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A hallmark of cortical circuits is their versatility. They can per-
form multiple fundamental computations such as normalization,
memory storage, and rhythm generation. Yet it is far from clear
how such versatility can be achieved in a single circuit, given
that specialized models are often needed to replicate each com-
putation. Here, we show that the stabilized supralinear network
(SSN) model, which was originally proposed for sensory integra-
tion phenomena such as contrast invariance, normalization, and
surround suppression, can give rise to dynamic cortical features
of working memory, persistent activity, and rhythm generation.
We study the SSN model analytically and uncover regimes where
it can provide a substrate for working memory by supporting
two stable steady states. Furthermore, we prove that the SSN
model can sustain finite firing rates following input withdrawal
and present an exact connectivity condition for such persistent
activity. In addition, we show that the SSN model can undergo
a supercritical Hopf bifurcation and generate global oscillations.
Based on the SSN model, we outline the synaptic and neuronal
mechanisms underlying computational versatility of cortical cir-
cuits. Our work shows that the SSN is an exactly solvable nonlin-
ear recurrent neural network model that could pave the way for
a unified theory of cortical function.
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Understanding the mechanisms underlying cortical function
is the main challenge facing theoretical neuroscience. Non-

linear responses such as normalization, contrast invariance,
and surround suppression are often encountered in the cortex,
particularly in the visual cortex (1, 2). At the same time, work-
ing memory about a transient stimulus, persistent activity in
decision-making tasks, and generation of global rhythms repre-
sent fundamental computations which have been linked to cog-
nitive functions (3–5). Whether these computations arise from
common or different mechanisms is an open question.

Previous work showed that the response of in vivo cortical neu-
rons is well described by a power law (6) (Fig. 1). Experiments
and theory indicate that low firing rates and high variability
reported in the cortex are associated with a power-law activation
function and noise-driven firing (6–9). Furthermore, a power
law is mathematically the only function that permits precise
contrast invariance of tuning given input that has contrast-
invariant tuning (8, 9). Recent work (1, 2, 10) proposed the stabi-
lized supralinear network (SSN) as a mechanism for normaliza-
tion, contrast invariance, and surround suppression. While the
SSN model is powerful in the context of stimulus integration, its
role for other cortical computations remains to be clarified (11).

Working memory is the ability to remember a transient input
long enough for it to be processed (3). It is often implemented
as a stimulus-induced switch in a bistable system (12). Persis-
tent activity is thought to be critical for neural implementation
of decision making (3, 4). Mechanistically, it is firing observed in
the absence of any stimulus between the cue and the go signal in
decision-making tasks. Persistent activity was first recorded in the
early 1970s in the prefrontal cortex of behaving monkeys (13) and
has since been found in other cortical areas (3). Finally, genera-
tion of synchronous network-wide rhythms is also a fundamental

cortical feature that has been suggested to mediate communi-
cation between cortical areas and may be needed for attention,
feature integration, and motor control (5).

Here, we investigate whether the SSN motif is sufficient to
give rise to network multistability, persistent activity, and global
rhythms. Seminal articles have proposed that working memory
is a result of network multistability (12). To explain multista-
bility, mechanisms that involve either S-shaped neuronal acti-
vation function in combination with a suitably strong excitatory
feedback or S-shaped synaptic nonlinearity have been pro-
posed (14–16). Likewise, a persistent state which occurs in
the decision-making process has been modeled using synaptic
nonlinearities (17). The SSN framework, however, lacks both
ingredients: it does not exhibit an S-shaped neural activation
function and lacks synaptic plasticity. It is also currently unclear
whether the SSN motif alone supports the emergence of sta-
ble global oscillations. If oscillations can emerge in the SSN, it
would be important to determine the conditions for connectivity
and neural power-law exponents when this occurs. On the other
hand, if the SSN motif is not sufficient for the emergence of oscil-
lations, it would be necessary to understand what sets it apart
from models that can support global rhythms (14, 18, 19).

