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Abstract: This study characterized the genotype and phenotype of Cryptococcus gattii VGII isolates
from Cucuta, an endemic region of cryptococcal disease in Colombia, and compared these traits with
those from representative isolates from the Vancouver Island outbreak (VGIIa and VGIIb). Genetic
diversity was assessed by multilocus sequence typing (MLST) analysis. Phenotypic characteristics,
including growth capacity under different temperature and humidity conditions, macroscopic and
microscopic morphology, phenotypic switching, mating type, and activity of extracellular enzymes
were studied. Virulence was studied in vivo in a mouse model. MLST analysis showed that the
isolates from Cucuta were highly clonal, with ST25 being the most common genotype. Phenotypically,
isolates from Cucuta showed large cell and capsular sizes, and shared phenotypic traits and enzymatic
activities among them. The mating type a prevailed among the isolates, which were fertile and
of considerable virulence in the animal model. This study highlights the need for a continuous
surveillance of C. gattii in Colombia, especially in endemic areas like Cucuta, where the highest
number of cryptococcosis cases due to this species is reported. This will allow the early detection
of potentially highly virulent strains that spread clonally, and can help prevent the occurrence of
outbreaks in Colombia and elsewhere.
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1. Introduction

Cryptococcosis, a systemic mycosis that affects both human and animals, is caused by the
encapsulated yeasts of the Cryptococcus neoformans and C. gattii species complexes. The first complex
has long been separated into two varieties, C. neoformans var. grubii and C. neoformans var. neoformans,
corresponding to the serotypes A and D, respectively, while C. gattii has not been divided into varieties
but comprises the serotypes B and C [1]. Among both species, hybrid isolates have been recognized,
including serotype AD hybrids, which are the most commonly recovered, and the rarely isolated
AB and BD hybrids [2]. Using molecular techniques, such as PCR-fingerprinting [3], restriction
fragment length polymorphism (RFLP) [4], and multilocus sequence typing (MLST) [5], isolates of C.
neoformans and C. gattii have in turn been grouped into eight major molecular types, VNI (including
VNB) to VNIV for C. neoformans and VGI to VGIV for C. gattii. Although these molecular types have
recently been suggested to be independent species [6], several researchers working on Cryptococcus
and cryptococcosis agree that this taxonomic proposal is still premature and without consensus in the
community [7]. As such, C. neoformans and C. gattii are herein referred to with their sensu stricto names.
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Besides the genetic differences between these two species complexes and eight major molecular
types, their geographical distribution differs considerably, and it is associated with the number of
cases of cryptococcosis reported for each species. While C. neoformans has a worldwide distribution
and predominates among the isolates (mostly the molecular type VNI), C. gattii has a more restricted
distribution, which was previously thought to be unique to tropical and subtropical regions, and
therefore causes fewer cases [1,8]. However, since the cryptococcosis outbreak reported on Vancouver
Island, Canada, in 1999, several C. gattii cases have been described from a number of new geographical
regions around the world [8,9]. The Vancouver Island outbreak was characterized by a high incidence
of cryptococcosis cases in humans, and domestic and wild animals. Just in 2003, as many as 37 cases of
cryptococcosis per million inhabitants were reported, which is the highest incidence reported in the
world so far [10]. After its occurrence in British Columbia, the dispersion of C. gattii into the Pacific
Northwest (PNW) of the USA was reported, and since then, this pathogen has been recovered not only
in clinical, but also in veterinary and environmental sources in multiple regions in the USA, some of
them endemic [9,11]. Genotyping of the strains responsible for the epidemic on Vancouver Island and
in the PNW identified all isolates as C. gattii VGII, with three subtypes among them, namely, VGIIa,
VGIIb, and VGIIc. Among these, VGIIa and VGIIc, the latter reported until now only from Oregon,
USA, were characterized for being the most virulent when studied in animal infection models [12,13].

In addition to the abovementioned regions, Australia and Papua New Guinea are also considered
endemic for C. gattii, although in the latter country its ecological niche remains unknown [14,15]. In
South America, countries such as Brazil, Colombia, and Mexico have a considerably high prevalence of
C. gattii infections and have a significant environmental recovery rate for this species [16]. In Europe,
however, only sporadic reports of infection caused by C. gattii and an infrequent isolation from the
environment have been documented [17–19].

