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Abstract

Modern biological tools generate a wealth of data on metabolite and protein concentrations

that can be used to help inform new strain designs. However, learning from these data to

predict how a cell will respond to genetic changes, a key need for engineering, remains chal-

lenging. A promising technique for leveraging omics measurements in metabolic modeling

involves the construction of kinetic descriptions of the enzymatic reactions that occur within

a cell. Parameterizing these models from biological data can be computationally difficult,

since methods must also quantify the uncertainty in model parameters resulting from the

observed data. While the field of Bayesian inference offers a wide range of methods for effi-

ciently estimating distributions in parameter uncertainty, such techniques are poorly suited

to traditional kinetic models due to their complex rate laws and resulting nonlinear dynamics.

In this paper, we employ linear-logarithmic kinetics to simplify the calculation of steady-state

flux distributions and enable efficient sampling and inference methods. We demonstrate

that detailed information on the posterior distribution of parameters can be obtained effi-

ciently at a variety of problem scales, including nearly genome-scale kinetic models trained

on multiomics datasets. These results allow modern Bayesian machine learning tools to be

leveraged in understanding biological data and in developing new, efficient strain designs.

Author Summary

Genetic engineering of microbes is a promising strategy to enable more efficient and

environmentally friendly production routes for chemicals and materials traditionally pro-

duced from petroleum. While the tools to both edit microbial genomes and measure the

resulting changes to cellular physiology are growing increasingly efficient, our ability to

predict which genetic interventions will have the greatest likelihood of achieving the

desired phenotype is still lacking. In particular, computational methods are needed that

are able to efficiently ingest the increasing amount of data generated from large biological

datasets to guide subsequent rounds of experiments. This study presents an efficient algo-

rithm coupled to modern computational tools that permits a closer integration of model-

ing in the design, build, test, and learn cycle of genetic engineering.
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Introduction

Microbial metabolism offers a promising route for the sustainable production of fuels and

chemicals. Fine-tuning enzyme expression to optimize fluxes within these metabolic networks

for maximum titer, rate, and yield is a critical step in improving bioprocess economics [1].

Towards this goal, the process of metabolic engineering has been formalized into an iterative

Design—Build—Test—Learn cycle that leverages new improvements in the efficiency of strain

construction and characterization techniques [2]. Metabolic engineers now have a greater abil-

ity to fine-tune gene expression of both native and exogenous pathways and construct new

strains in rapid succession. Characterization of the resulting strains has also become increas-

ingly detailed with the growing availability of transcriptomic, proteomic, and metabolomic

analysis techniques [3]. These methods, collectively termed multiomics, measure relative

changes in gene, protein, or metabolite concentrations across different strains or growth con-

ditions [4]. While the capabilities of the build and test stages have grown considerably in recent

years, utilizing multiomics data to make informed decisions about future strain improvements

remains a major challenge in modern bioengineering [5, 6].

Central to this question is determining how steady-state metabolic fluxes are controlled.

These fluxes arise through a vast network of enzymes with complex regulation and nonlinear

kinetics. Constraint-based models offer one strategy for predicting metabolic fluxes by investi-

gating feasible steady-state phenomena by placing constraints on reaction fluxes in accordance

with stoichiometric [7], thermodynamic [8], enzymatic [9], and regulatory (reviewed in [10])

rules. However, some predictions require an explicit consideration of reaction kinetics that are

not considered in constraint-based modeling. For instance, the rate-limiting enzyme in a

multi-step pathway cannot be determined without knowing the kinetics of each enzyme and

the concentration of each metabolite [11].

Enzymatic rate rules involve a number of (typically unknown) parameters: variables

which must be determined from experimental data. While in vitro experiments have charac-

terized the most common enzymes, the vast majority of enzymes lack explicit kinetic infor-

mation [12]. Alternatively, parameters for kinetic models can be fit by using phenotypic

measurements of how metabolic fluxes change following perturbations to enzyme expres-

sion or growth media. An important consideration in this approach is the treatment of

uncertainty, since many sets of kinetic parameters might reproduce the same observed

steady-state phenotypes. Metabolic ensemble modeling (MEM) achieves this result by

repeatedly sampling kinetic parameters from within feasible bounds, keeping only those

parameter sets that match observed phenotypes to within some tolerance [13–16]. In a

somewhat similar manner, the ORACLE framework generates sets of possible parameters

using a Monte Carlo approach, keeping only those that match experimental measurements

[17–20]. For ensemble modeling this selection technique has more recently been formalized

as Bayesian inference and solved via approximate Bayesian computation, in which parame-

ter values are drawn from prior distributions of feasible values, simulated phenotypes are

compared against experimental observations, and the resulting posterior distributions are

updated [21].

A major limitation of ensemble-based modeling has been its ability to scale both to larger

datasets as well as larger kinetic models, since larger datasets cause a higher fraction of samples

to be discarded and larger kinetic models increase the computational cost of each simulation.

Computation times on the order of hours per parameter sample have been encountered even

for relatively small systems [13, 21], and despite improvements to the computational efficiency

of MEM [22, 23] the method remains limited to both small models and a few experimental

observations.
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In this study, we develop a scalable analog of metabolic ensemble modeling, capable of

inferring posterior distributions in kinetic parameters of large metabolic models with multio-

mics-sized datasets. We sidestep many of the previously discussed computational bottlenecks

through the use of linear-logarithmic (linlog) kinetics as an approximate reaction rate rule [24,

25]. Linlog kinetics have a close connection to metabolic control analysis (MCA), which links

effects of local perturbations (i.e., changes to enzyme expression) to changes in the resulting

steady-state concentrations and fluxes [26, 27]. Most critically, the use of linlog kinetics greatly

simplifies the simulation of steady-state fluxes and metabolite concentrations and allows the

use of modern and efficient Bayesian inference algorithms [28, 29]. We show that this method

is capable of providing systems-level insight into metabolic kinetics for a wide range of kinetic

models and dataset sizes. First, we demonstrate the method on a simple in vitro example,

showing that the method is flexible enough to capture allosteric interactions between metabo-

lites and enzymes. We next show that the method appropriately captures uncertainty in esti-

mated parameters, revealing significant flux control coefficients (FCCs) for only the most

likely enzyme perturbations in the case of limited biological data. Finally, we employ the

method to integrate thousands of individual metabolomic, proteomic, and fluxomic data-

points with a large-scale model of yeast metabolism. We therefore show that the field of meta-

bolic modeling can take full advantage of recent advances in the fields of probabilistic pro-

gramming, machine learning, and computational statistics, and that ensemble-based

approximate kinetic modeling approaches are capable of scaling to genome-sized models and

datasets to provide interpretable and actionable insight for strain engineers.

