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Ectopic calcification is an inappropriate biomineraliza-
tion process occurring in soft tissues. Such calcifications
usually consist of calcium phosphate salts, including
hydroxyapatite. They sometimes contain calcium oxalates
too as seen in cases of calcium nephrolithiasis.
Many in vitro and in vivo studies on the mechanisms

behind calcium nephrolithiasis have revealed an associa-
tion with medullary nephrocalcinosis, which involves the
deposition of microscopic renal crystals in the tubular
lumen (intratubular nephrocalcinosis) or the interstitium
(interstitial nephrocalcinosis)1. The clinical, biochemical
and genetic aspects of the diseases responsible for
nephrocalcinosis have now been clarified in detail, but
there is still a paucity of information on the specific cel-
lular events involved in this type of calcification process.
The most likely explanation for the onset of interstitial
nephrocalcinosis seems to be purely physicochemical,
relating to a spontaneous Ca2PO4 crystallization in the
interstitium as a result of it being oversaturated with
calcium and phosphate2. Precisely how the renal cells are
involved in the response to the influx of these potentially
precipitating ions is still not clear. We were the first to
suggest that nephrocalcinosis could be an osteogenic cell-
driven process3, and our earlier studies were the first to
produce evidence to indicate that human renal cells can
undergo a process similar to that of vascular calcification4.
We saw a phenomenon of spontaneous biomineralization
occurring in primary renal cells from a patient with
medullary sponge kidney (MSK)—a clinical condition
associated to nephrolithiasis and medullary nephrocalci-
nosis—who had a GDNF gene mutation. When exposed
to an osteogenic medium, an immortalized proximal

tubule epithelial cell line from a normal adult human
kidney (HK-2) with a silenced GDNF expression also
proved better able to produce Ca2PO4 deposits than wild-
type cells. This was due to the ratio of osteonectin (a pro-
osteogenic factor) to osteopontin (an anti-osteogenic
factor) being regulated differently, in favor of
osteonectin4.
The core question that remained to be answered con-

cerned which cellular mechanisms lead to GDNF down-
regulation promoting the calcification process. We went
on to investigate whether downregulated GDNF, which
encodes the glial-derived neutrophic factor—a survival
factor for many cell types, including renal cells5—could
favor cell death.
It is common knowledge that pathological calcification

is important in cell death phenomena. For instance,
chondrocyte-derived apoptotic bodies might contribute to
the calcification of articular cartilage6. In advanced carotid
atherosclerotic plaques, matrix vesicle-like structures
derived from vascular smooth muscle cells (VSMCs) were
found to contain high levels of BAX (a pro-apoptotic
member of the BCL2 family), suggesting that they may be
remnants of apoptotic cells7. Apoptotic VSMC-derived
matrix vesicle-like structures can also concentrate and
crystallize calcium, triggering calcification8. All these
findings have paved the way to the theory that the for-
mation of apoptotic bodies could initiate the ectopic
calcification of some cells under certain conditions.
In the kidney, necrotic tubular cells have been asso-

ciated with renal cortical nephrocalcinosis—a rare con-
dition that is generally the result of a severe destruction of
the cortex and any condition that causes acute and pro-
longed shock9. To our knowledge, the role of cell death in
the more common medullary nephrocalcinosis has yet to
be explained.
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Fig. 1 (See legend on next page.)
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We know that calcium oxalate, calcium phosphate and
other crystals can induce cell death, especially in renal
proximal tubule cells10, and that crystal size may have an
influence. Sun et al.11 demonstrated that nano-sized
crystals were the most likely to cause apoptosis, whereas
micron-sized crystals caused necrosis. Lysosomes may
internalize nano-sized crystals, and the resulting damage
could trigger an apoptotic process. Nano-sized crystals
can also pass through pores into the nucleus, where they
can cause DNA cleavage into regular fragments—an
important feature of apoptotic cell death. Various types of
crystal can gain access to cells via a phagocytotic process,
resulting in a caspase-independent cell death called
necroptosis12.
We demonstrated the fundamental role of cell death in

the onset of renal tubular cell calcification in two in vitro
models of nephrocalcinosis. The first involved GDNF-
silenced HK-2 cells cultured in an osteogenic medium, a
model revealing how GDNF silencing triggered a caspase-
independent cell death that strongly facilitated the for-
mation of calcified nodules13. We know of several types of
programmed cell death that do not involve any caspase
activation14. The programmed cell death seen in our
model would be classifiable as necroptosis because it had
features coming somewhere in between apoptosis and
necrosis. Since calcium phosphate aggregates were also
found (albeit in much smaller quantities) in wild-type
(WT) HK-2 cells cultured in osteogenic conditions, we
replicated the previous experiments in WT HK-2 cells to
clarify the relationship between biomineralization and
apoptosis in normal tubular epithelial cells grown in an
osteogenic medium. In our paper in Cell Death Dis-
covery15, we demonstrated that HK-2 calcification with
calcium (Ca) and phosphate (P) deposition was con-
centrated in multilayered cell nodules where the apoptotic
process occurred, but the calcified cells showed the typical
signs of caspase-dependent apoptosis. On monitoring the
cells for two weeks, however, an apoptotic process began
within 5 days of inducing osteogenesis, and the first small
Ca and P crystals appeared. The importance of apoptosis
in the process of HK-2 cell calcification was supported by
the changes seen in BCL2 and BAX gene expression. In
the osteogenic medium, BCL2 was less expressed than
BAX from day 1 onward. This higher BAX/BCL2 ratio in
the osteogenic medium than in the standard medium
strongly suggests that apoptosis triggers HK-2

calcification before any Ca and P crystal deposition
occurs. In fact, there was no sign of any Ca and P on von
Kossa staining on the first day. Calcified deposits had
become apparent by day 5, but only in or near areas where
cells were apoptotic. This would indicate that early cal-
cification is linked to HK-2 cell death, and that apoptotic
areas provide the right milieu for this process—as in the
case of vascular calcification. We hypothesized the fol-
lowing sequence of events for the calcification process we
were seeing. Under osteogenic conditions, cells soon
underwent apoptosis, and the subsequent release of
apoptotic bodies allowed for mineral ions and/or calci-
protein particles in the medium to accumulate. Then
came an osteogenic-like process involving pro-osteogenic
factors like Runx2, alkaline phosphatase and osteonectin
upregulation, giving the impression that the osteogenic
phenotype acquired by the surviving cells was a con-
sequence rather than a cause of calcium phosphate
deposition. The surviving renal tubular cells’ acquisition
of an osteogenic-like phenotype could then help the
process to continue (Fig. 1). If this sequence of events
holds, we are tempted to speculate that any damage that
causes a shift in the balance between cell survival and cell
death toward the latter could (in a particular renal milieu)
give rise to the phenomenon of nephrocalcinosis, and
ultimately to kidney stones.
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