In Colombia, the surveillance group for cryptococcosis reported that in the last 20 years, 96.5% of
cases were caused by C. neoformans var. grubii (serotype A), as occurring worldwide [1], 0.4% by C.
neoformans var. neoformans (serotype D), 2.9% by C. gattii serotype B and 0.3% by C. gattii serotype C [20].
However, in Colombia, the molecular type VGII prevails among C. gattii serotype B strains [4,21],
although this population is not as genetically diverse as other isolates from South America, mostly
from Brazil, which represents the major source of the VGII diversity [22,23]. In a recent MLST study,
which included 25 clinical C. gattii VGII isolates recovered from 1997 to 2011 from nine departments or
administrative subdivisions in Colombia, nine sequence types (STs) were identified, although most
isolates (68%), from six departments, belonged to a single sequence type, ST25 [22]. Preliminary
studies have confirmed as well that VGII isolates have caused cryptococcosis cases in Colombia since
1990 [4,21]. In addition, in the city of Cucuta, which has the highest incidence rate of cryptococcosis in
Colombia (0.56 cases per 100,000 people) [20], the majority of the cases in immunocompetent patients
are caused by C. gattii serotype B (77%) [24], although only one strain of this serotype has been isolated
from the environment in the city [25], indicating a low recovery rate from nature.

Therefore, it is of great importance to characterize, both at the genotypic and phenotypic level, the
C. gattii isolates responsible for several cryptococcosis cases reported in Cucuta, an endemic region of
this mycosis in Colombia. This study also aimed to determine whether these isolates from Cucuta
share any traits with the strains responsible for the Vancouver Island cryptococcosis outbreak. Isolates
from Cucuta were compared with two well-characterized outbreak strains that represent each of the
two major genotypes of this outbreak, VGIIa and VGIIb. This might help explaining the establishment
of cryptococcal disease in the region. The outcome of these studies provides important information
regarding the epidemiology of this primary pathogen in Colombia, principally in Cucuta, considering
the importance of clonal reproduction as a strategy for successful evolution and dispersion, and
also provides further knowledge leading to a better understanding of aspects of the pathogenesis
of cryptococcosis.
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2. Materials and Methods

2.1. Fungal Isolates

Thirteen clinical C. gattii VGII serotype B isolates from Cucuta, recovered over a period of fifteen
years (1993–2008) and maintained in the collection of the Instituto Nacional de Salud in Bogota,
Colombia, were studied (Table 1). Two C. gattii serotype B isolates ENV152 (WM 02.221, representative
of VGIIa) and RB28 (WM 02.301, representative of VGIIb) from the Vancouver Island outbreak [10],
obtained from the Molecular Mycology Research Laboratory, University of Sydney at Westmead
Institute for Medical Research, Australia, were also included to compare phenotypic and genotypic
characteristics with strains from a well-reported outbreak, to identify commonalities and/or differences
between the two scenarios. From the isolates from Cucuta, six were previously characterized by
MLST [22], and from these, one (H0058-I-1278 = WM 05.275) by whole genome sequencing (WGS) [23].
This is the first time that all isolates were characterized by both phenotypic and genotypic methods
and compared to traits from those subtypes responsible for the Vancouver Island outbreak.

Table 1. General information of clinical Cryptococcus gattii VGII isolates from Cucuta, Colombia.

Strain
Number

Other
Number

Year of
Isolation

Patient’s Age
(Years)

Patient’s
Gender 1

Clinical
Presentation Outcome Ref.

H0058-I-106 WM 08.290 1999 43 M Meningitis Living -

H0058-I-212 WM 08.288 1993 54 M Meningitis Deceased -

H0058-I-223 WM 08.289 1993 41 M Meningitis Living -

H0058-I-239 WM 08.291 1993 8 F Meningitis Deceased -

H0058-I-255 WM 08.292 1999 25 M 2 Meningitis Living -

H0058-I-357 WM 08.293 1995 11 M Meningitis ND -

H0058-I-881 WM 08.295 1999 34 M Meningitis Living [22]

H0058-I-1278 WM 05.275 2001 39 M Meningitis Living [22,23]

H0058-I-1511 WM 05.399 2002 56 M Meningitis Living [22]

H0058-I-2792 WM 08.297 2007 51 M Meningitis ND [22]

H0058-I-2858 WM 08.298 2007 60 M Meningitis ND [22]

H0058-I-2877 WM 08.299 2008 46 F 3 Meningitis Deceased [22]

H0058-I-3030 WM 08.305 2008 31 M Meningitis Living -
1 M: male; F: female; 2 Transplanted patient using corticosteroids; 3 Patient with auto-immune disease using
corticosteroids; ND: No data available.