To investigate whether and when the SSN model can support
multistability and persistent and oscillatory activity we need to
understand its dynamics systematically. Since the SSN is a non-
linear model, mathematical methods to obtain exact solutions
are challenging. Previous studies used the functional shape of
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Fig. 1. Firing-rate transformation and network wiring. (A) Threshold
power-law transfer function determines the relationship between input cur-
rent and the firing rate of excitatory and inhibitory neurons. (B) Popula-
tions of power-law neurons are recurrently connected and receive excitatory
external inputs. E, excitatory; I, inhibitory.

nullclines to determine their possible crossings and derive the
number of steady states in the Wilson–Cowan model with an S-
shaped activation function (14, 15). Here, we aim to explain how
location and multiplicity of steady states are influenced by spe-
cific parameter choices for which information on the shape of
nullclines is not always mathematically tractable. To this end, we
developed an analytical method that allows us to map the steady
states of the 2D SSN model to the zero crossings of a 1D char-
acteristic function. We determine multiplicity and stability of the
SSN steady states for all possible parameter regimes. In partic-
ular, we show that the SSN model supports the following three
effects. First, we outline network configurations corresponding
to a bistable regime that could serve as a substrate for work-
ing memory. Second, we show that the SSN model can lead to
dynamically stable persistent activity and derive the correspond-
ing connectivity requirements. Third, we prove the occurrence
of stable global oscillations in the SSN and provide methods for
how to tune the oscillatory frequency to a desired value. Our
article is organized as follows. First, we analyze the multiplic-
ity and stability of the SSN steady states and show the existence
of a unique mapping between zero crossings of a characteristic
function and steady states. Second, we prove for equal-integer
power-law exponents that the model has at most four coexisting
steady states and at most two steady states can be stable. Finally,
we present parameter regimes for which a stable persistent state
and global oscillations exist.

Results
We consider a recurrent network as illustrated in Fig. 1 and
model the activity of excitatory and inhibitory populations rE
and rI using the following equations often referred to as the SSN
model (2, 10):

τE ṙE =−rE +(JEE rE − JEI rI + gE )
αE
+ ,

τI ṙI =−rI +(JIE rE − JII rI + gI )
αI
+ .

[1]

Here, gE and gI are the nonnegative constant inputs to the
respective populations, and τE and τI denote the time constants.
JXY > 0 is the effective synaptic strength from the population
Y to the population X , where X ,Y ∈{E , I }. By J we denote
the connectivity matrix where the first row is JEE , −JEI , and the
second row is JIE ,−JII . The susceptibility of a neuronal popula-
tion to currents is expressed using the power-law activation func-
tions with the exponents αE ,αI ≥ 2, where (x )+ = max{x , 0}.
The power-law dependence is based on experimental and the-
oretical studies (6, 8, 9). Here, let us briefly comment on our
choice of units. Throughout the article, we use unitless quanti-
ties for all parameters including firing rates because the values of
connectivities and inputs can be rescaled by any number to match
the desired firing-rate range. See Rescaling the Connectivity and
Input Constants to Match a Desired Firing-Rate Range for details
on the rescaling procedure.

To characterize the SSN activity states, it is crucial to under-
stand how location, multiplicity, and dynamical stability of the
SSN steady states depend on connectivity, inputs, and activation
functions of neuronal populations. The steady-state firing rates
rE and rI are described by

rE =(JEE rE − JEI rI + gE )
αE
+ ,

rI =(JIE rE − JII rI + gI )
αI
+ .

[2]

While a steady state can be easily found in the case of αE ,I =1,
the nonlinear case αE ,I ≥ 2 currently lacks analytical solution
strategies. Here, we present a unique approach for finding and
analyzing the steady states in Eq. 1. We show that the 2D sys-
tem of nonlinear equations in Eq. 2 can be reduced to a single
1D equation for a nonlinear characteristic function. Specifically,
we have identified a one-to-one correspondence between the 2D
steady states and the 1D zero crossings of a characteristic func-
tion such that the steady-state search algorithm is reduced to a
lower-dimensional problem.

