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The fisheye camera has a field of view (FOV) of over 180°, which has advantages in the
fields of medicine and precision measurement. Ordinary pinhole models have difficulty in
fitting the severe barrel distortion of the fisheye camera. Therefore, it is necessary to apply a
nonlinear geometric model to model this distortion in measurement applications, while the
process is computationally complex. To solve the problem, this paper proposes a model-
free stereo calibration method for binocular fisheye camera based on neural-network. The
neural-network can implicitly describe the nonlinear mapping relationship between image
and spatial coordinates in the scene. We use a feature extraction method based on three-
step phase-shift method. Compared with the conventional stereo calibration of fisheye
cameras, our method does not require image correction and matching. The spatial
coordinates of the points in the common field of view of binocular fisheye camera can
all be calculated by the generalized fitting capability of the neural-network. Our method
preserves the advantage of the broad field of view of the fisheye camera. The experimental
results show that our method is more suitable for fisheye cameras with significant
distortion.
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1 INTRODUCTION

The ordinary camera has a limited FOV. It can no longer meet the needs of some research projects
without adding other auxiliary facilities. The appearance of the fisheye camera overcomes this
shortcoming. The fisheye camera has a small focal length, and the field of view can generally reach
more than 180° (Arfaoui and Thibault, 2013). Due to the large field of view of the fisheye camera, one
single fisheye image can show a large portion of the surrounding environment without image splicing
(Hou et al., 2012).

The research on stereo calibration technology of fisheye cameras is more meaningful. Compared
with ordinary camera, the structure of fisheye camera is more complicated. Fisheye cameras
introduce severe distortion, especially barrel distortion, during imaging (Kanatani, 2013). This
strong optical distortion results in high image center separation and low resolution at the edges of
fisheye images (Hughes et al., 2010). Consequently, the stereo calibration accuracy of the fisheye
camera is also limited to some extent.

The traditional stereo calibration method for fisheye cameras requires an imaging model in a
specific mathematical format. Before this paper, there were some studies on stereo calibration
techniques for fisheye cameras. For example, first combined fisheye camera calibration and epipolar
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rectification applied in a stereo fisheye camera system. They
accomplished 3D reconstruction of specific points from
authentic fisheye images Abraham and Forstner (2005).
Designed a novel measurement system based on a binocular
fisheye camera. The measurement system uses the dynamic angle
compensation method, which can achieve high-precision 3D
positioning in a dynamic environment Cai et al. (2019).
Proposed a new strategy for computing parallax maps from
hemispherical stereo images taken by fisheye camera. They
considered only matches of the same class by segmenting the
textures in the scene Herrera et al. (2011). Presented a method to
calibrate multiple fisheye cameras with a wand that can move
freely. The internal and external parameters and the 3D
coordinates of the fisheye camera could be obtained Fu et al.
(2015). Proposed a panoramic stereoscopic imaging system,
which could provide stereoscopic vision of 360° horizontal
field Li and Li (2011). Analyzed existing dense stereo systems.
They combined the epipolar rectification model of the binocular
fisheye camera with the dense method, able to provide dense 3D
point clouds at 6–7 Hz Schneider et al. (2016). These stereo
calibration methods usually require correcting fisheye images
with significant distortion to perspective projection images.
However, this distortion removal process leads to the loss of
information at the image edges, losing the advantage of the large
field of view of the fisheye camera. So the results of performing
stereo matching on fisheye images are unsatisfactory. In addition,
stereo matching also has strict restrictions on the scene. Some
factors such as too much scene noise pollution and too much
repetitive texture may impact the matching accuracy.

With the development of artificial intelligence, Deep Learning
(DL) is increasingly used in the field of computer vision (Huang
et al., 2021). There have been many studies applying DL to the
distortion correction of fisheye images. Proposed a Distortion
Rectification Generative Adversarial Network (DR-GAN) for the
severe barrel distortion of wide-angle camera images. DR-GAN is
the first end-to-end trainable adversarial framework for radial
distortion correction Liao et al. (2020). Considered the
characteristics of fisheye images and proposed an unsupervised
fisheye camera distortion correction network. The network can
predict distortion parameters and implement direct mapping
from fisheye images to rectified images Yang et al. (2020). DL-
based methods are computationally fast. However, they trained
the network with a large number of fisheye images, which
consumes a lot of resources. In addition, this method is very
sensitive to the scene.