2.2. Reference Strains

Cryptococcus gattii strains WM 179 (serotype B, VGI), WM 178 (serotype B, VGII), WM 175 (serotype
B, VGIII), and WM 779 (serotype C, VGIV) [4,26] were used as reference strains and also served as
internal controls for the reproducibility of all typing techniques. To determine the mating type and
mating potential of the studied isolates, the reference strains JEC20 (serotype D, mating type (MAT) a),
JEC21 (serotype D, MATα) [27], and the crg1∆ mutant derivatives JF109 (MATa) and JF101 (MATα),
which have shown a greater expression of pheromone due to the alteration in the MAT locus in the
gene CRG1α [28], were used.

2.3. Molecular Type and Mating Type Determination

High molecular weight DNA was extracted as previously described [29] and the DNA concentration
was determined by a spectrophotometer at 260/280 nm. To identify the molecular type of the isolates,
the orotidine monophosphate pyrophosphorylase (URA5) gene was amplified with the primers: URA5
(5′-ATGTCCTCCCAAGCCCTCGACTCCG-3′) and SJ01 (5′-TTAAGACCTCTGA ACACCGTACTC-3′)
followed by enzymatic restriction with Sau96I and HhaI, as formerly described [4]. The URA5-RFLP
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patterns were assigned by comparing them to the reference strains of the major molecular types
VGI–VGIV [4,21]. Mating type of the isolates were determined as previously reported [30], using
specific primers for the amplification of the MATa and MATα locus. Reference strains JEC20 (MATa)
and JEC21 (MATα) were used.

2.4. Multilocus Sequence Typing (MLST)

The International Society for Human & Animal Mycology (ISHAM) MLST consensus scheme
for the C. neoformans and C. gattii species complexes, including the following seven unlinked genetic
loci: CAP59, GPD1, IGS1, LAC1, PLB1, SOD1, and URA5, was used for genotypic analysis. These
loci were amplified using the primers and amplification conditions listed at mlst.mycologylab.org [5].
Amplification of the genetic loci was carried out in the Molecular Mycology Research Laboratory,
University of Sydney at Westmead Hospital, Westmead, Australia, and the sequences were obtained
commercially (Macrogen Inc., Seoul, Korea). Sequences were manually edited with Sequencher 5.2
(Gene Codes Corporation, MI, USA). The MLST gene sequence data for all samples presented herein
were deposited and are publicly available at mlst.mycologylab.org. The individual locus sequences
and the concatenated sequences were used to generate dendrograms with the program Mega 7.0.26
(Center for Evolutionary Medicine and Informatics, Tempe, AZ, USA) [31], based on maximum
likelihood analysis. From previous global MLST studies, data from additional clinical, veterinary, and
environmental strains from different parts of the world were selected and included exclusively for the
genetic analysis [9,22,23,32–34] (Table S1).

2.5. Phenotypic Characterization

The ability of the isolates to grow under different temperatures (0 ◦C, 15 ◦C, 25 ◦C, 37 ◦C, and 40 ◦C)
was assayed following the protocols previously described [35,36]. To achieve different conditions of
relative humidity, a humidity chamber was used, and the ability of isolates to grow under different
humidity conditions (20%, 40%, 60%, 80%, and 100%) was assessed as previously described [37,38].

Following standardized protocols, the total diameter and the yeast cell diameter of 20 yeast cells
per isolate stained with India ink were measured microscopically [36]. Capsule size was estimated as
half the difference between the diameter of the total cell and the yeast cell.

The texture (mucoid or smooth and regular or irregular borders) and the diameter of colonies of
the isolates grown on Sabouraud dextrose agar (SDA) at 37 ◦C were evaluated [36]. The capacity of
each isolate to change its colony morphology, or phenotypic switching, was also tested on SDA using a
previously described protocol [39]. Depending on the growth of the colonies, two to three hundred
colonies were observed.

To assess the ability of the isolates to mate, each isolate was plated on V8 media with the opposite
mating type. Both JEC20 (MATa) and JEC21 (MATα), as well as JF109 (MATa) and JF101 (MATα), were
used as reference strains according to previous studies [28]. The mating type capacity of the isolates
was observed using calcofluor white staining and fluorescence microscopy to confirm the presence of
sexual structures such as hyphae, basidia, and basidiospores.

2.6. Enzymatic Activities

The activity of the phenoloxydase was detected in L-3,4 dihidroxifenilalanina (L-DOPA) medium
using a previously described procedure [35], in which the enzymatic activity is classified according to
the pigmentation of the colonies in the following values: 0, negative; 0.5–1, low; 2, medium, and 3-4,
high. The phenoloxydase activity was also measured by spectrophotometer [40] at 475 nm in L-DOPA
media, adjusting the cell suspension to 1.5 × 108 cells/mL.