Results

Bayesian inference and linlog kinetics correctly predict allostery in an in
vitro linear pathway

The kinetic models we consider in this study are parameterized with a matrix of elasticity val-

ues, where rows correspond to enzymes and columns correspond to metabolites. Values in

this matrix reflect how an increase in a given metabolite’s concentration will affect the reaction

rate of the corresponding enzyme. Elasticities are unitless parameters defined as the normal-

ized derivative of reaction rate with respect to metabolite concentration. Positive elasticities

therefore indicate that higher metabolite concentrations will increase reaction rate, while nega-

tive elasticities indicate that higher metabolite concentrations will decrease reaction rates. For

a reactant, a small yet positive elasticity implies the enzyme is saturated and further increases

in metabolite concentration will not effectively increase the rate. A substantial negative elastic-

ity associated with a reaction product might indicate a reaction close to equilibrium, where

changes to product concentration are significant in changing the forward rate. Since the elas-

ticities are represented by a dense matrix, other regulatory interactions including substrate-

level inhibition or activation can be captured through non-zero elasticity values associated

with the enzyme-regulator pair. We therefore seek to find distributions in the values of this

elasticity matrix that are consistent with experimentally observed metabolite, flux, and enzyme

measurements. While this approach allows the possibility that all metabolites could affect all

reaction rates, we constrain metabolites not participating in a reaction to have a very low prob-

ability of affecting flux while still allowing for a small chance of allosteric regulation. An over-

view of the methodology is presented in Fig 1, and explained in greater detail in the Methods

section.

While the primary purpose of the proposed modeling framework is to parameterize

genome-scale kinetic models from large, multiomics datasets, we first demonstrate the method

on a simple linear pathway. We re-fit a simple three-reaction model [30] to steady-state in

Bayesian inference of metabolic kinetics from genome-scale multiomics data
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vitro flux and concentration data for a reconstructed subsection of lower glycolysis [31]. A

schematic of the considered pathway is shown in Fig 2A. The model consists of two internal

metabolite species, 2-phosphoglycerate (2PG) and phosphoenolpyruvate (PEP), and two

metabolites with externally-controllable concentrations, adenosine diphosphate (ADP) and

2,3-bisphosphoglycerate (BPG). The model consists of three reactions in series, phosphoglyc-

erate mutase (PGM), enolase (ENO), and pyruvate kinase (PK); therefore each carries the

same flux at steady-state. The dataset consists of 19 separate experiments, each of which speci-

fies the enzyme loadings and external metabolite concentrations together with the resulting

internal metabolite concentrations and steady-state flux.

Bayesian inference is a technique that uses Bayes’ theorem to construct probability distribu-

tions in model parameters from experimental data. Inputs to Bayesian inference include both

a likelihood model, which describes the probability of the observed data occurring as a func-

tion of model parameters, and a prior distribution that encompasses all values that model

parameters are likely to take before the experimental data is considered.Numerical techniques

then invert these functions to find the posterior distribution: the conditional probability of the

parameter after observing the experimental data. The choice of prior distributions can also be

used for regularized regression. In this study, Laplace priors (with a sharp peak near zero) are

placed on elasticities for metabolite-reaction pairs in which the metabolite does not directly

participate, resulting in a posterior elasticity close to zero unless sufficient evidence is present

to indicate activation or repression.

The likelihood model in this example assumed the experimental errors were normally dis-

tributed, and prior distributions ensured that estimated enzyme elasticities were reasonable.

Specifically, we assumed elasticities associated with reactants to be predominately positive,

those associated with products to be predominately negative, and those for metabolites not

participating in a given reaction to be close to zero (Fig 1C). More details on the specific prior

distributions chosen are given in the Methods.

Computational methods for Bayesian inference typically fall into two broad categories.

Markov chain Monte Carlo (MCMC) methods exactly sample the posterior distribution by

Fig 1. Overview of the modeling framework. (A) The stoichiometry of the reaction network is used to determine prior distributions for the elasticity parameters. (B)

The elasticity parameters represented in matrix form, where the column outlined in orange corresponds to m1 in (A). (C) For a metabolite m1, the prior distribution

has predominately negative support for reactions in which the metabolite is a product (rA), positive support for reactions in which the metabolite is a reactant (rB), and

a zero-centered, sparsity inducing prior for reactions in which the metabolite does not participate (rC).

https://doi.org/10.1371/journal.pcbi.1007424.g001
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constructing a stochastic process that ultimately converges to a stationary distribution, repre-

senting the true posterior. However, convergence of these methods is not guaranteed, and

high dimensional posteriors (i.e., lots of parameters) can be numerically difficult to sample. As

an alternative, variational Bayesian methods approximate the true posterior with an analyti-

cally tractable distribution (for example, a Gaussian), and minimize the dissimilarity between

the true and approximate posterior through parameter optimization. While the estimated pos-

terior is only an approximation of the true distribution, variational approaches have been

shown to be capable of scaling to neural-network sized models with millions of parameters

[32].

In this study, two inference algorithms were used to numerically estimate posterior distri-

butions in elasticity parameters. First, a type of MCMC algorithm called the No-U-Turn sam-

pler [28] (NUTS), and second, an implementation of variational inference known as automatic

differentiation variational inference (ADVI) [29]. Four independent sampling chains for the

NUTS sampler converged to similar posterior distributions in elasticity values (Fig 2B), taking

under 10 minutes on a personal computer, while the stochastic gradient descent optimizer of

Fig 2. In vitro pathway inference. (A) Schematic of the considered pathway. Inferred allosteric interactions are shown in gray, in which arrows indicate an activation,

while bar-headed lines indicate inhibition. (B) Traces for ��x values as estimated by NUTS. Samples come from four parallel chains stacked together as indicated by the

shaded regions. Resulting posterior densities are indicated by the inset on the right. (C) Posterior predictive distributions of steady-state flux and metabolite

concentrations. Points represent medians of the posterior predictive distributions, with lines extending to cover the 95% highest posterior density. Slight jitter was

added to differentiate the distributions as estimated by NUTS and ADVI. (D) Pairplot of the posterior distributions of elasticity variables as estimated via NUTS.

Strong correlations can exist between fitted parameters, which are missed by the mean-field ADVI approximation. (E) Violin plot of distributions in FCCs as

estimated by the two inference methods. Median and inner quartile range are indicated by the inner box plots, overlaid on a kernel density plot of each distribution.

https://doi.org/10.1371/journal.pcbi.1007424.g002
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ADVI converged to a small objective score after 25,000 iterations in less than 40 seconds (S4

Fig). Comparing the results of the two inference methods indicates that both methods yield

similar conclusions. A posterior predictive check for both inference methods indicates that the

measured experimental data is well-captured by the model (Fig 2C). Both inference algorithms

correctly predict allosteric regulation. Despite predicting off-target regulation would be minor,

all elasticity values in the internal metabolite elasticity matrix, ��x, were confidently nonzero.

