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Transcranial magnetic stimulation (TMS) shows significant values in both brain research and therapeutic applications of cognitive
neuroscience, neurophysiology, and psychiatry. Animal studies of TMS provide a potential way for learning the biological
mechanisms of actions of TMS. In this paper, we presented the comparison of human TMS and rat TMS by using the conventional
figure-of-eight coil for the first time. Three-dimensional distributions of magnetic flux density and induced electric field in both
virtual human and rat heads were obtained through the 3D impedance method. The results indicated that smaller TMS coils are
needed for stimulation of the rat brain. A rat-specific figure-of-eight coil was designed by considering the coil radii, number of coil
turns, and the injected coil currents.We found that the numerically designed Fo8 coil can be applied to the rat TMS with improved
focality while also keeping high stimulation intensities.

1. Introduction

Transcranial magnetic stimulation (TMS) was introduced
as both a method of noninvasive brain stimulation and
a neurophysiological probe. It is applied by holding an
electromagnetic coil, which is either a circular shaped coil
[1] or a figure-of-eight shaped coil [2] on the scalp. Rapidly
alternating magnetic fields produced by the coil enter the
brain and induce electrical current, which leads to neuronal
depolarization. As a noninvasive method to stimulate the
brain, TMS has attracted considerable interest as an impor-
tant tool for studying the functional organization of the
human brain as well as a therapeutic tool to treat many
psychiatric disorders and neurological conditions, includ-
ing depression [3], schizophrenia [4], obsessive-compulsive
disorder [5], posttraumatic stress disorder [6], Parkinson’s
disease [7], dystonia [8], tinnitus [9], epilepsy [10], and stroke
[11].

Although extensive researches have been done on TMS
in the past two decades, no clear-cut conclusion has been

reached on the underlying cellular and molecular mecha-
nisms as well as the therapeutic mechanisms used in clinical
practice. Animal models are helpful in elucidating some
mechanisms of TMS as we are allowed to carry out invasive
studies of molecular and genetic changes which are ethically
not possible to be done on human beings. Recently, several
experiments have shown that TMS has the ability to mediate
neuroplasticity by enhancing the expressions of glutamate
neurotransmitters in the rat brain [12]. TMSnot only activates
some brain regions, but also increases the expression level of
gene expression signals in the rat [13]. Also, animal models
of TMS play significant roles in understanding TMS-induced
plasticity mechanisms as they can offer a more direct way
tomeasure TMS-induced synaptic and nonsynaptic plasticity
[14] and to promote the neural repair [15].

One of the major limitations to animal models of TMS
is the lack of animal-specific stimulation coils. For example,
most rat TMS studies use commercial human coils that are
larger than the rat brain [16]. It is necessary to develop a small
animal coil such as for the rat. Recently, a mouse coil was
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Figure 1: Rat model: (a) transparency of brain and nerve, (b) head tissue at coronal slice of y=52 mm, and (c) brain tissue at coronal slice of
y=52 mm.

(a) (b)

Figure 2: Realistic head model: (a) 3D model and (b) typical tissue slice at coronal plane of y=120 mm.

produced that offers increased magnetic field and reduced
heating [17]. The purpose of this paper is to develop a TMS
coil for the rat model with specific dimensions. We compare
the induced electric fields in both realistic human and rat
headmodels using the conventional Fo8 coil for the first time.
The rat TMS coil is designed by downscaling the size of the
conventional humanTMS coil as well as reducing the injected
current. It was found that the designed Fo8 coil can be applied
to rat TMS with improved focality while also keeping high
stimulation intensities.

2. Realistic Human Head and Rat Models

The realistic rat model was obtained from Brooks Air Force
Laboratory (BAFL), USA. There are 36 different tissues in
the rat model with the dimensions of 126 mm, 240 mm, and
54 mm along the x, y, and z directions, respectively. The
rat model is composed of 6.94 million cubic voxels with a
resolution of 0.5 mm x 1 mm x 0.5 mm. Figure 1(a) shows
the rat model with transparency of both the brain and nerve.
Figure 1(b) shows a typical head slice in the coronal plane

which contains the rat brain. And Figure 1(c) shows the brain
slice with gray matter and CSF.

