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Oxygen uptake (VO2) is an important parameter in sports medicine, health

assessment and clinical treatment. At present, more andmorewearable devices

are used in daily life, clinical treatment and health care. The parameters

obtained by wearables have great research potential and application

prospect. In this paper, an instantaneous VO2 estimation model based on

XGBoost was proposed and verified by using data obtained from a medical-

gradewearable device (Beijing SensEcho) at different posture and activity levels.

Furthermore, physiological characteristics extracted from single-lead

electrocardiogram, thoracic and abdominal respiration signal and tri-axial

acceleration signal were studied to optimize the model. There were

29 healthy volunteers recruited for the study to collect data while stationary

(lying, sitting, standing), walking, Bruce treadmill test and recuperating with

SensEcho and the gas analyzer (Metalyzer 3B). The results show that the VO2

values estimated by the proposed model are in good agreement with the true

values measured by the gas analyzer (R2 = 0.94 ± 0.03, n = 72,235), and the

mean absolute error (MAE) is 1.83 ± 0.59 ml/kg/min. Compared with the

estimation method using a separate heart rate as input, our method reduced

MAE by 54.70%. At the same time, other factors affecting the performance of

the model were studied, including the influence of different input signals,

gender and movement intensity, which provided more enlightenment for

the estimation of VO2. The results show that the proposed model based on

cardio-pulmonary physiological signals as inputs can effectively improve the

accuracy of instantaneous VO2 estimation in various scenarios of activities and

was robust between different motion modes and state. The VO2 estimation

method proposed in this paper has the potential to be used in daily life covering

the scenario of stationary, walking and maximal exercise.
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Introduction

Assessment of the functional capacity of the cardiovascular

system is essential in sports medicine and clinical settings

(Kaminsky et al., 2019). Oxygen uptake (VO2), which

indicates an individual’s aerobic capacity (Hill and Lupton,

1923), provides important information for monitoring exercise

intensities and changes in an athlete’s fitness during training. At

the same time, as Metabolic Equivalency Task (MET) (Negus

et al., 1987), VO2 is a standard indicator of individual metabolic

rate and subsequent physical activity. It is used to provide general

medical thresholds and guidelines for people with chronic

diseases such as obesity and Type 2 diabetes (Hupin et al.,

2015). In addition, steady state VO2 measurements are

considered to be the gold standard for estimating energy

expenditure (EE) in light to moderate steady motion (Scott,

2005; Altini et al., 2015). The peak VO2 reached during

incremental motion is called the maximum VO2 (as

VO2max). In physical training, VO2max and its derivatives

[including vVO2max (Billat, 2001) and TLim-vVO2max

(Fernandes et al., 2006)] are widely used in physical training

programs and have been shown to be helpful in improving

athletes’ performance.

The traditional VO2 measurement methods mainly focus on

direct calorimetry in metabolic chambers (Kenny et al., 2017),

double-label water (Hills et al., 2014) or indirect calorimetry

(Leonard, 2012) with face masks as the “gold standard”, which

are not suitable for daily exercise due to the need for expensive

gas analysis, ventilation equipment and medical care. Some

researchers have refined existing devices such as COSMED K5

(Guidetti et al., 2018), VO2 Master (Montoye et al., 2020) and

Jaeger (Díaz et al., 2008) to develop portable calorimetric systems

capable of accurately measuring VO2 in outdoor conditions.

However, the high cost and highly visible components such as

masks and gas analyzers limit the use of portable calorimetric

systems in non-laboratory settings.

Heart rate (HR) was a low-cost and non-invasive method of

estimating VO2 because of its strong linear relationship with VO2

during a large amount of aerobic exercise (Livingstone, 1997).

Therefore, many studies have proposed their models for

predicting VO2 and VO2max using HR (Pulkkinen et al.,

2004; Nevill and Cooke, 2016; Mazzoleni et al., 2018;

Lanferdini et al., 2020). However, the model performance of

predicting VO2 only with HR is limited due to the ambiguous

relationship between HR and VO2 at rest and low intensity

motion, as well as transitions between different activities

(Pulkkinen et al., 2004). In addition, HR measurements are

susceptible to both internal [stress, emotions, etc. (Lanferdini

et al., 2020)] and external [Wrist-based Photoplethysmography

assessment of HR is affected by the environment, skin, sweat, etc.

(Spurr et al., 1988)] factors. The Flex-HR model is one of the

most commonly used HR-based methods for VO2 estimation in

the field. Considering the non-linear relationship of HR-VO2

during low intensity motion, bilinear model was used to improve

accuracy (Spurr et al., 1988). Acceleration (ACC) sensors can

detect postural motion information to identify the type and

intensity of motion (Crouter et al., 2010; Ellis et al., 2014),

which, in combination with HR, improves the accuracy of the

VO2 estimation (Strath et al., 2005). Andrew et al. (Cook et al.,

2018) estimated real-time VO2 using ACC, HR and demographic

characteristics as inputs to a multiple linear regression model. A

total of 42 subjects (including healthy, athletic and obese) were

recruited in the experiment for the Bruce treadmill experiment,

which showed a strong linear correlation between the predicted

VO2 and the actual VO2 (r = 0.93). Respiratory signals can

represent changes in lung ventilation during exercise (Gastinger

et al., 2014), and a linear relationship between the pulmonary

ventilation and VO2 has been found to be superior to that of HR

(Gastinger et al., 2010). Andrea et al. (Nicolò et al., 2017)

suggested that researchers need to focus on the potential of

respiratory signal in exercise training to identify EE in

subjects’ daily activities through the combination of HR and

respiration rate (RR), which is more accurate than using a HR

model alone. Recognizing that respiration signals are another key

factor in the high correlation with VO2. Beltrame et al. (2017)

considered not only HR and ACC information, but also RR and

the calculated per minute ventilation (VE) based on the

respiratory signals collected by the wearable shirt. However,

Beltrame only considered daily routines and low-intensity

exercise, and the subjects in the study did not reach the level

of VO2max.