To overcome these shortcomings, we propose the application
of neural-network to the stereo calibration of binocular fisheye
camera. Take the image coordinates of the left and right fisheye
cameras as the input training set. The spatial coordinates
corresponding to the image coordinates in the scene are used
as the output training set. The trained neural-network can
implicitly describe the mapping relationship from the 2D
image plane to the 3D space. With the nonlinear fitting ability
of the neural-network, it can directly predict the spatial
coordinates of the target point based on the trained network.
Compared with traditional stereo calibration, the proposed
method is model-free. There is no need to establish an

accurate mathematical imaging model, nor does it need to
know the intrinsic and extrinsic parameters of the fisheye
camera. Experiments have been conducted, and their results
verify the performance of the proposed method.

To obtain the training set of the neural-network, a large
number of feature points with known image coordinates and
spatial coordinates are required. Some 2D targets such as
chessboard are the most commonly used. The chessboard-
based calibration method has good calibration accuracy for
ordinary cameras (Zhang, 2000). However, the chessboard
images taken by the fisheye camera have severe barrel
distortion, which leads to low feature detection accuracy or
failure to detect feature points located at the edge of the
images. To overcome this shortage, active targets are used
(Schmalz et al., 2011). Active phase targets are widely used in
optical measurement due to their high accuracy and high speed
(Wang et al., 2011; Xu et al., 2017; Wang et al., 2020; Wang
et al., 2022). This paper uses a feature extraction method based
on three-step phase-shift method and a multi-frequency
method (Wang et al., 2019). This feature extraction method
has high precision and strong robustness (Schmalz et al.,
2011). Therefore, it is more suitable for fisheye cameras
with severe distortion.

The remained parts of the paper are as follows. Section 2
describes the fisheye camera model and the stereo calibration
model of the binocular fisheye camera. Section 3 presents the
training process of the neural-network, the setting of the neural-
network parameters, and the acquisition of the training sets.
Section 4 describes the experiment. Finally, Section 5 concludes
as well as some prospects for the future.

2 PRINCIPLE

2.1 Single Fisheye Camera Model
Fisheye cameras take non-similar imaging and introduce large
barrel distortion in the imaging process. Compressing the
diameter space breaks the limitation of the imaging field of
view to achieve wide-angle imaging (Wei et al., 2012). The
projection refraction angle and the incident angle of fisheye
cameras are not equal and will deviate from the direction of
the optical axis for refraction. There are four basic imaging
models of fisheye cameras: equidistant projection model,
equisolid-angle projection model, orthographic projection
model, and stereographic projection model (Schneider et al.,
2009).

The projection equation for equidistant projection is shown as:
Eq. 1

rd � fθ (1)
where rd is the radial distance; f is the focal length of the fisheye
camera; θ is the angle of incidence of the light.

The projection equation for equisolid-angle projection is
shown as: Eq. 2

rd � 2fsin(θ
2
) (2)
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The projection equation for orthographic projection is shown
as: Eq. 3

rd � fsinθ (3)
The projection equation for stereographic projection is shown

as: Eq. 4

rd � 2ftan(θ
2
) (4)

Traditional distortion models cannot guarantee the accuracy
of fisheye camera. Several models have been developed to
represent the distortion of the fisheye camera, including the
polynomial model, the field-of-view (FOV) model (Devernay
and Faugeras, 2001), and the fisheye transform (Base, 1995).

2.2 Stereo Calibration Model of the
Binocular Fisheye Camera
Figure 1 shows the stereo calibration model of the binocular
fisheye camera. The fisheye camera coordinate system on the left
is denoted by Ol −XlYlZl, and the fisheye camera coordinate
system on the right is denoted by Or −XrYrZr. Since the fisheye
camera imaging is nonlinear, the camera coordinate system is
denoted by unit spherical coordinates. The world coordinate
system is denoted by Ow −XwYwZw. The relative positions of
the left and right cameras are fixed, and their relationship can be
expressed as:

Pl � RlPw + Tl (5)
Pr � RrPw + Tr (6)

where Rl and Rr represent the rotation vectors corresponding to
the world coordinate system and the left and right fisheye camera
coordinate systems, respectively; Tl and Tr represent the
translation vectors; Pw represents the world coordinate of any
point P ; Pl and Pr respectively represent the coordinate of the

point P in the left and right camera coordinates. Combining Eqs
5, 6, we can obtain the spatial position conversion relationship
between the left and right camera coordinate systems: Eq. 7

Pr � RrR
−1
l Pl + Tr − RrR

−1
l Tl (7)

Therefore, the rotation vector of the left fisheye camera to the
right fisheye camera is R � RrR−1

l , and the translation vector is
T � Tr − RrR−1

l Tl.
The solution R of and T is essentially the process of stereo

calibration (Li, 2008; Beekmans et al., 2016).