Inferred regulatory interactions, which were all consistent between both inference methods,

are shown in gray in Fig 2A. These include a strong repression of PGM by PEP, and a weaker

repression of PK by 2PG.These off-target regulatory interactions (with similar elasticity values)

were also found through the original linear regression approach of Wu et al., 2004. For the

external metabolite species, only one of the four possible off-target regulatory interactions,

ADP activation of PGM, resulted in a posterior distribution that was confidently nonzero.This

relatively weak interaction was rejected by the original linear regression method through a

combination of experimental and mathematical reasoning, but underscores that interactions

between metabolites and fluxes are inherently difficult to predict from this type of data: direct

vs. indirect interactions often look similar, and causality is often impossible to establish. Nota-

bly, the posterior distribution as estimated via NUTS contains a rich amount of information

on the identifiability of elasticity values (Fig 2D). Strong correlations in estimated parameters

can be seen where the two elasticities share either a metabolite or reaction. While this phenom-

ena is common where models show structural identifiability [33], these correlations are not

captured by the approximate ADVI method, which fits independent Gaussian distributions

for each variable.

Once appropriate parameter distributions that fit the data have been found, we can deter-

mine which enzymes in the pathway are rate-limiting by using the posterior predictive distri-

butions in flux control coefficients (FCCs). In this example, since steady-state fluxes are

constrained to be equal for all three reactions, the FCCs are a vector of three coefficients that

determine whether increasing enzyme concentration will increase or decrease pathway flux.

Fig 2E shows posterior distributions in FCCs as estimated with both inference methods. These

are compared against FCC distributions resulting from only the prior distributions on elastic-

ity parameters, without considering any experimental results. Prior distributions (light gray)

are similar between all three enzymes and indicate no structural bias on FCCs. The data there-

fore indicate that pyruvate kinase (PK) is the limiting enzyme at the reference state. We also

compare our FCC estimates against those originally calculated via linear regression, assuming

specific allosteric interactions between metabolites and enzymes that differ from those found

to be significant through our approach. Our estimates of FCCs closely match those found by

Wu et al., 2004, indicating that systems-level properties are relatively insensitive to the particu-

lar parameterization used to capture allosteric regulation.

The close agreement of the estimates provided by the approximate ADVI method to the

more accurate NUTS traces in elasticities and FCCs is an important result. As most applica-

tions in metabolism involve a larger reaction network, approximate inference methods are

likely the only techniques that will scale to biologically-relevant in vivo examples. We therefore

rely only on ADVI for subsequent examples that deal with larger reaction networks.

Bayesian inference and linlog kinetics determine optimal enzyme targets

from limited data

We next demonstrate how the inference framework can be used to suggest enzyme targets in a

many-reaction network that includes branching and shared co-factors. The problem we con-

sider was previously examined through ensemble metabolic modeling [34], and involves

Bayesian inference of metabolic kinetics from genome-scale multiomics data
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predicting which manipulations might further increase lysine production in engineered E. coli
strains. The experimental data consists of lysine flux measurements (in mol L−1 week−1) from

six sequential enzyme overexpression experiments, all of which were observed to improve L-

lysine yields [35]. The metabolic model used for inference comprises 44 reactions and 44

metabolites covering central carbon metabolism and lysine production, taken from Contador

et al., 2009. A schematic of the reaction network is shown in Fig 3A.

Posterior distributions in the elasticity matrix were estimated using ADVI as with the in
vitro example, with the optimization taking under three minutes (as compared with days for a

comparable ensemble-modeling based approach [22]). The posterior predictive distribution

for each strain closely matches the measured lysine fluxes [35], indicating the model is capable

of reproducing experimental behavior (Fig 3B). Of the 133 ‘kinetic’ elasticity terms, those cor-

responding to reactions in which a metabolite directly participates, only six were substantially

constrained by the experimental data. Posterior distributions for these elasticities are shown in

Fig 3C, and the inferred regulatory interaction is shown in gray in Fig 3A. Unsurprisingly,

nearly all of these elasticities involve reactions and metabolites in the lysine synthesis pathway,

the only portion of the model for which overexpression results were provided.

We next calculated prior and posterior distributions in FCCs. Because only a limited selec-

tion of data was available to constrain the elasticity values, only 6 of the 44 reactions had a con-

fidently nonzero FCC. However, five of these reactions were the same as previously specified

as successful modifications for improving lysine flux (dapA, lysC, dapB, dapD, dapE) [34]. The

remaining reaction, asd (aspartate-semialdehyde dehydrogenase), is a part of the same path-

way as the other successful overexpressions. Prior and posterior distributions in FCC values

for lysine export are shown in Fig 3D. While previous ensemble modeling results indicated

several additional enzyme overexpressions that might increase lysine pathway flux, our analy-

sis demonstrates that the observed sequential overexpression experiments could be recreated

through a wide variety of possible parameterizations with a resulting wide distribution in pos-

sible flux responses. These results show that the method generalizes well to the case where

insufficient data is provided to constrain model predictions and underscores the importance

of rigorously characterizing posterior parameter space to determine the full range of possible

model responses.

Informing strain design through multiomics

The main strength of the proposed method is its ability to constrain kinetic parameters using

multiomics data, even for large-scale metabolic systems. We therefore demonstrate the method

using literature data on metabolomics, proteomics, and quantification of exchange fluxes for

25 different chemostat experiments with yeast [4]. The dataset comprises 5 different media

conditions, each of which was run at 5 different dilution rates. We adapt a large-scale meta-

bolic model of yeast metabolism that includes many of the genes, metabolites and boundary

fluxes of interest [36]. The adapted model contains 203 metabolites and 240 reactions and was

obtained by removing blocked metabolites and reactions under growth on glucose. In total,

the experimental data consists of 1800 metabolite measurements, 792 boundary flux measure-

ments, and 3480 enzyme measurements (omitting the chosen reference state), shown in Fig

4A. Since the linlog inference framework only uses relative changes to enzyme, flux, and

metabolite concentrations with respect to a reference state, it can naturally ingest large-scale

multiomics datasets without the need for absolute quantification.

In fitting the observed steady-state phenotypes, the model has to account for not only

experimental error in measured enzyme concentrations, but also for potential changes in gene

expression in unmeasured enzymes. We therefore place prior distributions on log enzyme

Bayesian inference of metabolic kinetics from genome-scale multiomics data
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Fig 3. Inference on a medium-scale metabolic network with limited data. (A) Schematic of a portion of the

considered metabolic network corresponding to lysine biosynthesis. Reactions shown in green were experimentally

determined to improve lysine yields. The allosteric regulation of lysC by SDAP (N-succinyl-L,L-2,6-diaminopimelate)

inferred by the model is shown in gray. (B) Experimental vs posterior predictive distributions for lysine flux. Error

lines extend to cover the 95% highest posterior density (HPD) interval. (C) Distributions of elasticities informed by the

Bayesian inference of metabolic kinetics from genome-scale multiomics data
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concentrations for each condition that drive enzyme changes towards their measured values,

or, if the reaction is not measured, towards zero (unchanged). Thus, we allow unmeasured

enzyme concentrations to deviate from zero only if there is sufficient evidence. The model

parameters therefore include 915 elasticities associated with direct kinetic interactions, 23,684

elasticities associated with potential off-target allosteric regulation, 5,760 enzyme expression

levels (240 enzymes over 24 experiments), and 192 external metabolite concentrations (8

metabolites over 24 experiments), for a total of 30,551 parameters. While this number is far

greater than the number of experimental data points, regularization forces roughly 85% of

these parameters to be zero.