With the development of wearable devices, it has become a

promising method to predict VO2 through physiological

parameters obtained by devices such as smart watches or

shirts. For example, sports watches like Apple watch (Falter

et al., 2019) and Fitbit (Sasaki et al., 2015) can track EE in

real time, which is non-intrusive and portable. A representative

wearable smart shirt Hexoskin (Beltrame et al., 2017) can obtain

a wide range of physiological parameters of the wearer to

improve the accuracy of VO2 estimate mentioned in the

previous paragraph. In addition, many researchers have used

self-designed portable devices (Lu et al., 2019) to collect

physiological signals for VO2 and VO2max prediction.

Shandhi et al. (2020) developed a novel wearable patch that

can obtain seismocardiogram (SCG), electrocardiogram (ECG)

and atmospheric pressure (AP) signals, and they extracted

features from these signals to estimate the VO2 with the R2

of 0.77.

So far, there have been some researches on the real-time

prediction of VO2 based on easily available physiological signals.

However, there are still some problems to be solved. First, VO2

still cannot be accurately estimated in rest, low-intensity exercise,

and maximal exercise. Second, although some consumer-grade

watches provide the function of giving VO2 in daily activities,

they are probably not accurate enough for sports or health care

(Murakami et al., 2019; Passler et al., 2019). In order to further
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solve the above issues and improve the accuracy of VO2

estimation, the specific work of this study is summarized as

follows:

1) Using wearable devices to simultaneously record ECG,

respiration and ACC monitoring data, and extract features,

including pulmonary ventilation related parameters, to

establish a machine learning model to predict dynamic

VO2 regardless of the current activity type.

2) The introduction of respiration features improves the effect of

the VO2 estimation model in rest and low-intensity exercise.

The features extracted from ACC signals reflect the exercise

intensity of the subjects and play an important role in the

instantaneous VO2 estimation.

3) The training data source experiment includes a variety of rest

states, continuous different exercise mode stages including

low-intensity, high-intensity exercise stages and exercise

recovery stages, almost covering the activity mode in daily

activities.

4) The effects of input parameters, gender, exercise intensity,

and individual differences on model performance were

comprehensively discussed in the study, providing more

insight into the accurate estimation of VO2 in daily life

and exercise.

Materials and methods

Participants and data acquisition

A total of 31 healthy young volunteers were recruited for this

study, mainly from non-sports postgraduate students in colleges

and universities, including 19 males and 12 females. Each

participant in the study followed the protocol approved by the

IRB review board (IRB number: S2018-095-01) and approved the

written informed consent procedure. Demographic information,

including age, sex, weight, and height, was collected through a

questionnaire. Due to the high exercise intensity during the

experiment, some subjects experienced equipment dropping or

ECG leads dislocation. Therefore, the final number of subjects

with complete data collected for the entire procedure was 29

(17 male, 12 female). The demographic information is

summarized in Table 1.

During the 2 hours before the experiments, participants were

prohibited from drinking, eating, or performing excessive

physical activity. Upon arrival at the test site, the subjects

filled out a registration form and a cardiovascular risk

questionnaire under the guidance of the researchers. The

doctor assessed the potential exercise risk based on the results

of the questionnaire, and then the subjects wore the SensEcho

and Metalyzer 3B monitoring system under the supervision of a

researcher, as shown in Figure 1B. The experiment includes three

phases: rest, activity and recovery. During the resting period,

subjects were in several postures, including standing, lying with

straight legs, lying on the left side, lying on the right side, and

sitting upright. In each posture, each subject performed normal

breathing (1 min), deep breathing (1 min), talking (30 s), and fast

breathing (30 s), with 30 s of rest and adjustment between

postures. The duration of the entire phase was 17 min.

After completing the resting phase, each subject walked on

the treadmill to warm up for 3 min, and then followed the Bruce

exercise protocol, which is widely used in treadmill-based

exercise tests (Hamlin et al., 2012) and clinical examinations

(Bruce et al., 1973). This is a progressive test to reach the

participant’s maximum tolerable activity level. Each phase

lasts for 3 min, as shown in Table 2. During the Bruce test, if

the subject is exhausted, the researcher will stop the treadmill,

and the subject will enter the recovery phase and walk slowly on

the treadmill until VO2 returns to his/her warm-up level. The

duration of this phase does not exceed 20 min. Figure 1E shows

the representative acceleration of the chest response throughout

the experiment.

Hardware

The Metalyzer 3B (Cortex, Germany) is a commonly used

cardiopulmonary function testing device (Meyer et al., 2001). It

uses a mixed gas or heart-to-heart testing method to collect vital

signs parameters such as RR, HR, respiratory exchange rate in

real time. It is widely used in the comparison of cardiopulmonary

function experiments under different populations and conditions

(Shieh et al., 2010; Xiong et al., 2013). The device consists of two

parts: lung function detection and heart rate monitoring. We

follow the “Two-Point Gas Calibration” method on Page 41 in

the Operator’s Manual MetaLyzer 3B (CORTEX Biophysik,

2021). The span gas with 15% O2, 5% CO2, bal. in N2 was

used to calibration the gas analyzer. The Metalyzer 3B (Cortex,

Germany) shown in Figure 1C was used to collect VO2 data in

seconds (fs = 1 Hz), and the POLAR V800 shown in Figure 1D

was used as the gold standard to collect HR data (fs = 1 Hz). The

subject is required to wear a matching face mask during the

measurement.