3 NEURAL-NETWORK MODEL

3.1 Training Process of Neural-Network
In recent years, the emergence of some bio-inspired algorithms that
simulate natural ecosystems provide new ideas for solving complex
optimization problems. These bio-inspired algorithms include
genetic algorithms (Liu X et al., 2022), particle swarm algorithms

FIGURE 1 | Stereo calibration model of the binocular fisheye camera.

FIGURE 2 | Structure of the neural-network.
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(Liu Y et al., 2022; Wu et al., 2022; Zhao et al., 2022), predictive
modeling algorithms (Chen et al., 2021a; Chen et al., 2021b; Chen
et al., 2022), convolution neural network algorithm (Huang et al.,
2022; Tao et al., 2022; Yun et al., 2022), artificial bee colony
algorithm (Sun et al., 2022), etc. A neural-network is a multi-
layer feed forward network that follows an error back
propagation algorithm, as shown in Figure 2. The basic
component units of a neural-network are neurons, also called
network nodes. The essence of each neuron is a nonlinear
transformation of the input data. Theoretically, a neural-network
can accomplish any form of nonlinear mapping (Parma et al., 1999).
A neural-network can provide a nonlinear model hw,b(x) to fit the
output y. The network parameters are the weights w and the bias b.
Training a neural-network is to continuously update these two
parameters under the stimulus of external inputs so that the
output keeps approaching the desired output. The training
process consists of a forward propagation process of the input
information and a backward propagation process of the error
information.

The forward propagation process can be understood as follows:
the output of the previous layer is used as the input of the next layer,
and the output of the next layer is calculated until the operation reaches
the output layer. Let the activation value of the ith node in the lth layer
of the neural-network be ali. The j

th node in the (l − 1)th layer to the
ith node in layer lth node is connected by theweightwl

ij. b
l
i is the bias of

the ith node in layer lth. It is not difficult to see from the structure of the
neural-network that ali depends on the activation of the previous layer.

ali � f(∑wl
ija

l−1
i + bli) (8)

where f() is the activation function. In this paper, the activation
function uses the tanh function. Expressing Eq. 8 in matrix form:

{ zl � Wlal−1 + bl

ali � f(zl) (9)

where zl is the input of each layer. Use Eq. 9 to calculate the
activation value of the network layer by layer. Finally, the output
of the network can be obtained.

Before explaining the back propagation algorithm, it is first
necessary to define the loss function. The loss function can
measure the loss between the output computed by the training
samples and the actual output.

The purpose of the back propagation process is to adjust the
network parameters. Its essence is to find the optimal weights and
biases by minimizing the loss function. So it is necessary to calculate
the partial derivatives of the loss function to the weights and biases.
The gradient of the variables in each layer of the neural-network can
be obtained by finding the partial derivatives. The stochastic gradient
descent algorithm (SGD) is commonly used to update the network
parameters. The SGD algorithm can be summarized as: Eq. 10

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wl
ij � wl

ij − η
z

zwl
ij

J()

bli � bli − η
z

zbli
J()

(10)

where η is the learning rate; J() is the loss function. After the
network parameters are updated, we determine whether the
current model meets the requirements. If the requirements are
not met, the following forward and backward propagation is
performed. The network parameters continue to be updated.
Until the current model meets the requirements, the neural-
network training is completed.

3.2 Setting of Neural-Network Parameters
This paper uses a neural-network to implicitly describe the
nonlinear mapping relationship between image coordinates
and their corresponding spatial coordinates in the scene. The
settings of neural-network parameters include the structure of the
neural-network, loss function, activation function, and optimizer.
With the training sets keep constant, different network
parameters can significantly impact the convergence speed and
prediction accuracy of the network.

3.2.1 Structural Parameters
The neural-network structure proposed in this paper contains
five layers, as shown in Figure 2. There is one input layer, three
hidden layers, and one output layer. The input layer has four
nodes. (ul, vl) represent the left image coordinates of feature
points. (ur, vr) represent the right image coordinates of feature
points. The output layer has three nodes. (Xw, Yw, Zw) represents
spatial coordinates of feature points. Each hidden layer contains
five nodes.

