po-
sitioning results illustrate that the y-axis positioning accuracy with the quaternary array is
higher than that with the traditional array. More specifically, the accuracy with the quater-
nary array is higher than that with the traditional array, 6.38-fold, 6.47-fold, and 6.84-fold,
respectively; this is mainly because the quaternary array adopts a long size, which could
reduce the negative effect of noise on the position accuracy. From Figures 10–15, we can
conclude that the quaternary array is a more suitable array when the acoustic positioning
system is under deployment.
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Figure 13. Comparison of the y-axis positioning accuracy of the adaptive residuals for different
arrays and different SNR values.
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Figure 14. Comparison of the y-axis positioning accuracy of the adaptive algorithm for different
arrays and different SNR values.
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Figure 15. Comparison of the y-axis positioning accuracy of the Kalman filtering for different arrays
and different SNR values.

4.6.2. Discussion on the Positioning Accuracy of Different Methods

Figures 8 and 10 demonstrate that the proposed positioning method could gain
a higher accuracy regardless of the kind of array. More specifically, with the traditional array,
compared with the adaptive residuals and the adaptive algorithm positioning method,
the proposed positioning method can improve the accuracy by 77.03% and 20.86% on
average, respectively. With the quaternary array, compared with the adaptive residuals
and the adaptive algorithm positioning method, the proposed positioning method could
improve the accuracy by 81.57% and 1.75% on average, respectively; this is mainly owed
to the Kalman filtering of the acoustic signals. We can obtain accurate phase difference
information for a higher accuracy of the positioning results. The experimental results
indicate the feasibility and validation of the proposed positioning method.

4.6.3. Discussion on the Generalization of the Proposed Method

As there is no special requirement or equipment in our proposed underwater posi-
tioning method, we can apply it to any underwater positioning system with USBL. It can
also be applied to a multiple-target underwater positioning system. In this case, we should
utilize different frequencies to distinguish the response signals from the different targets.

5. Conclusions

During USBL positioning, for the low positioning accuracy problem caused by con-
siderable noise interference caused by many negative factors, in this paper, the USBL
positioning system based on the phase difference obtained by the Kalman filter algorithm
is proposed. We first selected the non-equidistant, quaternary array to obtain the signal
transmitted by the target. We then explored the Kalman filtering algorithm to achieve
the high-precision phase difference information. Finally, we calculated the position of the
target by bringing the phase difference information into the system model. The simulation
results show that the underwater positioning method proposed in this paper can effec-
tively improve the positioning error with a high positioning accuracy compared with the
adaptive filtering algorithm and the adaptive filtering residual method; that is mainly due
to our consideration of possible errors in all aspects of the positioning process. We propose
the USBL positioning method based on the Kalman filter algorithm to obtain the phase
difference and to achieve a high precision underwater target positioning, based on the
phase difference acquisition mechanism and the minimum mean square-error as the best
estimation criterion.

In the following research, we will implement and evaluate the performance of our
proposed USBL positioning system. More specifically, we will cooperate with professional
acoustic institutes and corporations to develop the hardware, the software, and the in-
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tegration of the USBL positioning system. We will also evaluate it in a real application
environment. It will take more than one year to accomplish this part of the research, and we
will undertake delicate experiments to show the feasibility and validation of our proposed
USBL positioning system.
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