The SensEcho (SensEcho, Beijing SensEcho Technology Co.,

Ltd.) we used in the experiment is a medical-grade wearable vest

embedded with multiple biosensors to monitor various vital signs

TABLE 1 The demographic information of the subjects [mean (sd)].

All (29) Male (17) Female (12)

Age (Years) 24.19 (2.82) 24.47 (2.70) 23.25 (1.83)

Height (cm) 169.97 (7.64) 174.53 (3.91) 162.83 (6.22)

Body mass/weight (kg) 63.34 (10.31) 70.19 (6.93) 53.53 (5.46)

BMI (kg/m2) 21.74 (2.16) 22.94 (1.95) 20.17 (1.21)
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(Xu et al., 2020; Wang et al., 2021; Wang et al., 2022). The

SensEcho system consists of three parts, namely, the sensors that

collect physiological parameters, the wireless data transmission

network and the central monitoring system. The ECG signals are

collected through three electrode patches. Two induction belts

are embedded in the chest and abdomen of the vest to collect the

chest and abdomen motion signals to give an estimate of

respiratory rate (RR). The errors of HR and RR measurement

are both within ±2BPM. SensEcho uses ultra-low-power tri-axial

accelerometer MMA7260 (Freescale Inc., TX, United States) to

collect posture and motion information with an accuracy of

8 mg/LSB (Least Significant Bit). The main control chip of the

system is an ultra-low-power ARM cortex-m3 MCU

(EFM32GG330, Silicon Labs, United States) with a power

consumption of 100 mW. Figure 1A shows SensEcho wearable

vest. The system also provides local and cloud data storage

solutions. When the cloud storage is unstable or unavailable,

the local storage can be activated to save the original data in a

2 GB integrated flash drive. The single-lead ECG (sampling

frequency fs = 200 Hz), respiratory signal (fs = 25 Hz), and tri-

axial accelerometer data (fs = 25 Hz) were collected by medical-

grade wearable devices, as shown in Figure 1A.

Data pre-processing and features
extraction

In the data preprocessing stage, this article performs filtering

and noise reduction operations on each signal from SensEcho,

and then extracts heart rate characteristics from SensEcho’s ECG,

respiration rate and lung ventilation related characteristics from

respiration signals, and exercise intensity from ACC data

Features, as shown in Figure 2.

The original ECG signal from the wearable vest was filtered

by a finite impulse response (FIR) bandpass filter with cutoff

frequencies of 3–45 Hz, which were selected for the ECG signal to

reduce ST-band interference and to amplify the R-wave for better

R-peak detection in the subsequent signal processing steps. The

R-peaks detection used the classical E. P. Limited algorithm

FIGURE 1
(A) SensEcho wearable device. (B) A subject configured with both the wearable vest and the gas analyzer (Metalyzer 3B). (C) Metalyzer 3B. (D)
POLAR V800. (E) Representative chest acceleration response during the experiments.

TABLE 2 The Bruce exercise protocol.

Level Time (min) Speed (km/h) Incline (%)

1 1–3 2.74 10

2 4–6 4.02 12

3 7–9 5.47 14

4 10–12 6.76 16

5 13–15 8.05 18

6 16–18 8.85 20

7 19–21 9.65 22

Remarks: Exhaustion criteria: a) The VO2 reaches its peak; b) The respiratory

quotient ≥1.10 for adults and ≥1.00 for children; c) HR ≥ 180 BPM; d) The subject was

unable to continue exercise tests.
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(Hamilton, 2002), the r-r interval was calculated by the difference

of adjacent R peaks, and the HR with a sampling rate of 1 Hz was

calculated with a time window of 4s and a moving step of 1s. The

age-based maximum HR (HRmax) (Tanaka et al., 2001)and the

ratio of current HR to age-based maximum HR (HR%) were got

according to the following Eqs 1–3.

HR � 60/(r − r interval) (1)
HRmax � 208 − 0.7 × age (2)
HR% � HR

HRmax
p100% (3)

The wavelet decomposition technologies were applied to

remove the offset effects in the breathing signals. Butterworth

band-pass filter with the frequency of 0.1–0.35 Hz was applied to

remove the high frequency noises. The NeuroKit (Makowski

et al., 2020) program package was used to detect the respiratory

wave peaks. The R-R interval was calculated by using the

difference of adjacent respiratory wave peak. The difference

amplitude (DApt) of each breath was calculated from the

difference between the amplitude of the wave peaks

(AMrr peaks) and the amplitude of the troughs (AMrr trough).

RR � 60/(R − R interval) (4)
DApt � AMrr peaks − AMrr trough (5)

The low-pass filter with 0.32 Hz was used to reduce the

motion artifacts of ACC. After the filtering, the signal vector

magnitude (SVM) was calculated, using the processed triaxial

acceleration that had been obtained, with the formula as follows:

SVM(i) �
��������������������������
x acc(i)2 + y acc(i)2 + z acc(i)2

√
(6)

In the above formula, the output of the ACC refers to x_acc,

y_acc, and z_acc, respectively. The mean absolute value of

differential SVM (MADs) is calculated by the following

formula, which represents the intensity of exercise.