The activity of proteases and phospholipases was assayed in culture media with a yeast carbon
base and SDA supplemented with egg yolk, respectively, as previously described [41,42]. Each assay
was done in triplicate. The result of each assay was determined through the Pz index (colony diameter
divided by the colony diameter plus the hydrolysis zone) [41,42]. The following values of the enzymatic
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activity were used according to the Pz index: Pz = 1, negative activity; Pz from 0.7 to 0.99, low enzymatic
activity; Pz from 0.5 to 0.69, media enzymatic activity; Pz < 0.5, high enzymatic activity [43].

Urease activity was measured in urea broth [43]. Incubation was performed at 37 ◦C for 144 hours,
and measurements of enzyme activity were made by spectrophotometer at 550 nm, after 0, 24, 72, 96,
120, and 144 hours in 96-microwell plates using an ELISA reader (Beckman). The procedures were
performed in triplicate.

2.7. Virulence Study

The virulence of the four isolates from Cucuta and both Canadian strains was studied in vivo.
The Colombian isolates were selected after studying the virulence factors in vitro. Isolates that showed
at some extended differences in the expression of the virulence factors were selected. For the animal
experiment, 5-week-old female BALB/c mice (weighing between 16 to 20 g) bred at the Animal House
of the Instituto Nacional de Salud, Bogota, Colombia, were used. Intravenous (tail vein) inoculation of
the mice was done with 100 µL of a yeast suspension adjusted to a concentration of 5 × 106 cells/mL [35].
Per cryptococcal strain, five animals were inoculated and monitored daily for 70 days. When signs of
infection, including ruffled fur, inactivity, weight loss, difficulty in breathing, and neurological signs,
such as ataxia, were observed, at any point in the experiment, mice were sacrificed by euthanasia with
CO2 (5%) [35]. During the time of the experiment, mice were kept in standard cages in groups of
five with access to water and food ad libitum. As a control of infection, mice inoculated with sterile
saline solution at 0.85% were used. The C. gattii isolate WM 198, known to be highly virulent [44], was
used as a control. Virulence of the isolates was assessed by animal survival and dissemination of the
yeast to the following organs: lungs, spleen, and brain. For the histopathological study, necropsy was
performed on each mouse, extracting brain, lungs, and spleen, which were placed in amber bottles
with 10 mL of 10% formaldehyde and sent to the histopathology laboratory at the National Institute of
Health in Colombia. The animal study was performed with the approval of the Ethics Committee of
the Instituto Nacional de Salud, Colombia (CTIN17/2006).

2.8. Statistical Analysis

Evaluation of error assumptions: normality was tested using Kolmogorov–Smirnov and
Shapiro–Wilk tests, and homogeneity of variance was tested using the Levene test. In those assays
where the data met the assumptions of error, a two-tailed t-test to evaluate differences between groups
of isolates from Colombia and Vancouver was performed. To evaluate differences among isolates,
one-way ANOVA was performed, followed by multiple comparisons using the Scheffe and Tukey
tests. The assays in which data did not meet the assumptions of error were analyzed by analysis of
variance with non-parametric tests using the Kruskal–Wallis and Mann–Whitney tests to compare pairs
of isolates tested. For the selection of isolates evaluated in the animal model, principal component
analysis was performed to determine which virulence factors had a greater statistical weight. All
statistical analyses were performed in SPSS 16.0 (SPSS Inc.). For the in vivo virulence study, median
survival times were obtained and estimation of differences in survival was analyzed by the log-rank
(Mantel–Cox) test. Statistical analyses and plots were generated using GraphPad Prism version 6.0b
(La Jolla, CA, USA), with p-values < 0.05 considered statistically significant.
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3. Results

3.1. C. gattii VGII Isolates from Cucuta Were Highly Clonal as Established by MLST

By URA5-RFLP analysis, the molecular type of all 13 isolates from Cucuta was confirmed as VGII,
as well as the molecular type of the two representative isolates from the Vancouver Island outbreak,
VGIIa and VGIIb, respectively. Among all Colombian isolates, only three sequence types (ST25, ST47,
and ST258) were identified using MLST analysis, with ST25 being the most common one (11 out of
13) (Table 2). Nevertheless, from a total of 4164 bp that corresponded to the concatenated sequences
of the seven genetic loci, ST47 and ST258 have only 15 and 18 SNPs, respectively, compared to ST25.
Compared to the Vancouver Island outbreak strains, both ST25 and ST47 isolates shared the sequences
of three genes (CAP59, GPD1, and LAC1) with the VGIIb isolate (ST7), and the isolate from Colombia
with ST258 (H0058-I-357) shared the sequences of two other genes (PLB1 and URA5) with the VGIIb
isolate (ST7). In addition, the isolate with ST47 (H0058-I-255) shared two other genes (PLB1 and URA5)
with the VGIIa isolate (ST20) (Table 2). Overall, the Colombian isolates were more closely related to
the VGIIb than to the VGIIa isolates from Vancouver Island, as the distance (dissimilarities) between
most isolates from Colombia and the VGIIb isolate is shorter (Figure 1).