The realistic human head model as shown in Figure 2 was
obtained from a 34-year-old man model developed by the
Virtual Family project [18]. The man model was segmented
in 77 tissues of which 36 tissues are involved in the present
head model. The head model is composed of 10.47 million
cubic voxels with a resolution of 1 mm x 1 mm x 1 mm.
Some important brain subregions, such as the thalamus,
hippocampus, pons, and pineal body, were included in the
model.

3. Models with Figure-of-Eight Coil

The figure-of-eight coil used for human brain stimulation
is shown in Figure 3(a). The inner and outer radii of the
circular wings are 10mmand 35mm, respectively. We applied
the current with the magnitude of I=7.7 kA and working
frequency of 𝑓 = 3.6kHz in TMS coil. The same coil was also
placed in the anterior position between the ears in the rat
model, and it is shown in Figure 3(b). The same stimulation
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Figure 3: Figure-of-eight TMS coil with human head model (a) and rat model (b).

parameters were presented in the coil for rat stimulation for
comparison with the human model.

4. Numerical Methods

The time variation of the applied magnetic field causes
induced currents in the rat tissues through Faraday’s induc-
tion mechanism. We calculated the magnetic flux density (B-
field) and induced electric field (E-field) in both the human
and rat models by employing the impedance method [19].
In this method, the models are described using a uniform
3D Cartesian grid and are composed of small cubic voxels.
There are 10.47 million voxels for the human head and
6.94 million voxels for the rat in the computational space.
Assuming that, in each voxel, the electric conductivity values
are isotropic and constant in all directions, then the model
can be represented as a 3D network of impedances. The
impedances in various directions can be expressed as

𝑍𝑖,𝑗,𝑘𝑚 =
Δ𝑚
Δ𝑛Δ𝑝𝜎𝑖,𝑗,𝑘𝑚

, (1)

where 𝑖, 𝑗, 𝑘 indicate the voxel indexes; 𝑚 is the direction of
𝑥, 𝑦, or 𝑧 for which impedance is calculated and 𝜎𝑖,𝑗,𝑘𝑚 is the
electrical conductivity for the voxel in the𝑚-th direction.Δ𝑚,
Δ𝑛, and Δ𝑝 are the sizes of the voxels in the𝑚, 𝑛, 𝑝 directions.
Kirchhoff ’s voltage law applied to each loop in this network
generates a system of equations for the loop currents. The
net currents within the models are calculated from these loop
currents, and the electric field is in turn calculated by using
Ohm’s law.

The electrical properties, obtained from BAFL, are mod-
eled using the Four-Cole-Cole method [20]. In this method,
the complex permittivity 𝜖𝑐 of biological tissue subjected to

the electric field with angular frequency 𝜔 is modeled by the
relaxation theory and can be expressed as follows:

𝜀𝑐 (𝜔) = 𝜀∞ +
4

∑
𝑟=1

Δ𝜀𝑟
1 + [𝑗 (𝜔/2𝜋) 𝜏𝑟]

𝛼
𝑟

+ 𝜎𝐼
𝑗𝜔𝜀0
, (2)

where 𝜀∞ is the permittivity in the high frequency limit, 𝜎𝐼
is the conductivity, 𝜏𝑟 is the relaxation time in the dispersion
region 𝑟, and Δ𝜖𝑟 is the drop in permittivity in the frequency
range of which the timeperiod 2𝜋/𝜔 is eithermuch smaller or
larger compared with the relaxation time. These parameters
are obtained by fitting to the experimental measurements
[21–23]. With appropriate parameter values for each tissue,
the above equation can be used to predict the frequency
dependence of the dielectric properties. After calculating 𝜀𝑐,
the conductivity 𝜎 of each tissue can be calculated as

𝜎 (𝜔) = − Im [𝜀𝑐 (𝜔)] 𝜔𝜀0. (3)

The tissue conductivity values used in this paper are
presented in Table 1.