MADs(i) � 1
Tp25 − 1

× ∑Tp25−1
i�1 [SVM(i + 1) − SVM(i)] (7)

In the formula, T is the time length (s) for MADs calculation,

which is 1s in this paper.

Since the sampling rate of the gas analyzer is 1 Hz, to

synchronize with it, we adopted monotone cubic interpolation

to form the RR, DApt and MADs with sampling rate of 1 Hz.

Finally, we smoothed the synchronized VO2, HR, RR, DApt and

MADs with 31 point moving average window to reduce

interference noise. We used python 3.6 to conduct all data

pre-processing and feature extraction steps.

Regression model

XGBoost (Extreme Gradient Boosting) (Chen et al., 2015) is a

machine learning technique for regression and classification

problems. It is based on the Gradient Boosting Decision Tree

(GBDT), an open-source machine learning project. In XGBoost

regression model, the result of the prediction is the sum of the

scores predicted by K trees, as shown in the formula below:

FIGURE 2
The process of signal acquisition, preprocessing and estimationwith SensEchowearable device. (A) A flow chart of the entire experiment. (B) An
example of the visualization of key signal processes. (Abbreviations: ECG, Electrocardiograph; DApt, the difference between the amplitude of the
wave peaks and the amplitude of the troughs, SVM, the signal vector magnitude of triaxial accelerometer).
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ŷi � ∑k

k�1f k(xi), f k ∈ F (8)

In the above formula, ŷi is the i-th predicted result, xi is the

i-th training sample, f k(xi) is the score for the k-th tree, and F is

the space of functions containing all regression trees.

The loss function is represented by ŷi and the true value (yi).

It is used to measure the suitability of the model to the training

data set.

L � ∑n

i�1l(yi, ŷi) (9)

The objective function to be optimized is given by the

following formula:

OBJ � ∑n

i�1l(yi, ŷi) +∑K

k�1Ω(f k) (10)

The∑K
k�1Ω(f k) is an item that penalizes the complexity of the

model and prevent overfitting. As the complexity of the model

increases, a corresponding score is deducted.

Compared with GBDT, XGBoost has many algorithm and

engineering improvements. XGBoost penalizes more complex

models through LASSO (L1) and Ridge (L2) regularization to

prevent overfitting (Morde, 2019). XGBoost naturally

acknowledges the sparsity of the input by automatically

learning to determine the maximum missing value based on

training losses and to process the different types of sparse

patterns in the data more efficiently (Chen et al., 2015).

Therefore, it has been widely used in many machine learning

competitions and achieved good results.

Optimize hyperparameters

Firstly, the data set was divided into training set and

validation set by the method of leaving one. Secondly, for

each training set, the optimal parameters were selected by the

method of grid search and five-fold cross-validation. Finally, the

optimal parameter model was applied to the validation set to

obtain the result. All steps were implemented in Python 3.6.

Different feature set

For convenience, we named the features of subject

demographic information (including age, gender, and BMI) as

SDI, and added a new feature RD, which includes RR and DApt.

To explore the influence of different input parameters on model

performance and further investigate the optimal parameter

combination to predict VO2. In this work, we have designed

multiple input combinations for different models: HR% + SDI,

RD + SDI, MADs + SDI, HR% + RD + SDI, HR% +MADs + SDI,

MADs + RD + SDI, HR% + RD + MADs + SDI.

Data analysis

Leave-one-subject-out (LOSO) cross-validation was

performed on n subjects. In each round, XGBoost regressor

trained on the data from n-1 subjects, and the remaining

sample is used as the test set in which the VO2 of the left-out

subject was predicted. The process was repeated n-1 times with a

different subject excluded each time. Performance of the different

regression models and input parameters were evaluated using

mean absolute error (MAE, ml/kg/min):

MAE � 1
N

× ∑N

i�1
∣∣∣∣VO2,true(i) − VO2,esti(i)

∣∣∣∣ (11)

In the above formula, N was the numbers of VO2,esti.

The coefficients of determination (R2) and Bland-Altman

plot were used to analyze the consistency between the estimated

VO2 (VO2,esti) and the true VO2 (VO2,true). All data analysis was

carried out via Python (version 3.6).

Statistics analysis

Firstly, to explore the influence of different hyperparameters

on the VO2 prediction accuracy of different models with the same

input characteristics, 1) the accuracy of LR, RF and XGB models

in VO2 prediction was compared when the input characteristics

were HR%+RD + MADs + SDI, 2) the accuracy of LR and XGB

for VO2 prediction was compared when the input characteristics

were HR%+ SDI, RD + SDI,MADs + SDI, HR%+RD+ SDI, HR%

+ MADs + SDI, MADs + RD + SDI. Secondly, to study the

influence of different hyperparameters on the model, three

hyperparameters were selected. On the premise that the other

two hyperparameters were fixed, the influence of the change of the

other hyperparameter on the prediction VO2 error was compared.

Thirdly, to investigate the importance of different input features,

we compared the VO2 prediction error with and without of the

input features. Fourthly, to explore the influence of gender on the

prediction accuracy of the model, the MAE of VO2 prediction was

compared between the same gender as the training set and

different gender as the training set. Finally, to compare the

stability of the proposed model and the activity-specific model,

the differences of VO2 prediction between the two models in rest

(Stand, Lie, Lying on the left side, Lying on the right side, Sit),

Walk, Run and recovery states were compared.