3.2.2 Loss Function
This study is essentially a regression problem. The most
commonly used loss functions for regression problems are the
mean square error (L2loss) and the mean absolute error (L1loss).
L2loss function curve is smooth and can converge quickly to a
minimum even at meager learning rates. However, when outliers
exist in the training set, L2loss gives higher weight to the outliers,
affecting the overall performance (Natekin and Knoll, 2013).
L1loss performs sluggishly for outliers but converges slowly.
So it is natural to think of the SmoothL1loss function. The
SmoothL1loss function converges faster than L1loss.
Compared to L2loss, it is insensitive to outliers. To further
verify the effect of loss function on the neural-network,
Figure 3A shows the training process with three different loss
function settings. L1loss has the slowest convergence speed and
relatively low training accuracy. In contrast, SmoothL1loss has
the fastest convergence speed and the best training accuracy.
Therefore, SmoothL1loss is finally chosen as the loss function.

3.2.3 Optimizers
Optimizers can optimize neural-network to improve training
accuracy and save training time. The most basic optimizer is the
SGD algorithm, initially introduced in the previous subsection.
The SGD algorithm is computationally efficient and only
requires solving the first-order derivatives of the loss
function. However, The SGD algorithm makes the results fall
into saddle points and find local optimal solutions because of the
direction. Consequently, this paper uses an adaptive
optimization algorithm that can update the learning rate

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9552334

Cao et al. Stereo Calibration Of Fisheye Camera

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


automatically. To further verify the effect of the optimizer on the
neural-network, Figure 3B shows the training process under the
three optimizer settings of SGD, SGD with momentum, and
Adam. SGD has the worst optimization effect and the slowest
speed. As a modified version of SGD, Momentum is much
better. Adam is the best and the fastest convergence speed. So
Adam optimizer is chosen.

3.3 Generation of the Training Set
The input set is (ul, vl), (ur, vr) and the output set is
(Xw, Yw, Zw). A common practice is to use the corner points
of the ordinary chessboard as feature points. This method is
simple and easy to operate. However, the fisheye camera
distortion is severe. The chessboard will be severely distorted
at the location closer to the camera, with low or even undetectable
corner point detection accuracy at the edge.

To solve the above problems, the active phase target is
used. Firstly, the wrapped phase of the sinusoidal periodic
stripe image is solved using the three-step phase shift
equation. According to the multi-frequency method, the

phase is unwrapped to obtain the absolute phase. Finally,
we select the eligible pixel points as feature points according
to the absolute phase. A set of exactly matched image
coordinates and spatial coordinates will be obtained if the
unwrapping is successful. The feature points extracted using
our method have the advantage of quantity and are
minimally affected by the fisheye camera distortion.
Figure 4 shows the specific implementation flow chart,
summarized as follows:

1) Generate three-frequency three-step stripe images with equal-
step phase shift increments of 2π⁄ 3. Their intensities can be
expressed as: Eq. 11.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 � I′(x, y) + I″(x, y)cos[ϕ(x, y) − 2π
3
]

I2 � I′(x, y) + I″(x, y)cos[ϕ(x, y)]
I3 � I′(x, y) + I″(x, y)cos[ϕ(x, y) + 2π

3
]

(11)

FIGURE 3 | The training process. (A) The effect of loss functions on the neural-network; (B) The effect of optimizers on the neural-network.

FIGURE 4 | Feature extraction step.
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where I1 , I2 , and I3 are the grayscale values of the phase
diagram; I′(x, y) is the background light intensity; I″(x, y) is
the intensity modulation parameter; ϕ(x, y) is the wrapped
phase to be solved. The horizontal and vertical phase shift
stripes are displayed sequentially on the LCD.

2) Two fisheye cameras are fixed on the overhead camera mount,
and the LCDmonitor is fixed on the high-precision horizontal
elevator. The fisheye cameras can shoot the LCD overhead.
The high-precision horizontal elevator controls the LCD to
move in the Zw direction in steps (the displacement error is
0.05 mm). Two fisheye cameras are controlled in each plane to
acquire stripe images simultaneously.

3) According to Eq. 12, a three-step phase shift algorithm is used to
calculate the two wrapped phases ϕu and ϕv of the streak image.
The value domain of the Arctangent function is within [−π, π]. So
if the streak image withmore than one period is used for decoding,
the calculated wrapped phase is discontinuous. Therefore, the
wrapped phases are unwrapped using themulti-frequencymethod
to obtain the continuous absolute phases Φu and Φv.