The model was fit using ADVI, with the 40,000 iterations completing in approximately 5

hours on a single compute node. Posterior distributions in parameter values indicate that the

model is able to fit the observed experimental data while using relatively few of the additional

regulatory parameters. Of the 23,684 regulatory elasticities, only 153 (0.65%) were confidently

nonzero. However, we note that determining mechanistically accurate regulatory interactions

from observations of steady-state flux behavior is inherently difficult. For instance, for a regu-

latory pathway in which A regulates B and B regulates C, identifiability issues might cause the

pathway to be modeled as A regulates B and A directly regulates C. While poorly identifiable,

the impacts of these alternative regulatory topologies on FCCs are largely similar. Of the 50

unmeasured enzymes, only half were nonzero in at least one experimental condition, and

overall only 35% of the available unmeasured enzyme expressions differed from their reference

state value. Since reaction flux can be controlled through both changes in enzyme expression

experimental results. Prior distributions for these elasticities are shown in light gray. The one allosteric elasticity

confidently inferred is shown as the last entry. (D) Flux control coefficients for each reaction in the model. Prior

distributions (light gray) are mostly centered around zero. Posterior distributions (dark gray) are highlighted in green

if their 95% HPD does not overlap zero. All lines indicate 95% HPD ranges, dots indicate median.

https://doi.org/10.1371/journal.pcbi.1007424.g003

Fig 4. Parameterizing a genome-scale kinetic model with multiomics data. (A) Distributions in log-transformed (unitless) experimental data after normalizing with

respect to the phosphate-limited reference state. (B) Posterior predictive distributions after fitting with ADVI. Higher weight was given to experimental datapoints

close to the reference state (±1.5) as indicated by the gray boxes. (C) Heat map of correlation coefficient between experimental enzyme measurements (x-axis) and

experimental boundary flux measurements. Boundary fluxes and enzymes are sorted with hierarchical clustering. (D) Heat map of FCC as estimated from posterior

parameter distributions. Boundary flux and enzyme ordering match those determined in (C). Colors represent medians of the posterior predictive distributions, FCCs

with a direction that could not be confidently determined are colored white.

https://doi.org/10.1371/journal.pcbi.1007424.g004
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and metabolite concentrations, these results indicate that the model is overly relying on

changes in enzyme expression to capture the observed metabolic phenotypes.

Bayesian inference and linlog kinetics better select engineering targets than

a non-structured correlation analysis

A common goal in strain engineering is to find gene targets for increasing the yield of a given

metabolic product. We therefore look at relationships between enzymes with measured pro-

tein concentrations and measured boundary fluxes as a way to identify putative targets. In a

traditional statistical approach, correlations between enzyme levels and metabolite fluxes

might be used to further enhance production of a desired metabolite. Fig 4C shows a heat map

of Pearson correlation coefficients between enzyme expression levels (as determined through

proteomics) and measured metabolite boundary fluxes. A permutation test was performed to

determine correlations significant at the α = 0.05 confidence level; non-significant correlations

were masked from the array. In this map, hierarchical clustering is used to reveal clear groups

of metabolites and enzymes that vary together in the experimental data. A larger version of

this image, with labelled axes, is shown in S9 Fig. However, correlations between proteins and

metabolite boundary fluxes do not necessarily imply that a particular enzyme is involved in

directing flux to a particular product. For instance, several of the highest correlations exist

between methionine synthase and the relatively distant amino acid products alanine, arginine,

and histidine. The top ten enzyme-boundary flux correlations are shown in Table 1.

We compared this traditional statistical correlation approach to our framework. FCCs that

are estimated through Bayesian inference and linlog kinetics offer an alternative approach for

determining potential enzyme targets that more systematically considers the effects of meta-

bolic connectivity, stoichiometry, and kinetics compared to the correlation analysis which

views the system as a black box. Before considering posterior distributions in FCCs, we first

look at whether the prior assumptions on enzyme elasticities and model stoichiometry result

in any confidently nonzero values. From the prior predictive distribution, only 6 enzyme-

boundary flux pairs have a significantly nonzero FCC, and typically involve reactions directly

associated with metabolite production. For instance, a positive FCC is associated with aspara-

gine synthase and valine transaminase on asparagine and valine export, respectively. A heat

map of FCCs calculated from the fitted posterior elasticity matrix is shown in Fig 4D, in which

FCC distributions that overlap are colored white. Unlike the map of correlation coefficients,

FCCs result in a much sparser matrix of inferred connections between enzyme concentration

and steady-state flux. However, these coefficients are much more interpretable as direct

Table 1. Largest significant correlations between measured enzymes and measured boundary fluxes.

Enzyme Boundary ρ

Methionine synthase L-Alanine 0.910

Glycine hydroxymethyltransferase, reversible L-Alanine 0.884

Glycine hydroxymethyltransferase, reversible Pyruvate 0.866

3’,5’-bisphosphate nucleotidase Succinate 0.854

Methionine synthase L-Arginine 0.850

Argininosuccinate lyase Succinate 0.844

Phosphoserine transaminase Succinate 0.844

Asparagine synthase (glutamine-hydrolysing) Succinate 0.839

Methionine synthase L-Histidine 0.835

Imidazole-glycerol-3-phosphate synthase Succinate 0.835

https://doi.org/10.1371/journal.pcbi.1007424.t001
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causality between enzyme expression and increased downstream flux. The top 10 largest and

identifiable FCCs are shown in Table 2. Some pairs of enzymes and boundary fluxes, i.e. glyc-

erol-3-phosphate dehydrogenase enhancing glycerol production, are direct upstream enzymes

for the boundary flux in question. However, since linear pathways can have an uneven

distribution of FCCs, determining the most rate-limiting step in biosynthesis pathways is an

important result. Other confident FCCs represent more indirect effects: for instance, the con-

sumption of the upstream phosphoenolpyruvate in 3-phosphoshikimate 1-carboxyvinyltrans-

ferase reduces the export of pyruvate. These results therefore show that the method, after

considering experimental data, is able to suggest reasonable enzyme targets for improving the

flux to a desired metabolite.

Discussion

In this study we demonstrate how kinetic models of microbial metabolism can be analyzed

through modern probabilistic programming frameworks. In doing so, we have invoked

approximate formalisms for enzymatic kinetics; however, we note that similar trade-offs

between modeling fidelity and computational efficiency are common throughout biology and

chemistry. For instance, while small-scale pathways might be better modeled at a higher level

of kinetic theory, a complete kinetic description of a genome-scale kinetic model is likely cur-

rently infeasible given available data and computational resources. As biological experiments

are becoming increasingly easy to iterate with modeling results, a complete kinetic description

of a given pathway may not be as valuable as a reasonable guess as to how to improve a desired

phenotype. Computational methodologies that quickly converge to generate a list of potential

targets, such as the one proposed in this study, may therefore be essential in keeping up with

the growing ease of multiomics experiments. The proposed method can also be run efficiently

on consumer-grade hardware, an important factor for applications in industrial microbiology

where access to large-scale high performance computing resources is limited.