Twelve of the 13 C. gattii isolates from Cucuta were mating type a (92.3%), and only one isolate
(H0058-I-255) was mating type α (7.7%). Both isolates from Vancouver Island were confirmed to be
mating type α (Table 2).

Table 2. Mating types, allele types (ATs), and sequence types (STs) of the studied Cryptococcus gattii
VGII isolates. ATs and STs were identified through the MLST database at mlst.mycologylab.org.

Strain Number Mating Type CAP59 GPD1 IGS1 LAC1 PLB1 SOD1 URA5 ST

H0058-I-106 a 2 6 25 4 18 12 10 25

H0058-I-212 a 2 6 25 4 18 12 10 25

H0058-I-223 a 2 6 25 4 18 12 10 25

H0058-I-239 a 2 6 25 4 18 12 10 25

H0058-I-881 a 2 6 25 4 18 12 10 25

H0058-I-1278 a 2 6 25 4 18 12 10 25

H0058-I-1511 a 2 6 25 4 18 12 10 25

H0058-I-2792 a 2 6 25 4 18 12 10 25

H0058-I-2858 a 2 6 25 4 18 12 10 25

H0058-I-2877 a 2 6 25 4 18 12 10 25

H0058-I-3030 a 2 6 25 4 18 12 10 25

H0058-I-255 alpha 2 6 15 4 1 42 7 47

H0058-I-357 a 7 2 32 7 25 15 2 258

RB28 (VGIIb) alpha 2 6 10 4 2 15 2 7

ENV152 (VGIIa) alpha 1 1 4 4 1 14 7 20

mlst.mycologylab.org
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Figure 1. Dendrogram showing the genetic relationships between Cryptococcus gattii molecular type
VGII isolates from Cucuta, the Vancouver Island outbreak (highlighted), and global isolates selected
from previously published MLST studies [9,22,23,32–34]. The tree is based on maximum likelihood
analysis of the concatenated seven ISHAM consensus MLST loci using the program MEGA 7.0.2631.
Numbers on the branches indicate bootstrap values above 50. Isolates recovered in Aus: Australia, Bra:
Brazil, Can: Canada, Col: Colombia, Gre: Greece, Tha: Thailand, Uru: Uruguay, USA: United States of
America, and Ven: Venezuela. Ovals represent the continents where the sequence types have been
previously identified.
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3.2. Isolates Share Several Phenotypic Traits

The growth of the isolates from Cucuta at different temperatures and moisture conditions was
similar among them and did not differ to the growth of the isolates from Vancouver Island. No
statistical difference was observed among the studied isolates in the growth rate at 15 ◦C, 25 ◦C,
and 37 ◦C (p = 0.89), and at 0 ◦C and 40 ◦C, no evidence of growth was observed in any of the isolates.
For all isolates as well, the growth rate was directly proportional to the percentage of relative humidity,
without any statistical difference in the colony diameter among the Colombian isolates (p = 0.92) and
compared with the isolates from Vancouver Island. On average, the diameter of the colonies of the
isolates from Cucuta was 1.35 mm, 1.73 mm, 2.73 mm, 3.35 mm, and 4.48 mm when growing at 20%,
40%, 60%, 80%, and 100% relative humidity, respectively.

Generally, the Colombian isolates showed a bigger cell and capsular diameter, compared with
the two isolates from Vancouver Island (p < 0.05) (Figure 2), except for the isolate H0058-I-3030 that
presented similar cell and capsular size to the VGIIa isolate (p > 0.11). Overall, Colombian strains
had an average cell size of 13.03 ± 3.31 µm and an average capsular diameter of 5.93 ± 2.15 µm. The
VGIIa isolate from Vancouver Island presented an average cell and capsular size of 6.5 ± 1.26 µm and
2.43 ± 0.28 µm, respectively, while the VGIIb isolate presented an average cell and capsular size of
4.19 ± 1.09 µm and 1.69 ± 0.73 µm, respectively.