ϕ(u, v) � tan−1( �
3

√ I1 − I3
2I2 − I1 − I3

) (12)

4) Any point on the stripe image, calculate its absolute phase Φu

and Φv. Some alternative feature points can be extracted if
they satisfy the following relationships: Eq. 13.

{ |Φu − 2πn|< τ
|Φv − 2πm|< τ (13)

where τ is an artificially set threshold; m and n are integers.
Then, among these alternative feature points, the coordinates
such that |Φu − 2πn| + |Φv − 2πm| obtains the minimum
value are searched for as the desired feature points. Finally,
least-squares linear interpolation is used to optimize the
feature points to the sub-pixel level.

5) The absolute phase is converted to spatial coordinates for each
feature point with the following equation: Eq. 14.

⎡⎣Xw

Yw

⎤⎦ � qP

2π
⎡⎣Φu

Φv

⎤⎦ (14)

where P represents the number of pixels in the stripe cycle; q
represents the pixel size of the LCD. Use the reading of the high-
precision horizontal elevator as the Zw coordinate of the feature
point. In this paper, the fisheye camera has a large field of view. The
field of view can cover the whole LCD screen even at a position very
close to the camera. So the spatial coordinates of the feature points
determined by the left and right cameras are the same.

After determining the input and output data sets, the
image and spatial coordinates have different value ranges.
So it is necessary to normalize the data. Normalization can
improve the convergence speed of the neural-network and the
model’s accuracy. We use the polar difference transformation
method.

4 EXPERIMENTS

To verify the accuracy of the proposed method, an experimental
platform was built. Figure 5 shows the experiment platform. The
experimental platform includes two identical cameras
(AR0230AT), a high-precision horizontal elevator (HTZ210), an
LCD (iPad A1893), and a chessboard calibration plate. The fisheye
lens (LRCP12014_27 1/2) mounted on the camera has a focal
length of 1.4 mm and a field of view of 220°. Two comparison
experiments were conducted in different configurations. Finally,
the trained neural-network is used to reconstruct the corner points
of the chessboard and part of the surface of the sphere.

4.1 Neural-Network Method vs. Traditional
Fisheye Camera Model Method
The first experiment compares the neural-network-based fisheye
camera stereo calibration (the proposed method) with traditional
fisheye camera stereo calibration. As shown in Figure 5. Two
fisheye cameras are mounted on the overhead camera mount. The
LCD is fixed on a high-precision horizontal elevator. The LCD is
used to display the three-frequency, three-step stripe images. The
high-frequency stripe period is 64, and the high, medium, and low
frequencies multiplier is 6. The LCD resolution is 2048 × 1536
pixels, and the pixel size is 0.096 mm. The high-precision
horizontal elevator controls the gradual movement of the LCD
in the Zw direction.

The training set is obtained by following the steps described in
Section 3.3. The neural-network is configured according to
Section 3.2.

Based on the trained network, the sample data can be
predicted. Figure 6A shows the prediction results of 120
sample points. The actual values of the spatial coordinates are
known. So we can quantitatively analyze the deviations in three
directions. The mean error of Xw is 0.416 mm, Yw is 0.253 mm,
and Zw is 0.271 mm. To visually show the prediction results, the
predicted results of the spatial coordinates of the sample points
are linearly interpolated. Figure 6B shows the fitted plane.

FIGURE 5 | Experiment platform.
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We perform the traditional fisheye camera stereo calibration
using the fisheye camera calibration method in opencv3.0. The
specific principle can be referred to (Kannala and Brandt, 2006)
and is not described in detail here. This method requires two
fisheye cameras to take pictures of the target in different
directions. A total of 25 images were taken. Figure 7 shows
some of the 25 images.

Table 1 compares the reconstruction accuracy of the neural-
network model-based method with the traditional fisheye camera
model method. The experimental results show that the neural-
network-based method proposed in this paper has higher
accuracy and is more suitable for fisheye camera with larger
distortion.

4.2 Active Phase Target vs. Chessboard
The second experiment compares two different methods of
obtaining the training set for the neural-network. One is to
use active phase targets as proposed in this paper, and the

other is to use a chessboard as the target. The experimental
procedure using the active phase target has been described in
Section 4.1.

The experimental chessboard contains 88 corner points
with a spacing of 15 mm and a manufacturing error of
0.01 mm. The Harris corner point detection algorithm can
obtain the sub-pixel image coordinates of the chessboard
corner points. The corner points of the chessboard are used
as feature points. To ensure the consistency of the
experimental conditions, the positions of the fisheye

FIGURE 6 | Results. (A) Prediction results of sample points; (B) The plane fitting results.