Independent sample t-test was used for comparison between

two groups. One-way ANOVAwas used for comparison between

multiple groups. Additionally, for the post-hoc testing, we

applied the Tukey HSD test for comparisons between groups.

The p-value for one-way ANOVA is less than 0.05 indicate that at

least one of the treatment groups differs from the others. In our

study, we considered that a p < 0.05 was statistically significant.
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Results

Comparison of different regression
models and inputs

Linear regression (LR), random forest (RF), and XGBoost

regression models were applied, and the XGBoost model worked

best throughout the experiments with HR, RD, MADs, and SDI

as model inputs. The MAE of VO2 predicted by these three

models was significantly different (p < 0.05), but there was no

significant difference of R2 (p > 0.05). Compared with LR and RF

model, MAE of XGBoost model decreased by 0.74 ml/kg/min

(p < 0.05) and 0.23 ml/kg/min (p > 0.05) respectively, and R2

increased by 0.06 (p > 0.05) and 0.02 (p > 0.05) respectively.

Further, the effects of different input signals on the accuracy

of LR and XGBoost models were compared. Compared with LR,

when the input signal was HR% + SDI, the MAE of XGBoost

decreased by 0.20 ml/kg/min (p > 0.05), and R2 decreased by 0.01

(p > 0.05). When the input signal was RD + SDI or MADs + SDI,

theMAE of XGBoost decreased by 1.03 ml/kg/min (p < 0.05) and

0.88 ml/kg/min (p > 0.05) respectively, and R2 increased by 0.11

(p < 0.05) and 0.08 (p < 0.05) respectively. When the input signal

was HR%+RD + SDI, RD +MADs + SDI, or HR%+MADs + SDI,

the MAE of XGBoost decreased (p < 0.05) by 0.82 ml/kg/min,

0.68 ml/kg/min, and 0.49 ml/kg/min, and R2 increased by 0.05

(p > 0.05), 0.06 (p < 0.05), and 0.05 (p < 0.05). The mean and

standard deviation of MAE and R2 of different models and inputs

were shown in Table 3.

The results show that in both LR and XGBoost models, the

combination of multiple parameters reduces the MAE of

estimated VO2 compared with using HR, RD, or MADs alone

as inputs, while the XGBoost regression model performs better

compared with the LR model either using a single feature or

different combinations of multi-signal features as inputs. This is

in line with expectations, as the linear relationship between

individual metrics (e.g., HR, RR) and VO2 does not always

hold under different states of motion, and the combination of

these features is effective in reducing the VO2 prediction error

compared with using HR%, RD, or MADs features alone as

inputs.

Effect of different parameters on the
accuracy of XGBoost model

To explore the influence of parameters in the XGBoost model

on the result estimation error, three hyper-parameters, learning

rate (Lrate), the number of trees (Ntree), and max deep (Dmax) of

the model were investigated in terms of measures of MAE. For

this purpose, we change one of the hyper-parameters with all the

others fixed. The effect of these important parameters of

XGBoost on the accuracy of VO2,esti was shown in Table 4,

and it was found that Ntree and Lrate had a greater effect on the

results than the Dmax. The MAE of VO2 predicted by eight

combinations of three parameters has significant difference (p <
0.05). Compared with 10 trees, when the Dmax and Lrate of

50 trees were (1, 1), (1, 0.1), (5, 0.1), the MAE decreased by

18.50% (p < 0.05), 55.67% (p < 0.05), 57.93% (p < 0.05)

respectively. Compared with Dmax of 1, when the Ntree and

Lrate of Dmax of five were (10, 1) and (50, 0.1), the MAE

decreased by 14.94% (p < 0.05) and 17.33% (p < 0.05)

respectively. Compared with the Lrate of 1, the MAE decreased

by 46.61% (p < 0.05), 47.87% (p < 0.05) and 24.90% (p < 0.05),

TABLE 3 The MAE and R2 of different models and different input
parameters [mean (sd)].

Models Inputs MAE (ml/kg/ml) R2

LR HR%+SDI 4.24 (1.45) 0.73 (0.17)

RD + SDI 4.91 (0.94) 0.59 (0.19)

MADs + SDI 3.58 (0.65) 0.75 (0.12)

HR%+RD + SDI 3.94 (1.16) 0.77 (0.12)

RD + MADs + SDI 2.90 (0.57) 0.83 (0.08)

HR%+MADs + SDI 2.69 (0.81) 0.87 (0.08)

HR%+RD + MADs + SDI 2.57(0.70) 0.88(0.06)

RF HR%+SDI 4.20 (1.38) 0.68 (0.18)

RD + SDI 4.33 (1.48) 0.58 (0.25)

MADs + SDI 3.74 (0.78) 0.68 (0.13)

HR%+RD + SDI 3.30 (1.03) 0.79 (0.11)

RD + MADs + SDI 2.55 (1.14) 0.86 (0.11)

HR%+MADs + SDI 2.52 (0.61) 0.88 (0.05)

HR%+RD + MADs + SDI 2.06(0.43) 0.92(0.03)

XGBoost HR%+SDI 4.04 (1.77) 0.72 (0.19)

RD + SDI 3.88 (1.22) 0.70 (0.17)

MADs + SDI 2.70 (0.58) 0.83 (0.06)

HR%+RD + SDI 3.12 (1.21) 0.82 (0.11)

RD + MADs + SDI 2.22 (0.76) 0.89 (0.07)

HR%+MADs + SDI 2.20 (0.67) 0.92 (0.05)

HR%+RD + MADs + SDI 1.83 (0.59) 0.94 (0.03)

TABLE 4 The results of different parameter for XGBoost model
(mean (sd)).