Reducing the Dimensionality via a Characteristic Function. To solve
the two nonlinear equations presented in Eq. 2, we take the fol-
lowing steps. We first apply a variable substitution replacing rX
with zX = JXE rE − JXI rI + gX , X ∈{E , I } as detailed in Mate-
rials and Methods. Now, we can simplify the problem by eliminat-
ing the variable zI for det J ≥ 0 and zE for det J < 0. We denote
the remaining variable by z and show that the solutions of Eq. 2
are uniquely mapped to the zero crossings of the characteristic
function F which depends on z . For det J ≥ 0, this function is
given by

F(z )= JEE (z )
αE
+ − JEI (P(z ))αI

+ − z + gE , [3]

where P(z )= J−1
EI (det J · (z )αE

+ + JII (z − gE )+ JEI gI ). The
steady-state rE , rI corresponding to the zero-crossing z is given
by rE =(z )αE

+ and rI =(P(z ))αI
+ . A similar form of F and

P exists for det J < 0 (Materials and Methods and Characteris-
tic Function). In the following, we refer to the function F as
a characteristic function. Mathematically, the nullcline cross-
ings in Eq. 2 that define the steady states are now mapped
to the zero crossings of a 1D function F . This transforma-
tion significantly enhances the mathematical tractability because
steady states are now intersection points of a 1D function
with a coordinate axis and are no longer intersections of two
complex nonlinear nullclines. In Fig. 2, we depict the zero cross-
ings of F and the corresponding steady states for four repre-
sentative classes of solutions. Additionally, in Location of SSN
Steady States Is Preserved in the Presence of Firing-Rate Satura-
tion and Fig. S2 we show that these steady states remain at
the same location if activation functions saturate at high firing
rates. Saturation of activation functions provides boundedness
of all solution trajectories; however, it can introduce additional
steady states.

Stability Conditions. The characteristic functions in Fig. 2 exhibit
zero crossings with positive derivatives which correspond to sad-
dles, while those with negative derivatives correspond to either
stable or repelling steady states. To support this finding mathe-
matically, we consider the eigenvalues λ1 and λ2 of the Jacobian
matrix at the steady state of interest. We find that F ′ at the zero-
crossing z is related to the negative product of the eigenvalues at
the corresponding steady state:

λ1λ2 =−τ−1
E τ−1

I F
′(z ). [4]

Notably, Eq. 4 is similar to the relation derived in ref. 20 where
a 2D system of equations corresponding to a conductance-based
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Fig. 2. Steady states and characteristic functions. Steady states are related
to zero crossings of the characteristic function F (A–D, Insets). Black flow-
lines represent trajectories starting from different initial points. (A) A single
steady state can exist only for det J≥ 0. (B) Two SSN steady states can coex-
ist for det J≤ 0. Zero crossings of F with a positive derivative correspond
to saddles. (C) Three steady states are possible if det J≥ 0. Dependent on
the sign in Eq. 5 zero crossings with the negative derivative can correspond
to either stable or repelling steady states. (D) Four steady states can coexist
only for det J< 0. Parameters are as in Table 2.

model was reduced to a 1D function whose derivative coincided
with the determinant of the Jacobian. A steady state is a saddle if
the eigenvalues are real and have opposite signs. This can occur
if and only if F ′ is positive at the zero-crossing z (Fig. 2). Stable
steady states require that both F ′ and the sum of the eigenvalues
are negative (18). The sum of the eigenvalues is negative only if

0<τI

(
1− JEEαE r

1−α−1
E

E

)
+ τE

(
1+ JIIαI r

1−α−1
I

I

)
. [5]

Thus, the stability of a steady state is equivalent to the require-
ments that F ′ is negative at the zero crossing and that the condi-
tion Eq. 5 is fulfilled. We note that if F ′ is negative, then Eq. 5
can always be fulfilled by choosing τI /τE to be sufficiently small.
Interestingly, we have found that if det J ≤ 0 and τI ≤ τE , then
the sign ofF ′ directly determines the stability of the steady state.
If F ′(z )< 0 in this case, then Eq. 5 is automatically fulfilled and
the steady state is stable. If F ′(z )> 0, then the corresponding
steady state is a saddle (Stability Conditions).