FIGURE 7 | Eight images for conventional stereo calibration. The top four are taken by the left camera; the bottom four are taken by the right camera.

TABLE 1 | Mean errors in Zw.

Stereo calibration methods Mean error in (mm)
Zw

Neural-network model 0.271
Fisheye camera model 3.967
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cameras are not changed. The chessboard is fixed on the high-
precision horizontal elevator. The high-precision horizontal
elevator controls the chessboard to move in the Zw direction in
steps. The readings of the high-precision horizontal elevator
are used as the Zw coordinates of the feature points. The
neural-network parameter settings are not changed.

The sample data are then predicted based on the trained
network model. Figure 8A shows the results. The actual
values of the spatial coordinates of these points are known. So
we can quantitatively analyze the deviation in three directions.
The mean error of Xw is 1.105 mm, Yw is 0.894 mm, and Zw is
1.177 mm. To demonstrate the experimental results more

intuitively, linear interpolation is performed on the predicted
results. Figure 8B shows the fitted plane.

Table 2 compares the reconstruction accuracy comparison of
the training set obtained using the active phase target and the
chessboard. Figure 9 shows the mean error comparison graph. It
is clear that the method using the active phase target to extract
feature points as the training set is more accurate, especially in the
Zw direction. The experimental results prove that the active phase
target has the advantage of the number of feature points and is
more suitable for the calibration of the fisheye camera.

4.3 3D Reconstruction
To further verify the practicability of the proposed method, 3D
reconstructions of the chessboard corners and a partial plane of
the sphere are performed.

The experimental chessboard contains 88 corner points with a
spacing of 4.9 mm. The binocular fisheye camera takes pictures of
the chessboard in different poses at the same time. The subpixel
image coordinates of the chessboard corners are obtained using
the Harris corner detection algorithm. The spatial coordinates of
these corners are then reconstructed using the trained neural-
network model. Figure 10 shows the reconstruction results. We
calculate the square size of the chessboard based on the spatial
coordinates and compare it with the true value. Among them, the
reconstruction error of the corners located at the edge of the
chessrboard is larger, and the reconstruction errors of the middle
corners is smaller. This is due to the characteristics of the fisheye
image itself. The edges of the fisheye image are stretched due to
the severe distortion of the camera. Table 3 shows the mean error
for the chessboard square size.

Similarly, we reconstructed a partial plane of the sphere. We
recover the absolute phase of the sphere by projecting a fringe

FIGURE 8 | Results. (A) Prediction results of sample points; (B) The plane fitting results.

TABLE 2 | Mean errors in Xw , Yw, and Zw.

Stereo calibration methods Mean error in (mm)
Xw

Mean error in (mm)
Yw

Mean error in (mm)
Zw

Active phase targets 0.416 0.253 0.271
Chessboard 1.105 0.894 1.177

FIGURE 9 | Mean error comparison histogram.
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image on the upper surface of the sphere. According to the
matching relationship between the absolute phases of the
sphere in the left and right cameras, the pixel points are
matched (Chen X. et al., 2021). Then we use the trained
neural-network to predict the spatial coordinates of these

points. Figure 11 shows the reconstruction results. We
performed a least squares fit to the results for the sphere. The
real diameter of the sphere is 71 mm. The fitted diameter is
73.7288 mm. So the reconstruction error is 2.7288 mm.
Experiments show that the neural-network-based method
proposed in this paper has high measurement accuracy.

5 CONCLUSION

This paper applies a neural-network to the fisheye camera stereo
calibration technique. There is no need to pre-build the fisheye
camera model. The proposed method is model-free. A nonlinear
mapping relationship between image coordinates and spatial
coordinates is established using neural-network. The use of the
active phase target enables the extraction of feature points with a
larger number and higher precision, which is more suitable for
the calibration of fisheye cameras. Due to the flexible structure of
the neural-network, the neural-network model can be easily
extended to the joint calibration of multiple fisheye cameras
and the joint calibration of asymmetric fisheye camera layouts.
These are expected to be further investigated and implemented in
the future.
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FIGURE 10 | Chessboard cornors reconstruction results.

TABLE 3 | Mean errors in square size.

Pose 1 (mm) 2 (mm) 3 (mm) 4 (mm) 5 (mm)

Mean errors 0.174 0.066 0.159 0.142 0.345

FIGURE 11 | Sphere reconstruction result.
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