At 37 ◦C, all studied isolates showed regular borders in their colonies with no statistically
significant differences in the diameter of their colonies (p = 0.41). Isolates from Cucuta presented an
average colony diameter of 8.74 mm, and the VGIIa and VGIIb isolates from Vancouver Island an
average of 8.63 and 8.3 mm, respectively (Table 3). From the Colombian isolates, 11 (84.6%) showed
phenotypic switching capacity as well as both isolates from Vancouver Island (Table 3).

Table 3. Phenotypic characteristics of the studied Cryptococcus gattii VGII isolates growth at 37 ◦C.

Strain
Number

Switching
Colony Morphology Phenol-Oxydase

(µg/mL)
Proteases Phospholipases

Diameter (mm) Texture Mean (Pz) Activity Mean (Pz) Activity

Isolates from Cucuta

H0058-I-106 + 7.5 Smooth 196.3 1 None 0.60 Medium

H0058-I-212 + 9.5 Mucoid 35.3 1 None 0.57 Medium

H0058-I-223 - 12.0 Mucoid 216.2 1 None 0.67 Medium

H0058-I-239 + 7.6 Mucoid 153.9 1 None 0.63 Medium

H0058-I-255 + 7.0 Mucoid 1.2 1 None 0.60 Medium

H0058-I-357 + 10.0 Mucoid 193.1 1 None 0.68 Medium

H0058-I-881 + 10.3 Mucoid 185.4 1 None 0.63 Medium

H0058-I-1278 + 9.1 Mucoid 201.6 1 None 0.68 Medium

H0058-I-1511 - 7.1 Smooth 168.7 1 None 0.66 Medium

H0058-I-2792 + 8.4 Smooth 203.9 1 None 0.60 Medium

H0058-I-2858 + 8.0 Smooth 239.8 1 None 0.61 Medium

H0058-I-2877 + 9.3 Smooth 119.1 1 None 0.57 Medium

H0058-I-3030 + 7.8 Smooth 159.5 1 None 0.57 Medium

Vancouver Island Isolates

ENV152
(VGIIa) + 8.6 Smooth 150.82 0.82 Low 0.70 Low

RB28
(VGIIb) + 8.3 Smooth 116.68 0.78 Low 0.68 Medium

NA: Not applicable.
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3.3. Most Isolates Were Fertile and Mated with Opposite Mating Types

In vitro mating with the JEC21 MATα reference strain showed that eight out of the 12 Colombian
C. gattii isolates that were classified as MATa by PCR had the ability to express their sexual phase.
However, when crossed with the control JF101 MATα strain, mating capability was observed only with
three of the Colombian isolates: H0058-I-239, H0058-I-357, and H0058-I-3030. The isolate H0058-I-255,
which was determined as MATα by PCR, showed no ability to mate with the control JEC20 MATa strain,
although, this strain mated with the control JF109 MATa strain. The Colombian isolates H0058-I-223
and H0058-I-2877 did not express their sexual phase in vitro. Both isolates from Vancouver Island were
able to mate with the JF109 MATa strain, showing a sexual phase.

When tested with the strains JEC20 and JEC21, the sexual phase became evident macroscopically
on the surface of the Petri dishes, which was evidenced by the presence of hyphae, basidia, clamp
connections, and basidiospores under fluorescent microscopy. In contrast, when the isolates were tested
with the strains JF109 (MATa) and JF101 (MATα), the presence of these structures could only be seen
by observing the cultures on the Petri dishes directly under the microscope at 10×, because most of the
mycelium was immersed in the agar. Both isolates from Vancouver Island (MATα) were crossed with
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the 12 Colombian isolates MATa, and the Colombian isolate H0058-I-255 (MATα) against the 12 MATa
Colombian isolates, but no mating was observed between the crosses described above. By fluorescence
microscopy, sexual structures of C. gattii VGII isolates from Cucuta that mated with opposite mating
type strains were evidenced, including basidia, formation, and detachment of basidiospores from
basidium (Figure 3).J. Fungi 2019, 5, x FOR PEER REVIEW 11 of 17 
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type strain. (a) Presence of basidia resulting from the mating of C. gattii VGIIa (MATα) strain with
JEC20 (Cryptococcus neoformans serotype D, MATa); (b) formation and detachment of basidiospores from
basidium resulting from the mating of C. gattii strain H0058-I-357 (MATa) with JEC21 (C. neoformans
serotype D, MATα); (c) hyphae with the presence of fibule junction; and (d) formation of basidiospores
from a basidium resulting from the mating of C. gattii VGIIb (MATα) strain with JEC20 (MATa). All
preparations were done with calcofluor (1 mg/mL) and observed at a wavelength of 425 nm, 40×.