Determining the Number of Coexisting Steady States. We now
determine how many steady states can coexist for a given synap-
tic connectivity and inputs. First, let us note that previous work
(14, 15) reported up to five steady states in the Wilson–Cowan
model with an S-shaped activation for positive JXY and nonneg-
ative gX or up to nine if JXY and gX are allowed to be nega-
tive. Here, we aim to find how many steady states emerge from
a power-law activation function and determine exactly the pos-
sible number of steady states for a given combination of inputs,
exponents, and connectivity. To obtain exact results, we consider
a situation where the excitatory and the inhibitory populations
have the same integer exponents, such that αE =αI =n ∈N
and n ≥ 2. Here, it is plausible to assume that the characteristic

function, which now contains a polynomial of degree up to n2,
could have n2 zero crossings leading to n2 steady states. If the
number of steady states was indeed dependent on the steep-
ness of the activation function and grew proportional to n2, then
networks of neurons with steep activation functions and higher
exponents n would likely have a fractured phase space with many
coexisting steady states. The steady state assumed by the net-
work could then be highly dependent on the initial condition.
Since such networks have not yet been biologically observed, it is
likely that the number of steady states remains bounded even
if the steepness of the activation function n increases. Thus,
we decided to check our initial intuition that the number of
steady states grows with n . Surprisingly, it turned out not to be
the case.

To study the multiplicity of the SSN steady states, we partition
the parameter space of the SSN model into nine classes. Such
partition makes the problem more accessible for mathematical
analysis. For details we refer to Materials and Methods. First,
we identify three classes according to the sign of det J (Table
1). Second, we further separate each of three det J classes into
three parameter subsets according to the sign of the constants
C+ =−J−1

EI JII gE + gI for det J ≥ 0 and C−=−J−1
IE JEEgI +

gE for det J < 0 (Table 1 and Materials and Methods). To deter-
mine the multiplicity of steady states for each of the nine param-
eter classes presented in Table 1, we follow the steps outlined in
Materials and Methods and Multiplicity of Steady States. We find
that there can be at most four steady states and this number does
not grow with n . For n =2 there are at most three steady states
(Multiplicity of Steady States). For n ≥ 2, we show that at most
two stable steady states can coexist (Fig. 2 and Table 1).

Taken together, our results indicate that the power-law–type
networks with equal integer exponents can support two coexist-
ing stable states, but no more than two stable states can occur
at a time. The ability of a circuit to support bistability has been
suggested as a substrate for working memory where the circuit
transitions from the lower to the upper state follow the presen-
tation of a brief stimulus. The emergence of bistability has so
far been confirmed in neural networks with S-shaped synaptic or
neuronal nonlinearities (16). However, our results show that nei-
ther synaptic nonlinearities nor S-shaped activation functions are
prerequisites for bistability in a network. Two coexisting steady
states can simply emerge in a network with a globally convex
power-law activation.

Table 1. Multiplicity of SSN steady states for αE =αI = n,
whereby n∈N and n≥ 2

C−< 0 C− = 0 C−> 0

n> 2, det J< 0 2(1)/0 2(1)/0 4(2)/2(1)/0
n = 2, det J< 0 2(1)/0 2(1)/0 2(1)/0

C+< 0 C+ = 0 C+> 0

n> 2, det J = 0 3(2)/2(1)/1(1)/0 2(1)/1(1)/0 2(1)/1(1)/0
n = 2, det J = 0 2(1)/1(1)/0 2(1)/1(1)/0 2(1)/1(1)/0
n≥ 2, det J> 0 3(2)/1(1) 3(2)/1(1) 3(2)/1(1)

For each class, we give the possible numbers of steady states (in paren-
theses is the maximal number of stable states, which is for example possible
for sufficiently small τI, Eq. 5). All alternative steady-state configurations are
indicated with “/”. In cases where results for n = 2 and n> 2 differ, we show
them on a separate line. Parameter sets supporting bistability are high-
lighted in boldface type. Ordered by the distance to the origin, the first and
the third steady states always correspond to the zero crossings of the char-
acteristic function with negative derivative F ′(z)< 0 and dependent on the
sign in Eq. 5 are either stable or repelling. The second and the fourth steady
states always correspond to the zero crossings with the positive derivative
F ′(z)> 0 and represent saddles. For completeness, let us note that we have
ignored nongeneric cases (destroyed by any perturbation of parameters) in
which there is a steady state with a zero eigenvalue.
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Persistent State. One of the hallmarks of nonlinear systems is
the ability to sustain a response after the input is switched
off. Such response is referred to as a persistent state. We ask
whether it is possible to observe a persistent state in a system
described by Eq. 1 with the exponents αE ,αI ≥ 2. Here, we con-
sider the same integer exponents αE =αI =n ≥ 2 of the exci-
tatory and the inhibitory populations. To approach this ques-
tion, we examined the characteristic function for zero inputs gE
and gI and looked for its positive zero crossings with the nega-
tive derivative. We note that only a zero crossing with the neg-
ative derivative can lead to a stable steady state. In absence of
inputs, we derived the following necessary condition for the exis-
tence of such zero crossing which can be directly verified for
J and n:

0< det J <
n

n +1

(
J

n+1
n

EE J
n−1
n

EI − JIIJEE

)
[6]

(Materials and Methods and Existence of Persistent States). The
inequality on the left side of Eq. 6 implies that a persistent
state in the network described by Eq. 1 is possible only when
the cross-population connectivity JEIJIE dominates the connec-
tivity JEEJII within the individual populations. Moreover, the
excitability n of individual neurons has to fulfill the inequality
on the right side of Eq. 6. We note that a stable persistent state
does not exist outside the parameter set specified by the inequal-
ity Eq. 6 (see Materials and Methods for further details). To guar-
antee that a given persistent steady state is stable and can thus
be reached dynamically, the time constants τE and τI need to
meet the stability condition Eq. 5 presented above. Fig. 3 A and
B shows examples of a stable and repelling persistent state. If the
existence of a positive zero crossing with negative derivative in
absence of inputs has been established, τI can be chosen suffi-
ciently small (or τE large) such that the persistent state fulfills
the stability condition Eq. 5.

Emergence of Oscillations. Periodic fluctuations of neural activity
are a common occurrence across the cortex and have been asso-
ciated with many information-processing tasks (5). Some cog-
nitive disorders are also reportedly accompanied by a change
in the oscillatory cortical activity (21). In some instances, the
oscillatory activity has been explained by the amplification of
selected input frequencies (22) while in others, it has been pro-
posed to arise from intrinsic, self-sustained oscillations originat-
ing for example from a Hopf bifurcation (18). Here, we study
whether the SSN can support global oscillations arising from a
Hopf bifurcation and if so which synaptic or neuronal parame-
ters can lead to oscillations and which ones control the oscillatory

A B

Fig. 3. Persistent state in the SSN model. The nonzero persistent state can
be stable (black solid circle) or repelling (red solid circle). If Eq. 5 is not satis-
fied, the persistent state is repelling (A); otherwise it is stable (B). Parameters
are as in Table 2.

frequency. An extensive analysis of the Hopf bifurcation for the
Wilson–Cowan model with an S-shaped activation function can
be found in ref. 23. A Hopf bifurcation occurs when the com-
plex conjugate eigenvalues corresponding to a stable steady state
cross the imaginary axis when the input current or other param-
eter values are varied. In this way, the initial frequency of the
global oscillation corresponds to the imaginary part of the eigen-
values (18). To determine when the steady-state eigenvalues in
the SSN can become complex and when the limit cycle is sta-
ble, we have followed the steps outlined in Existence of Global
Oscillations and in ref. 24. If det J > 0, then it is always pos-
sible to find inputs and time constants for which the eigenval-
ues become purely imaginary. Moreover, for det J ≤ 0 a Hopf
bifurcation in the SSN can occur only for τI >τE , because our
stability analysis implies that for τI ≤ τE eigenvalues are always
real. When a Hopf bifurcation occurs, the emergent oscilla-

tion frequency is f =(2π)−1
√
−τ−1

E τ−1
I F ′(z ). We note that f

can be tuned to any value; e.g., decreasing the time constants
τE or τI will result in an increasing oscillatory frequency. The
stability of the limit cycle can be determined using the Lya-
punov coefficient; see Existence of Global Oscillations and the
code accompanying this article. In Fig. 4 we present the exam-
ple of a stable limit cycle emerging from a supercritical Hopf
transition.