5. Results and Discussions

Figure 4 shows the magnetic field distributions (B-field) in
the coronal slice of y=120 mm of the human head model and
y=52 mm of the rat model, respectively. In order to show
the field distribution in head tissues, the contour outlines
of skin and gray matter (GM) were also included in each
figure. Figure 4(c) shows the rat brain and skin in the same
slice separately. By comparing Figures 4(b) and 4(c), one can
clearly find how the magnetic field is distributed in the rat
brain. The big difference can be observed when comparing
the B-field in the human brain with that in the rat brain. We
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Table 1: Tissue conductivity values (f=3600 Hz).

Tissue Conductivity Tissue Conductivity
𝜎[𝑆/𝑚] 𝜎[𝑆/𝑚]

Artery 7.01e-01 Hypothalamus 5.27e-01
Blood vessel 3.11e-01 Mandible 2.03e-02
Cartilage 1.75e-01 Marrow-bone 2.52e-03
Cerebellum 1.27e-01 MO∗3 4.66e-01
CSF 2.00e+00 Midbrain 4.66e-01
CA∗1 6.56e-02 Mucosa 1.06e-3
CP∗2 6.56e-02 Muscle 3.34e-01
Connective-tissue 2.04e-01 Nerve 3.23e-02
Ear-cartilage 1.75e-01 Pineal-body 5.27e-01
Ear-skin 2.00e-04 Pons 4.66e-01
Eye-cornea 4.28e-01 Skin 2.01e-04
Eye-lens 3.33e-01 Skull 2.03e-02
Eye-sclera 5.08e-01 Spinal-cord 3.23e-02
Eye-vitreous-humor 1.50e+00 Teeth 2.03e-02
FAT 2.34e-02 Thalamus 1.07e-01
Gray matter 1.07e-01 Tongue 2.76e-01
Hippocampus 1.07e-01 Vein 7.00e-01
Hypophysis 5.27e-01 White Matter 6.56e-02
∗1CA: commissura-anterior; ∗2CP: commissura-posterior; ∗3MO: medulla-oblongata.
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Figure 4: Distribution of B-field (Tesla) with the contour outline of scalp and GM in the coronal slice of y= 120 mm for human head (a) and
in the coronal slice of y= 52 mm for rat head (b).
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Figure 5: Distribution of E-field (V/m) in the coronal slice of y= 120 mm for human head (a) and in the coronal slice of y= 52 mm for rat
head (b). The outlines of the skin and gray matter were presented in each figure.

Table 2: Comparison of the brain volumes with the induced electric
fields larger than 100 V/m.

Model name Brain volume Brain volume with
E > 100 V/m Ratio

(mm3) (mm3) (%)
Rat 3482 2430.5 69.8
Human 600920 18043 3

can find that the B-field in the human brain is smaller than
that in the scalp and skull, where the B-field is larger than
1.2 T and is represented by red color (Figure 4(a)). For the rat
model, however, the B-field with amplitude (> 1.2 T) has been
distributed in almost the whole rat brain (Figure 4(b)), which
means the conventional TMS for human brain stimulation is
too strong for rat TMS.

Figure 5 shows the induced electric field distribution (E-
field) in the coronal slice of y=120 mm of the human head
and y=52 mm of the rat model, respectively. In order to show
the results dynamically, the color scale covers the range of
0-100 V/m, and all values above 100 V/m, i.e., the neuron
excitation threshold [24], are shown in dark red. Again, the
big difference can be observed when comparing the E-field
in the human brain and with that in the rat brain. It can be
observed in Figure 5(a) that the E-field is mainly distributed
on the GM surface in several limited areas for the human
brain, which suggests that the Fo8 coil produces a focal
stimulation. As for the rat (Figure 5(b)), we can observe that
almost the whole brain is potentially excited.