As the field of variational inference is rapidly evolving, this technique could likely be made

more robust or efficient through the use of alternative inference algorithms. For instance, cor-

relations between elasticities were demonstrated through a Hamiltonian Monte Carlo trace

but were missed by the corresponding mean-field Gaussian approximation. While fitting a

full-rank Gaussian is likely impractical at larger data set sizes, reduced-rank approximations

[37, 38] might offer a suitable compromise between posterior accuracy and computational effi-

ciency. Additionally, inference approaches which only consider a subset of the experimental

data might also prove useful. Since each perturbed state involves a new linear solve in

Table 2. Largest FCCs for the modulation of measured enzymes on measured boundary fluxes. FCC ranges represent upper and lower bounds of the 95% highest poste-

rior density. Enzyme-boundary pairs that also appear as confident predictions prior to including experimental data are omitted.

Enzyme Boundary FCC Range

Glycerol 3 phosphate dehydrogenase (NAD) Glycerol [+0.661, +0.867]

Triose-phosphate isomerase Glycerol [−0.529, −0.375]

Threonine aldolase Glycine [+0.323, +0.420]

Pyruvate decarboxylase Pyruvate [−0.379, −0.308]

Pyruvate kinase Pyruvate [+0.207, +0.281]

Phosphofructokinase Glycerol [+0.150, +0.278]

ATPase cytosolic Pyruvate [+0.178, +0.242]

Pyruvate kinase Ethanol [+0.184, +0.226]

Fructose-bisphosphate aldolase Pyruvate [−0.244, −0.156]

3-phosphoshikimate 1-carboxyvinyltransferase Pyruvate [−0.219, −0.157]

https://doi.org/10.1371/journal.pcbi.1007424.t002
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calculating the likelihood, stochastic variational inference [39] or firefly MCMC [40] might

reduce the cost of approximating or drawing samples from the posterior.

With the presented approach, genome-scale metabolic models and omics-sized datasets can

be integrated to generate actionable recommendations for further strain engineering. Data at

this scale has typically been analyzed through statistical “black-box” approaches that do not

consider the nature of the relationship between reaction fluxes and enzyme and metabolite

concentrations. Bayesian inference with linlog kinetics naturally includes stoichiometric and

kinetic constraints in a scalable form. The method is also well-suited to the specific types of

omics data that are currently being collected. In particular, linlog kinetics only requires relative

quantification of enzyme and metabolite concentrations (rather than absolute), which are eas-

ier to collect. Additionally, the method is able to gracefully handle missing data and estimate

the resulting confidence in model predictions. Despite the increasing amount of data being

collected on cellular metabolism, it remains challenging to integrate this data to draw action-

able conclusions. Bayesian inference with linlog kinetics is therefore broadly useful for model-

ing metabolism and as a tool for metabolic engineering. Future work will leverage this

methodology to make predictions for subsequent experimental validation, with subsequent

omics data used to iteratively refine model predictions.

Methods

Enabling efficient Bayesian inference through linlog kinetics

We begin with a review of the relevant equations from dynamic flux balance analysis and the

linear-logarithmic kinetic framework, which together form the theoretical basis for the meth-

odology discussed in this study. In flux balance analysis, we assume that metabolite concentra-

tions, x, quickly reach a pseudo-steady state by balancing fluxes v through each reaction.

dx
dt
¼ N

m�n
vðxÞ ¼ 0; ð1Þ

for n reactions and m metabolites, where Nij indicates the stoichiometry of metabolite i in reac-

tion j. Linlog kinetics approximates a reaction rate v(x) as a sum of logarithms [24]. Linlog

kinetics is derived using the thermodynamic concept that reaction rate is proportional to the

thermodynamic driving force near equilibrium [41]. Since ΔG = ΔG˚ + RT log Q, expressing

the reaction rate as a linear combination of the logarithm of metabolite concentrations is justi-

fied. While many biochemical reactions are far from equilibrium, this relationship remains lin-

ear over a wide range of reaction affinities for enzymatic reactions [42, 43]. As an

approximation, linlog kinetics does not describe enzyme-mediated kinetics as faithfully as

more mechanistic frameworks [16]. However, linlog kinetics has been shown to be accurate up

to 20-fold changes in metabolite concentrations [24], and for 4 to 6-fold changes in enzyme

concentration relative to a reference state [25]. As a result, linlog kinetics has been used as a

framework for estimating flux control coefficients (FCCs) from a range of data sources [44–

47]. Most importantly, this kinetic formalism allows steady-state fluxes and metabolite concen-

trations as a function of enzyme expression to be determined directly via linear algebra, with-

out the need to explicitly integrate the dynamic system until a steady-state is reached [25].

For the reaction A! B + C, the reaction rate is modeled as

v ¼ eðkþ a log½A� þ b log½B� þ c log½C�Þ; ð2Þ

where e represents the enzyme concentration, and with coefficients k a> 0; b, c< 0. This

approximation is most accurate in the vicinity of an introduced reference state, e�, v�, x� [24].

As the goal of the proposed method is to tailor enzyme expression to maximize desired fluxes,
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the reference state is best chosen as the current optimal performing strain. Deviations from

this state can be described by the flux expression

vðx; yÞ ¼ diag
v�e
e�

� �

1n þ ��x
n�m

log
x
x�
þ ��y

n�p

log
y
y�

 !

ð3Þ

where x is the concentration of intracellular (dependent) metabolite species, y is the concentra-

tion of p external (independently controllable) metabolite species, and ��x and ��y are sparse

matrices of kinetic parameters taking the place of a, b, and c in Eq 2 that describe the effects of

changes to metabolite concentrations on reaction rates.

In metabolic control analysis, elasticity parameters are defined that capture local effects of

metabolite concentration on reaction rate [27]. These parameters are in essence a linearization

of the reaction rate rule around a reference state, defined mathematically as

��ij
x�j
v�i

@vi

@xj
:

A benefit of the linlog approximation is that enzyme elasticities appear directly as kinetic

parameters when normalized to a reference state (Eq 3), and therefore can intuitive values can

be guessed for standard enzyme kinetics. For irreversible Michaelis-Menten kinetics for

instance, the elasticity is

v ¼
Vmaxx
Km þ x

� ¼
x�

v�
@v
@x
¼

x�

Km þ x�

Elasticities for irreversible Michaelis-Menten kinetics are therefore bound between 0 and 1,

although larger elasticities are possible when reaction reversibility is considered. With an

appropriately chosen elasticity, linear-logarithmic kinetics can closely approximate stan-

dard Michaelis-Menten kinetics in the vicinity of the reference state concentration, x�

(S1 Fig).