Discussion
Multipurpose models that explain more than just the functions
they are designed for are currently in short supply. Here, we
show that the SSN can serve as a universal circuit model that
can support rhythm generation and working-memory features
such as bistability and persistent states along with many stim-
ulus integration rules as well as contrast invariance, normaliza-
tion, and surround suppression (2, 6, 8, 9). Importantly, we pro-
vide a unique analytical method to obtain exact solutions for
the SSN model that are valid for all parameter regimes. This
makes the SSN model a nonlinear, yet exactly solvable, recurrent
neural network model. Remarkably, the computational versa-
tility of the SSN model emerges from the nonlinear activation
function and does not require synaptic plasticity, delay tun-
ing, or specific ion channel models. The characteristic function
method we derived here allows us to show that the connectivity
regime where the product of cross-connectivities JIEJEI dom-
inates the recurrent connections JIIJEE (det J > 0) is particu-
larly efficient and supports all three of the fundamental activity
types: bistability, persistent state, and oscillations. In our work,
we derived exact conditions that describe how to control the fre-
quency of global rhythms and determined when persistent activ-
ity emerges and when two coexisting states with finite firing rates
can subserve working memory. For example, we found that per-
sistent activity in the SSN model can occur only if det J > 0
and if the power-law steepness is carefully matched to the con-
nectivity matrix (Eq. 6). Our work thus provides an important
step toward a unified theory of cortical function by identifying
connectivity regimes supporting working memory and network
oscillations and uniting these fundamental computations via
the SSN.

Materials and Methods
Correspondence Between the Steady States and the Zero Crossings of a Charac-
teristic Function. We show how the SSN steady states can be unambiguously
mapped to the zero crossings of a characteristic function F , a correspon-
dence which we illustrate in Fig. 2. Here, we derive F for det J> 0. Using
similar arguments, we derive F in Characteristic Function for det J≤ 0 and
summarize both in Eq. 15.

As a first step toward F for det J> 0 we substitute

zE = JEErE − JEIrI + gE , zI = JIErE − JIIrI + gI. [7]
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BA

Fig. 4. Emergence of oscillations in the SSN model. (A) A steady state corre-
sponding to the zero crossing of F at z = 0.48 (Top) is located at rE = 0.11,
rI = 0.39 (Middle). Initializing the network at rE(0) = 0.1, rI(0) = 0.6 leads to
a converging spiral (Middle and Bottom). (B) If the input gE to the excita-
tory population is increased, the steady state becomes repelling (bifurcation
diagram, Top Right). The zero crossing of F is shifted to z = 0.88 (Top Left).
The corresponding steady-state rE = 0.69, rI = 5.15 is repelling, and a sta-
ble limit cycle can be observed (Middle row). The initial conditions located
inside (B, Left) and outside (B, Right) both converge to the limit cycle orbit.
Parameters are as in Table 2.

Now the equilibrium equations in Eq. 2 can be written as

rE = (zE)
αE
+ , rI = (zI)

αI
+ . [8]

Since det J 6= 0, we now express the old variables rE , rI using the new vari-
ables zE , zI by inverting Eq. 7. We obtain

rE = (det J)−1(−JIIzE + JEIzI − C+JEI),

rI = (det J)−1(−JIEzE + JEEzI + C−JIE),
[9]

where C+ =−J−1
EI JIIgE + gI and C− =−J−1

IE JEEgI + gE . Our next goal is to
eliminate rE and rI from the above equations. To this end, we substitute Eq.
8 into Eq. 9 and obtain

det J · J−1
EI · (zE)

αE
+ + J−1

EI JIIzE + C+ = zI, [10]

−det J · J−1
IE · (zI)

αI
+ + J−1

IE JEEzI + C− = zE. [11]

Now, the above equations contain only the new variables zE and zI. Our
next goal is to eliminate the variable zI from the system Eqs. 10 and 11 and
reduce the system to 1D. To this end, we introduce an abbreviation for the
left side of Eq. 10:

P(zE) = det J · J−1
EI · (zE)

αE
+ + J−1

EI JIIzE + C+. [12]

Now, Eq. 10 can be written as P(zE) = zI. We substitute zI = P(zE) into Eq. 11
and obtain

JEE(zE)
αE
+ − JEI(P(zE))