(Ntree, Dmax, Lrate) MAE

10,1,1 2.68 (0.34)

10,5,1 2.28 (0.66)

50,1,1 2.19 (0.47)

50,5,1 2.45 (0.78)

10,1,0.1 5.02 (1.35)

50,1,0.1 2.23 (0.62)

10,5,0.1 4.38 (1.21)

50,5,0.1 1.84 (0.52)
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when the Ntree and Dmax of the Lrate of 0.1 were (10, 1), (10, 5),

and (50, 5) respectively. Thus, the input parameters have a

significant impact on the MAE in the results. It is important

to adjust the parameters, and the optimal parameters will have a

large improvement in the accuracy of the model.

Contributions of different input
parameters under various activity types

In this paper, further discussions have been carried upon

the results of the XGBoost model, as shown in Table 5, which

shows the VO2 prediction results of various types of activities

under different input parameters. Due to the poor linear

correlation between VO2 and HR in the rest state, it is

difficult to do the accurate prediction, so several rest

scenarios were designed in the experiment. The results of

each scenario were analyzed to explain how the input

parameters affect the accuracy of VO2 in different states.

The MAE of VO2 predicted by seven combination

parameters (HR%+SDI, RD + SDI, MADs + SDI, HR%+RD +

SDI, RD+MADs + SDI,HR%+MADs + SDI,HR%+RD+MADs

+ SDI) as inputs was significant difference (p < 0.05) under various

activity types (Stand, Lie, Lying on the left side, Lying on the right

side, Sit, Walk, Run and recovery).

The results in Table 5 show that MADs is an important

feature of VO2 estimation becauseMADs + SDI performed better

than HR%+SDI and RD + SDI. MADs can significantly improve

the accuracy of VO2 estimation under various activity types,

because HR%+MADs + SDI and RD + MADs + SDI perform

better than (p < 0.05) HR%+SDI and RD + SDI, as shown in

Table 5.

RD is more closely related to VO2 than HR in rest and low-

intensity exercise, because the MAE of RD + SDI is lower than

that of HR%+SDI in most rest scenarios and warm-up walking.

When we combined HR%, RD and SDI as the inputs for VO2

estimation, the results were better than (p < 0.05) the

combination of HR% + SDI or RD + SDI. Therefore,

respiratory features are beneficial to VO2 estimation.

Compared with a single parameter (HR%, RD, or MADs) as

input, the MAE of combining multiple parameters as input to

predict VO2 was smaller, and the stability and accuracy of the

estimation results were better (p < 0.05), as shown in Table 5. The

MAE of HR%+RD +MADs + SDI is only 1.83 ± 0.59 ml/kg/min.

Unexpectedly, in the standing state, because the subjects are not

familiar with the experimental process, HR% will have a negative

impact on the predicted results, making the subjects nervous, and

leading to changes in HR.

Gender differences affect the accuracy of
VO2 estimation results

In order to explore the influence of gender on VO2

estimation, we divided the subjects into two groups according

to gender, and conducted a crossover experiment. In this section,

the XGBoost regression model is still used, and the input scheme

is HR% + RD + MADs + SDI.

Firstly, the LOSO cross-validation was used in the male

group (Male-Male) and the female group (Female-Female)

TABLE 5 The results of different input schemes for XGBoost model in various tasks.

Inputs Stand Lie Lie (Left) Lie (Right) Sit Walk Treadmill Recovery

HR%+SBI 3.51 2.50 2.32 2.20 2.69 3.02 6.20 4.39

RD + SBI 2.69 2.27 1.76 1.95 3.40 1.89 6.02 4.52

MADs + SBI 1.17 1.43 1.24 1.22 1.36 3.41 3.64 3.61

HR%+RD + SBI 2.51 1.91 1.57 1.51 2.23 1.85 5.23 3.32

HR%+MADs + SBI 1.48 1.46 1.37 1.33 1.44 2.19 3.25 2.41

RD + MADs + SBI 1.04 1.44 1.09 1.17 1.38 1.81 3.24 2.71

HR%+RD + MADs + SBI 1.16 1.35 1.08 1.06 1.20 1.81 2.62 2.08

TABLE 6 The effect of gender on predicted results under various tasks.

Train-test Stand Lie Lie (Left) Lie (Right) Sit Walk Treadmill Recovery

Male-Male 1.29 1.44 1.12 1.04 1.21 2.15 3.26 3.02

Female-Female 1.23 1.46 1.05 1.17 1.17 1.41 3.20 1.85

Female-Male 1.17 1.87 1.22 1.26 1.04 1.78 4.62 2.60

Male-Female 1.24 1.31 1.32 1.51 1.37 1.83 3.76 1.87
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respectively. As shown in Table 6, the difference between the

results of the two cross-validation is small, which may be caused

by the difference in the number of subjects. Secondly, we also

used Males’ (Females’) data as the training set for the XGBoost

model, and the Females’ (Males’) data were as test set, which was

named Male-Female (Female-Male) cross-validation test. The

MAE of Male-Female and Female-Male tests during walking

were similar (p > 0.05), as the baseline of VO2 value betweenmale

and female was not much different. However, the MAE during

resting, the Bruce treadmill test, and recovery were bigger (p <
0.05) because of great difference in the muscle ratio and vital

capacity between males and females.