Since elasticities tend to be positive for reactants, negative for products, and not be much

larger than 1, reasonable starting guesses and bounds can be generated for all kinetic parame-

ters in the model in a much easier fashion than for rate rules parameterized through traditional

enzymatic expressions. Elasticities for linear-logarithmic kinetics have typically been estimated

in the literature using multiple linear regression [30, 48], where estimated fluxes for each reac-

tion are fitted as a function of their measured metabolite concentrations. However, this

approach does not enforce the Nv = 0 constraint, nor does it allow for missing data in concen-

tration or flux measurements. We demonstrate that incorporating steady-state constraints is

computationally feasible, and that a full characterization of the posterior space can be accom-

plished using Hamiltonian Monte Carlo.

While linlog kinetics is a close approximation of more mechanistic rate rules, it suffers

from a number of notable inconsistencies. One consequence is that fluxes can approach nega-

tive infinity as metabolite concentrations approach zero, making the framework unsuitable for

describing complete pathway knockouts. However, in practice metabolite concentrations are

typically expressed as log-transformed variables which cannot fall to zero. Linlog-derived rates

are therefore most accurate for metabolite concentrations within one or two orders of magni-

tude of the reference state value. Other methodological strategies discussed later also prevent

fluxes from taking unrealistic values, including using a least-norm linear solve for steady-state
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concentrations and clipping data to a finite range. Additionally, because it is a local approxi-

mation, the method will poorly reproduce complex enzyme dynamics at large deviations from

the reference state. However, because cellular systems are constrained by homeostasis, metabo-

lite concentrations generally do not change drastically enough to invalidate rate estimates [49].

As a result, the choice of the reference state is an important parameter in determining the

effectiveness of the method. Reactions with exactly zero flux in the reference state will neces-

sarily have zero flux in perturbed mutants. In practice, this limitation can be partially alleviated

by enforcing a low absolute flux value for each reaction in the network. Since reactions can

change sign in perturbed states, this allows for forward and reverse flux to be captured.

A key step in dynamic modeling of metabolic networks is solving for the steady-state con-

centrations and fluxes that arise from a given parameterization. Simulating this perturbation

efficiently with the mathematical model is therefore a key step in estimating parameter values

for the �� matrices. In doing so, it is useful to define transformed variables in order to rewrite

Eq 3 in a linear form (as demonstrated by Smallbone et al., 2007):

w ¼ log
x
x�

; g ¼ log
y
y�

; v̂ ¼
v
v�

; ê ¼
e
e�

v ¼ diagðv � êÞð1n þ ��xw þ ��ygÞ

ð4Þ

Since log-transformed metabolite concentrations are linearly related to the reaction fluxes,

concentrations which yield steady-state behavior can therefore be determined via a linear solve

[24] after combining Eq 4 with Eq 1:

N diagðv � êÞð1n þ ��xw þ ��ygÞ ¼ 0

N diagðv � êÞ��xw
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

A

¼ � N diagðv � êÞð1n þ �
�

yg Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
b

w ¼ A� 1 b

ð5Þ

This significant result is the key advantage of linlog kinetics over alternative nonlinear rate

laws. While determination of steady-state concentrations would typically require a computa-

tionally intensive ODE integration, in this approximation they can instead be calculated using

a single linear solve, which are often orders of magnitude easier to compute. Additionally, it is

relatively straightforward to obtain forward and reverse-mode gradients for this operation

(changes in steady-state with respect to changes in kinetic parameters), a much more difficult

task for ODE integration [50].

However, in general a metabolic system will contain conserved moieties, or metabolite quan-

tities which can be expressed as linear combinations of other metabolites (e.g. ATP + ADP =

constant). The stoichiometric matrix N, and as a result the A matrix defined above, will there-

fore not be full row rank. In effect, this means that Eq 5 has multiple solutions, each of which

corresponds to a different total cofactor pool. In metabolic control theory, this problem has

traditionally been solved through the introduction of a link matrix, L, and a reduced set of

metabolites with conserved moieties removed [27, 51]. Through the link matrix, the matrix A
can be transformed to a full-rank, square matrix and a unique steady-state can be determined

that corresponds to the dynamic system’s true steady-state. However, in most biological exper-

iments, changes to steady-state enzyme expression correspond with separately cultured cell

lines for which the assumption that total cofactor pools would remain constant is not necessar-

ily valid. Instead, we propose that a more biologically relevant solution to Eq 5 is one that min-

imizes kχk2: i.e., the solution that results in the smallest deviation of metabolite concentrations

from the reference state. This assumption has experimental support in that intracellular
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metabolite concentrations tend to be buffered from drastic changes through feedback circuits

at the genetic and enzyme level [49]. We therefore calculate steady-state metabolite concentra-

tions through a pseudoinverse,

wss ¼ Ayb ð6Þ

A derivation of the forward and reverse-mode gradients for the regularized linear solve opera-

tion is included in S1 Text. We note that in practice, numerical stability is improved if A can

be made full row-rank prior to the least-norm linear solve. We can therefore replace N with ~N
(by removing rows corresponding to redundant conservation relations) in order to form a

wide A matrix (with more columns than rows) prior to performing the least-norm linear solve

in Eq 6. Since a flux vector that satisfies ~N v ¼ 0 will also satisfy N v = 0, this change can be

made without affecting the final solution.

Due to the changes to traditional MCA theory introduced by the altered steady-state calcu-

lation defined above, we also slightly modify the traditional calculations of metabolite and flux

control coefficients.

C�x;kj ¼
e�j
x�k

dxk

dej
¼ � ð ~N diagðv�Þ��xÞ

y ~N diag v�

C�v;ij ¼
e�j
v�i

dvi

dej
¼ ��xC

�

x þ I

Since flux and metabolite control coefficient matrices describe the response of the steady-

state to changes in enzyme expression, our altered versions describe the flux response at the

particular steady-state in which metabolite concentrations are as close as possible to the unper-

turbed state. In practice, this has the effect of improving the identifiability of FCCs in the

numerical experiments described below. A plot of FCC values obtained via both traditional

and modified methods for the following genome-scale model is shown in S10 Fig, indicating

that either both methods tend to yield a similar result, or that the identifiability of the link-

matrix FCC is particularly poor, with the pseudoinverse FCC pulled close to zero.

In Bayesian inference, a likelihood model, p(z|θ), is constructed for the probability of

observing the measured data, z, given particular values for each parameter, θ. Combined with

a prior distribution, p(θ), for each parameter that represents generally feasible values, numeri-

cal approaches use Bayes theorem,

pðyjzÞ / pðzjyÞ pðyÞ

to estimate the posterior parameter distribution p(θ|z): the probability a parameter takes the

given value after accounting for the observed data. With a suitable kinetic framework for cal-

culating steady-state fluxes and concentrations as a function of enzyme expression, we next

discuss the prior distributions and likelihood function required for Bayesian inference. The

prior distributions represent our belief of possible parameter values before any experimental

data is collected. For metabolite elasticity matrices we assume that for any given reaction, reac-

tants are likely to be associated with a positive elasticity, while products likely have a negative

elasticity (increasing reactant concentration increases reaction rate, while increasing product

concentration decreases reaction rate). Alternatively, we assume that if a metabolite does not

directly participate in a reaction, it can only regulate the reaction if it appears in the same sub-

cellular compartment. We denote the vectors cm and cr of metabolite and reaction compart-

ments, respectively. Since regulation of enzymatic reactions by otherwise nonparticipatory

metabolites is relatively rare, we place a sparsity-inducing prior on its elasticity value. This
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distribution encourages elasticities for off-target metabolites to take values near zero, unless

strong experimental evidence for a regulator interaction is present. The combined priors for

enzyme elasticities can then be expressed through the following functional form, also depicted

graphically in Fig 1.