3.4. Enzymatic Activities Slightly Differ Among the Isolates

Qualitatively, it was determined that seven (53.8%) of the isolates from Cucuta have a high
phenoloxydase activity, 4 (30.8%) had a medium activity, and 2 (15.4%) had a low activity. As for the
Vancouver Island isolates, it was determined that both VGIIa and VGIIb strains have a high activity.
Quantitatively, however, it was found that there was a significant variability in the melanin production
of the isolates from Cucuta (p < 0.001) (Table 3).

While all Colombian isolates showed no proteolytic activity (Pz ≥ 1), both Vancouver Island strains
showed low proteolytic activity, with values of Pz of 0.82 and 0.78, for VGIIa and VGIIb, respectively.
Similarly, all Colombian isolates showed medium phospholipase activity, with an average Pz = 0.62,
which was similar to the activity presented by the VGIIb strain, which showed a Pz = 0.68, and lower
than the activity presented by the VGIIa strain, which showed a Pz = 0.7 (Table 3).

As expected, all isolates from Colombia and Vancouver Island showed urease activity, however,
with no statistically significant difference among the studied isolates (p = 0.87).

3.5. Isolates from Cucuta Are of Considerable Virulence

Based on the phenotypic results obtained, the following strains from Colombia were selected
to carry out in vivo virulence studies: H0058-I-357, H0058-I-1511, H0058-I-2792, and H0058-I-3030.
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Survival curves showed that the VGIIa isolate ENV152 from Canada was the most virulent, with median
survival time of six days, as reported previously [10]. Following this, H0058-I-1511, H0058-I-2792, RB28
(VGIIb), and H0058-I-357 presented median survival times of 16, 16, 19, and 31 days, respectively. By
the end of the experiment, H0058-I-3030 killed only one mouse, so it was considered the least virulent
isolate (Figure 4). The results obtained by histopathology and recovery of CFU from brain, lung, and
spleen, showed a greater migration of blastoconidia to the brain. However, the greatest damage was
observed in the lungs, causing the death in mice mainly due to the cause of pulmonary cryptococcosis
and organ failure. Another important finding was that there was no trend or any significant correlation
between the virulence of the strains and the ability to migrate to the brain, lung, and spleen, since there
was no difference in the number of CFU/g (p = 0.89) recovered from these organs in the six isolates
tested (Table S2).
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4. Discussion

The present study identified and characterized a highly clonal population of C. gattii VGII isolates
that were recovered from cryptococcal meningitis cases in Cucuta, a region with a significant incidence
of cryptococcal infection in Colombia, during a period of fifteen years. Of great concern is the fact
that most of the studied isolates caused disease in otherwise healthy hosts, as 11 out of the 13 patients
did not have any apparent condition that may have increased the risk of cryptococcosis, which in
turn supports various studies that have regarded C. gattii as a primary pathogen [1]. Interestingly
too, this study included an isolate recovered from an eight-year-old girl, which is a very uncommon
finding considering that not only in Colombia but worldwide the presentation of this mycosis is very
rare in children [45], except in North Brazil [46], yet it shows the broad range of hosts that C. gattii
can affect. Importantly, the MLST genotype (ST25), in which most of the studied isolates clustered
(84.6%), has not only been reported in six other departments in Colombia [22], but also in Aruba [32]
and Venezuela [23], and not only affects humans but also other animals, as the isolate from Aruba (WM
06.33) is a veterinary case recovered from a goat in 1953. In addition, ST25 has also been identified in
our lab from environmental samples in Bogota, Colombia, which together suggests an intercontinental
and old circulation of this genotype and its association with environmental reservoirs.

The present study also showed that although the isolates from Cucuta have different MLST
profiles when compared to the genotypes from the VGIIa and VGIIb isolates previously described from
the Vancouver Island outbreak, which occurred in the late 1990s [10,12] (Figure 1, Table 2), carry some
of the same MLST alleles. As MLST analysis is currently the globally standardized typing method for
C. neoformans and C. gattii [5], the results from this study contribute new data to the global population
genetic analysis of these yeasts. The identification of highly clonal isolates by MLST is significant, as
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clonal dispersion has shown to be an important characteristic of outbreak-related cases, not only on
Vancouver Island and in the PNW of the USA, but also in Australia and Thailand [13,23,32,34,47].