A quantitative comparison of the brain volumes with
an E-field larger than 100 V/m for both rat and human
stimulations is shown in Table 2. It clearly shows that only 3%

of the human brain is potentially stimulated, while this value
is 69.8% for the rat.

From the results shown above, we can conclude that the
conventional TMS coil used for human brain stimulation is
too strong for rat brain stimulation.

In order to find the coil and stimulation parameters for rat
TMS,we investigated the dependence of excited brain volume
(E-field in brain tissues with value larger than 100 V/m) on
stimulation parameters. Based on the human TMS described
in the previous section, we changed the coil currents, coil
outer radii, and the number of coil turns, respectively, and
calculated the percentage of potentially excited brain volume
to the whole volume. The obtained results are shown in
Figure 6. It can be observed that the outer radii of the
coil have less impact on reducing the excited brain volume
(Figure 6(a)). However, when decreasing either the injected
coil currents or the number of coil turns, the excited brain
volume will be significantly reduced (Figures 6(b) and 6(c)).

Based on these results, we designed a new figure-of-eight
coil specifically for rat brain stimulation with improved focal-
ity. The coil parameters are as follows: outer and inner radii
for each wing are 20mmand 10mm, respectively, the number
of wire turn is 5 for each wing, and the injected current is 4.0
kA. Figure 7(a) shows the outline of this designed Fo8 coil
for rat TMS. For the purpose of comparison, the original Fo8
coil for human TMS is shown in Figure 7(b). It is observed
that the newly designed coil is significantly reduced in size.

Table 3 presents the comparison of excited rat brain
volumes using the conventional Fo8 coil with the newly
designed coil. It can be observed that only 3% of the rat brain
is excited, while this coil has little effect on human brain
stimulation.
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Figure 6:Dependence of potentially excited brain volume towhole brain volume (percentage) in rat brain on coil and stimulation parameters:
(a) coil outer radii, (b) coil injected current, and (c) the number of coil turns.
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Figure 7: Comparison of coil configuration: (a) rat TMS coil and (b) human TMS coil.

Table 3: Comparison of the brain volumes potentially excited in the
rat model using the conventional and newly designed Fo8 coils.

Model name Brain volume Brain volume with
E > 100 V/m

Ratio

(mm3) (mm3) (%)

Conventional coil 3482 2430.5 69.8
New coil 3482 108 3.33

Figure 8 shows the distribution of the B-field and E-
field in the coronal slice of y=52 mm for the rat model by
employing the newly designed coil. By comparing the B-
fields between Figures 8(a) and 4(b) and by comparing the
E-fields between Figures 8(b) and 5(b), it can be observed
that the focality of both the B-field and E-field in the rat
brain is improved significantly. The distribution of the B-
field and E-field in the coronal slice of y=120 mm for the

human head by employing the new coil was presented in
Figure 9 for comparison. It is obvious that both the magnetic
field and the electric field in the human brain are very small,
which are only distributed in the scalp of the human head
model.

6. Conclusions

This paper firstly presents the comparison of standard Fo8
TMS between human and rat models by employing the
impedance method.The distributions of both the B-field and
E-field in virtual human and rat brains are presented. The
results show that it is not possible to stimulate small rat brain
regions selectively with a standard Fo8 TMS coil. A new rat-
specific Fo8 coil with different coil parameters is designed
by downscaling the coil size and changing the stimulation
parameters.The results show that only 3% of the rat brain will
be potentially excited. The new coil design will provide a new
tool for small animal stimulation with improved focality. And
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Figure 8: Distribution of B-field (a) and E-field (b) at coronal slice of y= 52 mm in rat model by applying the new designed Fo8 coil.
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Figure 9: Distribution of B-field (a) and E-field (b) at coronal slice of y= 120 mm in human head model by applying the new designed Fo8
coil.

the method in this paper allows designing more suitable coils
for use in biological models.
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