��x;ji �

sign ð� NijÞ �HalfNormalðs ¼ 1Þ if Nij 6¼ 0

Laplaceðm ¼ 0; b ¼ 0:05Þ if Nij ¼ 0 and cm;i ¼ cr;j

0 if Nij ¼ 0 and cm;i 6¼ cr;j

8
>>><

>>>:

ð7Þ

We note that the assumption that reactants and products must take positive and negative

elasticity values, respectively, can be relaxed by replacing the half-normal distribution in Eq 7

with a skew-normal distribution with a positive shape parameter. This distribution reflects the

belief that while reactants typically take positive elasticities, rare cases may exist where sub-

strate inhibition results in a negative slope of reaction rate with respect to substrate concentra-

tion. While substrate inhibition has been shown to be of biological importance [52], in

practice this choice of a prior distribution results in less robust convergence to a stable poste-

rior distribution and was avoided in higher-dimensional inference problems.

An explicit likelihood function can be formed by constructing a statistical model for the

observed data. We assume that observed data are normally distributed around the calculated

steady-state metabolite and flux values.

wobs � Normalðw; s2
xÞ

v̂obs � Normalðv̂; s2
vÞ

ð8Þ

Experimental errors, σx and σv, can either be set explicitly or estimated from the data. For

smaller-scale examples, we place half-normal priors on these variables, while for larger datasets

we set these values explicitly to improve numerical stability. We also note that for genome-

scale multiomics data, computational stability can be improved by fitting log-transformed nor-

malized fluxes,

log v̂obs � Normalðlog v̂; s2

vÞ;

so that flux, metabolite, and enzyme expression data fall on similar orders of magnitude.

While this assumption comes at the cost of preventing measured fluxes from reversing direc-

tions between perturbed states, this restriction was not significant for the examples considered

in this study. However, this framework could be easily extended to handle situations where a

measured flux reverses directions between experimental conditions. Most simply, the revers-

ible reaction could be withheld from the log transform and fit in linear space. Alternatively, if

separate estimates for the forward and reverse flux could be obtained, as is often the case in
13C labeling studies, the reaction could be decomposed and modeled separately as irreversible

forward and reverse reactions.

Once the prior distribution and likelihood model have been specified, the remaining task is

to numerically estimate posterior distributions in elasticity parameters. Two inference algo-

rithms were used, the No-U-turn sampler (NUTS) and Automatic differentiation variational

inference (ADVI). NUTS [28], as a variant of Hamiltonian Monte Carlo (HMC), constructs an

iterative process (a Markov chain) that eventually converges to the true posterior distribution.

Markov chain Monte Carlo methods, while accurate, are computationally intensive and likely

limited in application to smaller-scale models and datasets. While the major computational

bottleneck in metabolic ensemble modeling (integrating an ODE until steady state) has been
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removed, calculating the likelihood function still involves a separate linear solve for each

steady-state experimental condition. Therefore as model sizes approach the genome-scale,

HMC methods quickly become computationally infeasible. Variational methods, however,

offer an alternative to Markov chain Monte Carlo methods that can scale to models with thou-

sands of parameters. ADVI approximates the posterior distribution by a simple, closed-form

probability (typically Gaussian), then estimates parameters for the approximate posterior to

minimize the distance between the true and approximated distribution [29].

Characterization of an in vitro linear pathway

Since all metabolites (including external species) are present in the same compartment, all elas-

ticities are allowed to have allosteric interactions normalized with Laplace priors. Measure-

ment errors in fluxes and metabolite concentrations were fit by the inference algorithm by

placing a half-normal prior distribution on the σ values in Eq 8. The same reference steady-

state was chosen (experiment 2) as was done by Wu et al., 2004. Prior distributions in enzyme

elasticities were parameterized in a similar fashion to Eq 7, except that a SkewNormal(σ = 1,

α = 5) distribution was used in place of the HalfNormal when Nij 6¼ 0. This distribution

allows a small chance of substrate inhibition, where higher concentrations of a reactant in an

enzyme-catalyzed reactions actually reduces reaction rate. However, this distribution was not

used in larger examples as it introduced additional numerical instability. A comparison of the

HalfNormal, SkewNormal, and Laplace distributions (with parameters used in this work) is

shown in S2 Fig.

Using NUTS, stable traces were found across four independent chains, indicating that each

trace converged to the true posterior distribution (Fig 2B, S3 Fig). For this small-scale example,

NUTS took less than 10 minutes on a single computer. Applying ADVI to this example, the

evidence lower bound (ELBO), a measure of the closeness of fit between the approximated and

true posterior distribution, converged after approximately 10,000 iterations of stochastic gradi-

ent descent (S4 Fig). A full 25,000 iterations were completed in under 40 seconds on a single

computer. Resulting posterior distributions were deemed confidently nonzero if the 95% high-

est posterior density (HPD) interval did not overlap zero.

Comparing the mean and variance of the elasticity posterior distributions from the two dif-

ferent approaches, we notice that while the mean values agree closely, ADVI underestimates

the variance for many parameters (S5 Fig). This underestimation is typical of mean-field

ADVI [29], and might be alleviated in the future through more advanced variational methods

[37].

Determining optimal enzyme targets from limited data

As the goal of the inference approach is to estimate targets for subsequent lysine flux improve-

ment, we chose the reference state for linlog kinetics to be the final, optimized strain with 5

overexpressed enzymes. Since the reference state was chosen to be the final, optimized strain,

perturbed strains had lower relative enzyme concentrations and lysine flux. Values for target

lysine fluxes were taken from the published yields for the W3110 strain, with a calculated glu-

cose uptake flux of 1.243 mol L−1week−1. As the resulting enzyme concentrations following

overexpression were unknown, prior distributions were placed on these parameters. Since

enzyme concentrations were specified relative to the overexpressed reference state, uniform

priors between zero and one were placed on the relative concentrations of each of the 5 modu-

lated enzymes. The resulting inferred distributions in enzyme expression for the 5 enzymes are

shown in S6 Fig.
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When analyzed with metabolic ensemble modeling, each successive enzyme overexpression

was required to increase lysine flux over the previous base strain. However in our framework,

we require a continuous and differentiable likelihood function, and are also able to directly

incorporate the experimentally measured yields. Prior distributions in enzyme elasticities were

specified as described in Eq 7, and since the dataset did not include changes in external metab-

olites, no �y values were needed. Prior distributions in elasticities associated with stoichiomet-

ric metabolite-reaction pairs (kinetic elasticities) used a half-normal distribution with σ = 1

and had a 95% HPD that spanned from 0 to 2. Kinetic elasticities were therefore flagged as

constrained by the data if they had a 95% highest posterior density that spanned less than 0.75

elasticity units. Regulatory elasticities and FCCs were deemed confidently nonzero if their 95%

HPD did not overlap zero.