Explore the VO2 estimation results at
different levels of bruce treadmill test

In the Bruce treadmill test, when the input parameters were

RD + MADs + SDI or HR%+RD + MADs + SDI, there was little

difference in the MAE, as mentioned in Table 7. When HR% was

added as an input parameter, it did not contribute to the accuracy

of the VO2 estimation results. To further explore the effect of

each level of Bruce treadmill test on the MAE, and to find out

whether HR% has effect on the results, we have analyzed each

stage of the test. The specific calculation results are shown in

Table 7, which shows that compared with RD + MADs + SDI as

input, when HR%+RD +MADs + SDI as input, theMAE at Level

1 to Level 5 decreased by 0.25 ml/kg/min, 0.11 ml/kg/min,

0.38 ml/kg/min, 0.98 ml/kg/min, and 3.69 ml/kg/min,

respectively.

The results in Table 7 shows that theMAE have no significant

difference between HR%+RD + MADs + SDI or RD + MADs +

SDI as model inputs during low and moderate intensity exercise

(Levels 1, Levels 2, and Levels 3) (p < 0.05). However, during the

high-intensity exercise (Levels 4 and Levels 5), there was a

significant difference in MAE when RD + MADS + SDI and

HR%+RD + MADS + SDI were as the input (p < 0.05). The

feature of HR% plays an important role in predicting the

accuracy of performance. Combining with Table 4, it indicates

that if we intended to achieve the real-time, accurate estimation

of VO2 in a variety of tasks, a combination of HR%, RD, MADs,

and SDI was necessary.

Advantages of the multi-parameter fusion
XGBoost model

Since the XGBoost model with feature inputs of HR% + RD +

MADs + SDI performs best on the dataset, we choose this model

to measure the consistency between the VO2,esti from SensEcho

and the VO2,true value from Metalyzer 3B. The scatter plot and

Bland-Altman plot of VO2 value are shown in Figure 3. Figure 3A

TABLE 7 Comparing the predicted result of different inputs in each
level during Bruce treadmill test.

Input RD + MADs +
SBI

HR%+RD + MADs +
SBI

p value

Level1 2.78 2.52 <0.05
Level2 3.26 3.15 <0.05
Level3 3.61 3.24 <0.05
Level4 4.47 3.49 <0.05
Level5 5.38 1.69 <0.05

FIGURE 3
The linear correlation plot and consistency plot of VO2,esti and VO2,true . (A) The scatter plot of VO2,esti and VO2,true . (B) The Bland-Altman plot of
VO2,esti and VO2,true . (Abbreviations: VO2,esti: the estimated VO2 by XGBoost model, VO2,true: true VO2).
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is the scatter plot of VO2,esti by the wearable device and VO2,true

by the Metalyzer 3B. The VO2,esti and VO2,true value are in a

strong correlation (R2 = 0.94 ± 0.03, n = 72,235). Compared with

the study of Shandhi et al., the R2 of this study was increased by

0.15. Figure 3B is the Bland-Altman plot. The bias (0.005 ml/kg/

min) is higher than the equality line, while the CI95 is 5.36 ml/kg/

min around the bias. More specifically, the MAE was 1.13 ml/kg/

min in the rest, 2.47 ml/kg/min in walk phase, 3.09 ml/kg/min in

the treadmill phase, and 2.04 ml/kg/min in the recovery phase.

It was found that MAE was lower in the resting state than the

movement state. This because the baseline VO2 values are lower

in the rest period than in the movement period. The transition

process between states is not considered in the experiment. Altini

et al. (2015) mentioned that transition states have an impact on

the estimation results. While in our experiment, the model does

not need to distinguish the type of states and it shows good

estimation results throughout the experiment.

Comparison of the proposed model with
activity-specific VO2 model

In the previous paper, Altini et al. (2015) proposed activity-

specific linear functions to model steady-state activities and

transition-specific non-linear functions to model non-steady-

state activities and transitions. The result showed that the MAE

between the predicted and true results of activity-specific models

based on distinguishing activity states is lower than other linear

or nonlinear models.

In this section, we investigate the predicted results of our

proposed model and the activity-specific model in the four states

of rest, walk, run, and recovery, without considering the

transition between states. The boxplot of MAE of two models

in different states was shown in Figure 4. Compared with our

proposed model, the mean MAE of the activity-specific model is

close in rest (1.05 ± 0.29 vs. 1.10 ± 0.11, p = 0.04), walk (1.41 ±

0.15 vs. 1.40 ± 0.66, p = 0.69), run (2.46 ± 1.13 vs. 2.53 ± 0.17, p =

0.42), and recovery states (2.00 ± 0.96 vs. 2.00 ± 0.31, p = 0.82).

The differences between two models of rest state was significant

(p < 0.05), but that of walk, run, and recovery states were not

significant (p > 0.05). However, the standard deviation of the

activity-specific model was greater in the four states, and the

model stability was slightly inferior compared with our proposed

model.