It is of notice, that after whole genome sequence analyses reported in a previous study [23], the
gene regions specific to the highly virulent VGIIa genotype from Vancouver Island and the PNW were
only found in three other global subtypes, originating from Brazil, Colombia, and Australia, with the
isolate from Colombia, specifically the one from Cucuta, belonging to the ST25 (H0058-I-1278 = WM
05.275). These VGIIa-specific regions were mostly in a contiguous gene cluster and were rarely seen
in other global subtypes, suggesting a greater likelihood of novel genes [23]. Although the isolates
causing the outbreak in North America have distinct MLST subtypes from those from Cucuta, and are
separated by WGS from this and other Colombian isolates, there is evidence of recombination among
them and among other isolates from South America, for instance, the ST25 isolate from Cucuta shares
many of their linked loci with an isolate from Brazil (WM 05.529 = LMM855) (ST27) [23].

In addition to the genotypic investigations, the isolates from Cucuta were also studied and
compared phenotypically with the Vancouver Island VGIIa and VGIIb strains to determine similarities
or differences among them. When comparing the growth under different temperature regimes, it
was found that despite the dissimilarity in the average climatic conditions of both regions (Cucuta
30–35 ◦C and Vancouver Island 3–20 ◦C), the isolates had similar growth rates, showing that C. gattii
has a wide adaptability to changes in temperature conditions, which can allow the fungus to have a
certain degree of adaptation to the environment and subsequent colonization of the host. When the
isolates were grown under different relative humidity conditions, it was evident that the isolates were
capable of growing under minimal moisture conditions (20% relative humidity) without morphological
abnormalities in the colony morphology. Other studies in some fungi, such as Candida albicans, have
shown that they are susceptible to desiccation, and that under conditions of drought they can quickly
lose viability [37]. However, the Cryptococcus polysaccharide capsule confers the fungus the ability to
significantly delay the drying process, allowing its survival at low levels of humidity. The amount of
intracellular fluid retained, allows Cryptococcus in nature to adapt to fluctuations of relative humidity,
given by temperature changes in the environment [48,49]. The increased growth rates observed in
isolates of C. gattii included in this study, when the relative humidity was increased in the media, is
consistent with results reported in environmental studies, which suggested that in nature, the time of
year characterized by high rainfall and humidity, few hours of sunshine and low temperatures favor
the incidence of C. gattii, mainly serotype B [50].

Although it is known that capsules provide yeast with protection against a dry environment and
inhibits its phagocytosis in the host [51,52], large capsules and cells presented by the isolates from
Cucuta were not associated with the virulence of the strains in the animal model when compared with
the strains from Vancouver Island, which is in agreement with other reports that suggests that a thin
polysaccharide capsule permits better crossing of the blood–brain barrier [53]. Another particular
characteristic of the isolates from Cucuta is their mating type, as 12 of the isolates were mating type
a and only one was MATα, while, not only the representative VGIIa and VGIIb strains, but all the
Vancouver Island isolates have been reported to be mating type α [10]. A similar proportion of mating
types have been already reported in Colombia, as well with C. gattii serotype B isolates [21], which
gives more evidence of a low incidence of mating type α in the population of C. gattii serotype B in the
country [21]. The mating type in C. neoformans and C. gattii has been reported in other studies as an
aspect closely related to virulence, with isolates of the mating type α being more virulent, even though
the association is not clearly understood [10,30]. As suggested with the Vancouver Island outbreak
strains, the presence of only mating type a in the clonal ST25 population identified in Colombia
may suggest the idea that same-sex mating could be the driving force for clonal reproduction and
dispersion [32].

Isolates from Cucuta showed a greater activity of phospholipases with respect to the Vancouver
Island isolates. However, a direct relation of the phospholipase activity with virulence was not observed
for the Colombian isolates tested in the animal model, which is similar to the results reported by
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Huérfano et al., who evaluated the activity of phospholipase in environmental isolates of C. neoformans
var. grubii and C. gattii, and did not find a direct relationship between the production of phospholipase
and virulence [54]. Concerning the activity of the enzyme urease, although it has been reported as an
important virulence factor for colonization of the host [43,54], in this study, a difference in the activity
among the isolates evaluated was not observed. Nevertheless, with the mice model of infection it was
possible to recognize that isolates of the genotype ST25 present a considerable virulence, especially
when compared with the VGIIa strain, which is considered a highly virulent genotype (Figure 4).

Although South America has been proposed to be the major source of VGII diversity, with
numerous subtypes and extensive recombination [23], it also appears that clones are emerging from it,
including ST25, with phenotypic and genotypic characteristics that are similar to those of the isolates
responsible for outbreaks of infection in other parts of the world. Our findings reemphasize the need
for an ongoing surveillance of Colombian cryptococcal strains, especially in cryptococcosis endemic
areas, to allow for an early detection of potentially highly virulent strains that can be spreading clonally,
and to initiate a timely public health response to prevent the potential occurrence of similar outbreaks
in Colombia and elsewhere.
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