Informing strain design through multiomics

As the goal in this example is to demonstrate that linlog kinetics are able to consume large

amounts of multiomics data, a reference state near the center of the considered data was cho-

sen, specifically the chemostat with phosphate-limiting media at a 0.11 hr−1 dilution rate. Ref-

erence fluxes (v�) were calculated via flux balance analysis by minimizing error with the

experimental boundary measurements while enforcing a nonzero flux through each reaction.

In this example, relative metabolite concentrations are given as log2-transformed values [53].

Even with an unknown pre-exponential constant A, relative concentrations χ can be calculated

from log2-transformed concentrations a and b:

w ¼ log
x
x�
� �

¼ log
A2a

A2b

� �

¼ ða � bÞlog 2:

Distributions of the transformed data are shown in Fig 4A, indicating that the majority of

data falls within one order of magnitude from the reference state value (values shown are natu-

ral logs). Priors in enzyme elasticities were specified as in Eq 7, except that Laplace distribu-

tions for off-target regulations (Nij = 0) were given a b = 0.01, which was found to have an

optimal trade-off between regularization and flexibility for the larger model. The effect of this

regularization for several values of b was explored, as shown in S7 Fig. The ability of the model

to fit the experimental data and the number of confidently identified nonzero regulatory elas-

ticities were relatively consistent for values of b from 0.01 to 0.1.

Allowing all enzyme concentrations to vary induces a trade-off where steady-state fluxes

are controlled through changes to enzyme expression instead of changes to steady-state metab-

olite concentrations. While Hackett et al., 2016 have previously shown that metabolic control

is mainly determined by metabolite concentrations, some mechanism for adjusting enzyme

levels is required to buffer against errors in model formulation and experimental measure-

ments. By placing a Laplace prior on unmeasured enzymes, we create a regularizing effect that

penalizes an over-reliance on enzymatic control:

log êi �

Normalðm ¼ logðêi;obs; s ¼ 0:2Þ if ei measured

Laplaceðm ¼ 0; b ¼ 0:1Þ if ei unmeasured

0 if reaction i uncatalyzed

8
>>><

>>>:

The model also has to consider changes in the external metabolite concentrations between

media formulations and dilution rates. We therefore place vague priors on the external con-

centrations of imported substrates, including glucose, phosphate, sulfate, nitrogen, and
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oxygen:

g � Normalðm ¼ 0;s ¼ 10Þ:

Observed steady-state metabolite concentrations and fluxes are incorporated through a

likelihood model that assumes experimental error is normally distributed around log-trans-

formed metabolite and boundary flux data. Standard deviations were chosen as σx = 0.2 for the

metabolite data and σv = 0.1 for the log-transformed fluxes. To improve numerical stability, we

also clip the log-transformed, relative experimental data to ±1.5, such that log-transformed

experimental data and model predictions greater than 1.5 or less than -1.5 are replaced by

±1.5. This process has the effect of reducing the influence of extreme points, especially in

regimes far from the reference state that are unlikely to be fit well by the linlog approximation.

However, the model is still required to predict the directionality and high-magnitude of these

points correctly. Fitting the model using ADVI required 40,000 iterations of stochastic gradi-

ent descent, taking approximately five hours on a single compute node (S8 Fig). Median abso-

lute errors between the model predictions (median of the posterior predictive distribution)

and experimental data points are 0.124, 0.0952, and 0.0186 for log-transformed metabolite,

flux, and enzymes, respectively, for normalized points that fall within the [−1.5, 1.5] window.

Similarly to previous examples, FCCs and elasticities are determined to be confidently nonzero

if they have a 95% HPD that crosses zero.

Software availability

All simulations were performed in Python using the pymc3 library [54]. Additional code to

initialize the elasticity prior matrices and calculate the steady-state metabolites and fluxes is

provided at github.com/pstjohn/emll, along with jupyter notebooks detailing the use

cases described above. Classes are defined to perform the steady-state calculations in both

numpy and Theano. For steady-state calculations in Theano, gradients must also be provided

that allow the inference algorithms to simultaneously calculate the derivative of the likelihood

result with respect to estimated parameter values. This gradient calculation is provided as a

Theano operation, with the mathematical derivation for these reverse-mode gradients pro-

vided in S1 Text. These calculations interface directly with the underlying LAPACK routines

for the regularized linear solve. Probability models are therefore constructed as detailed in the

pymc3 documentation, using the additional routines provided to expedite construction of

prior distributions for the elasticity variables and performing the steady-state calculation of

fluxes and metabolite concentrations.

Supporting information

S1 Fig. Linear-logarithmic kinetics. The rate law for linlog kinetics closely approximates

Michaelis-Menten kinetics in the vicinity of the reference state.

(EPS)

S2 Fig. Distributions used to specify priors on enzyme elasticities. The HalfNormal distri-

bution is used when a metabolite directly participates in a reaction, and the directionality is

known. The SkewNormal distribution is similar to the HalfNormal, but also allows for the

small possibility of substrate inhibition. Laplace distributions were used to specify potential

regulatory interactions with an unknown direction.

(EPS)

S3 Fig. NUTS trace for the in vitro dataset. (left) kernel density estimates of each parameter.

Vertical bars indicate the values obtained using the multiple linear regression technique of Wu
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et al. [30]. (right) Samples from the MCMC sampler.

(EPS)

S4 Fig. Convergence of the Evidence Lower Bound (ELBO) for the in vitro dataset.

(EPS)

S5 Fig. NUTS vs ADVI estimation. Comparison between posterior distributions for the in
vitro dataset as estimated by NUTS (solid lines) or ADVI (dashed lines). ADVI posteriors have

a similar mean but smaller variance.

(EPS)

S6 Fig. Posterior distributions in enzyme expression prior to exogenous amplification.

(EPS)

S7 Fig. Effect of regularization for the yeast model. (A) Posterior predictive distributions as

a function of the b parameter is the Laplace prior for enzyme elasticities. The ability of the

model to reproduce the data is quantified through the use of the median absolute error

(MAE). (B) Percent of confidently inferred regulatory (off-target) elasticities. Elasticities were

deemed confidently inferred if their 95% HPD did not include zero.

(EPS)

S8 Fig. Convergence of the Evidence Lower Bound (ELBO) for the multiomics dataset and

yeast metabolic model.

(EPS)

S9 Fig. Full heatmaps (with labeled boundary fluxes and enzymes) for (A) correlation coef-

ficients and (B) FCCs estimated via the multiomics dataset. Full names for the reaction IDs

shown can be found in the detailed model description.

(EPS)

S10 Fig. Comparison of FCCs calculated with the link matrix approach and with the pseu-

doinverse.

(EPS)

S1 Text. Calculating reverse-mode gradients for regularized linear solve.

(PDF)
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