Evaluation of individual difference on
estimation result

In this section, we also used the XGBoost model with feature

inputs of HR% + RD + MADs + SDI. Figure 5 showed two cases

of better and worse results when applying this method to predict

VO2. Figure 5A exhibited a strong linear correlation (R2 = 0.96)

between the VO2,true and VO2,esti. Bland-Altman plots showed

FIGURE 4
The boxplot of MAE of the proposed model and activity-specific model in different states.
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that the deviation in Figure 5B was 0.99 ml/kg/min, and the CI95
was (−2.55, 4.54) ml/kg/min. Figures 5C,D showed the prediction

result of VO2 and the error distribution between VO2,true and

VO2,esti during the whole experiment process. MAE was

1.41 ml/kg/min. Figures 5E–H was the result of a case of poor

performance, in which R2 was 0.95, bias was -0.05, the CI95 was

(−5.20, 5.09) ml/kg/min, MAE was 1.79 ml/kg/min. In this case,

when the oxygen uptake rapidly rised to the peak and then falls

back, our algorithm cannot accurately estimate the VO2 peak, but

it can give the correct upward and downward trends. Both

VO2,esti and VO2,true of the two subjects showed a good linear

correlation, but the results were within the range of CI95, and the

poorer subjects had a wider range. The differences in MAE was

0.39 ml/kg/min, and the basic information (age, gender, BMI) of

the two groups of subjects were similar. The estimation of VO2

proves that differences in individual physical conditions will

influence the accuracy of the results, which mostly occur

when the individual’s maximum VO2 is close.

Conclusion and discussion

Artificial intelligence method has great potential for

predicting physiological parameters in sports medicine. Parak

et al. (2017) use physiological model based on HR, running

speed, and personal characteristics to estimate EE during the

maximal voluntary exercise test and VO2max during the

submaximal outdoor running test. Zignoli et al. (2022)

proposed an artificial neural network that might be used to

detect ventilatory thresholds for VT1 and VT2, respectively.

In this work, we propose a model based on XGBoost, which

uses cardio-pulmonary physiological signals as input to estimate

instantaneous VO2 in different activity scenarios. Firstly, we

explored and extracted important features from ECG,

respiration, and tri-axial acceleration signals. HR%, MADs,

RD and subject demography information are used as input of

the XGBoost model for VO2 estimation. This method does not

need to determine the type of exercise in advance. Compared

with the linear regression method, our proposed model reduces

the MAE of VO2 prediction by 28.79%. Secondly, the regression

model trained with HR%, RD, and MADs is better than the

models trained by HR%, ACC, RD, alone or in pairs. The MAE

and R2 of LOSO cross-validation are 1.83 ml/kg/min and

0.94 respectively. Compared with the linear regression method

of using single HR as input for estimation, the MAE is reduced by

54.70%. The input of the model proposed in this paper not only

includes HR and RR, but also introduces MADs as input

parameters, which make an important contribution to

reducing the error of model prediction results. As shown in

Figure 2B, MADs extracted from acceleration sensors placed on

the chest can distinguish the exercise intensity especially in the

Bruce treadmill test. At the same time, since the SensEcho can

measure both thoracic and abdominal motion signals, we

extracted RR and DApt from respiratory signals, which can

represent the changes in lung ventilation. Studies have shown

that ventilation efficiency is closely related to VO2, and this

parameter appears to be critical for patients with chronic heart

failure (Figueiredo et al., 2013) and chronic obstructive

pulmonary disease patients (Sanseverino et al., 2018; Fischer

et al., 2021), therefore, it has great application potential. RR and

FIGURE 5
A good and a bad case. (A,E) The scatter plot of VO2,esti and VO2,true . (B,F) The Bland-Altman plot of VO2,esti and VO2,true . (C,G) Real-time VO2,esti

and VO2,true . (D,H) The error distribution of VO2,true and VO2,esti .
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DApt are more closely related to VO2 than HR during resting and

low-intensity exercise, which improves the prediction accuracy of

our model. Interestingly, gender has little influence on results

during rest and low-intensity state, as shown in Table 6, because

there is little difference in the baseline of VO2 values between

male and female. However, in the Bruce treadmill test, MAE

increased significantly when the gender in the test set is different

from in the training set. This reflects the difference in

cardiopulmonary functions such as muscle ratio and vitality

between men and women during exercise, especially during

high-intensity exercise. Finally, we found that our proposed

model was able to predict VO2 robustly with a smaller

fluctuating range of error compared to the activity-specific

model, the excellent model preference was attributed to the

extraction of important features of the cardiorespiratory signal

and the choice of model parameters.

There are limitations in our research as well. First, the

number of subjects in the experiment was relatively small, the

age distribution was similar, and the difference in BMI was

small. The research could not investigate the influence of age,

obesity, and other factors on VO2 estimation. In future studies,

we will recruit more subjects of different ages and obesity levels

to expand the sample size. Second, the model and analysis are

all based on ordinary healthy subjects. There are no subjects

with outstanding cardiopulmonary function such as athletes,

and poor cardiopulmonary function such as patients with

chronic obstructive pulmonary disease or heart failure etc.

Therefore, the performance of our model on these people is

unclear and needs to be further explored. Third, the type of

activity is a little simple in our dataset. In the future research, we

will design some combine tasks that represent the real-world

situation.

In general, this study has proved the potential of cardio-

pulmonary physiological signals for instantaneous estimation

of individual oxygen uptake in various scenarios of activities.

Furthermore, the model proposed in this paper shows high

consistency with the gold standard method. The algorithm can

be embedded in portable wearable devices, helping to more

accurately estimate oxygen uptake in sports, clinical, and

home environments. Through continuous monitoring and

evaluation of oxygen uptake, it is possible to gain a deeper

understanding of the individual’s cardiorespiratory health,

help to make personalized health management

recommendations, and improve the understanding

of exercise rehabilitation and clinical treatment effect

evaluation.
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