αI
+ − zE + gE = 0. [13]

For det J> 0, we denote by F the left side of Eq. 13,

F (zE) = JEE(zE)
αE
+ − JEI(P(zE))

αI
+ − zE + gE [14]

with P defined by Eq. 12. We thereby have shown that if rE , rI is a steady
state for det J> 0, then zE = JEErE − JEIrI + gE satisfies F (zE) = 0 with the
functions P and F given by Eqs. 12 and 14, respectively. Next, we show
that no spurious zeros of F exist that do not correspond to steady states.
To this end, we consider a real number z∗ such that F (z∗) = 0 where F
is as defined by Eq. 14 for det J> 0. We define rE = (z∗)

αE
+ , rI = (P(z∗))

αI
+ , in

which P is given by Eq. 12, and insert these variables intoF (z∗) = 0. Thereby
we obtain the first steady-state relation from Eq. 2. Next, we use the rela-
tion rI = (P(z∗))

αI
+ to obtain the second relation in Eq. 2. This shows that our

definition of F establishes a bijective mapping between rE , rI, and the zero
crossings of F .

In summary, the steps outlined above for det J> 0 and those in Charac-
teristic Function for det J≤ 0 lead to the following form of F :

F (z) =

{
JEE(z)

αE
+ − JEI(P(z))

αI
+ − z + gE , det J≥ 0,

JIE(P(z))
αE
+ − JII(z)

αI
+ − z + gI, det J< 0.

[15]

Here, the function P is given by

P(z) =

{
det J · J−1

EI · (z)
αE
+ + J−1

EI JIIz + C+, det J≥ 0
−det J · J−1

IE · (z)
αI
+ + J−1

IE JEEz + C−, det J< 0

with the constants C+ and C− defined above.
Notably, we obtain a bijective mapping such that if rE , rI is a steady state

of Eq. 1, then F (z) = 0 whereby

z =

{
JEErE − JEIrI + gE , det J≥ 0
JIErE − JIIrI + gI, det J< 0.

And vice versa, if F (z) = 0, then the steady state of Eq. 1 is

rE =

{
(z)

αE
+ , det J≥ 0

(P(z))
αE
+ , det J< 0

, rI =

{
(P(z))

αI
+ , det J≥ 0

(z)
αI
+ , det J< 0.

We note that using different P functions for det J≥ 0 and det J< 0 as in Eq.
15 is necessary for calculating the number of zero crossings of F later (it is
critical to the Descartes rule of signs and other statements) (Multiplicity of
Steady States). When applying the same P and F for all values of det J one
would also obtain a bijective mapping but multiplicity statements would no
longer be readily available.

Stability of Steady States. In the previous paragraph, we presented the
method of finding the steady states using the characteristic function in Eq.
15. Next, we derive exact stability conditions for the steady states. Our goal
is to relate stability of steady states to the behavior of the characteristic
function in the vicinity of its zero crossings. To this end, we first move the
time constants to the right side of Eq. 1 and consider the resulting dynamical
system (ṙE , ṙI) = G(rE , rI). Its Jacobian DG(rE , rI) is given by

DG =

(
τ−1

E (JEEαE(zE)
αE−1
+ − 1) −τ−1

E JEIαE(zE)
αE−1
+

τ−1
I JIEαI(zI)

αI−1
+ −τ−1

I (1 + JIIαI(zI)
αI−1
+ )

)
,

where zE = JEErE − JEIrI + gE and zI = JIErE − JIIrI + gI. Remarkably, we find
that det DG(rE , rI) and F ′ are related and always have opposite signs:

det DG(rE , rI) =−τ−1
E τ

−1
I F

′(z). [16]

Here, z = JEErE − JEIrI + gE for det J≥ 0 and z = JIErE − JIIrI + gI for det J<
0. Since the product of the eigenvalues λ1 and λ2 of the Jacobian DG is
equal to det DG and their sum coincides with the trace of DG, we obtain
Eqs. 4 and 5.

For completeness, we note that a previous study (10) showed that if rE , rI

is a stable state for τI = 0 and det J> 0, then rE , rI is also stable for all τI > 0
that satisfy Eq. 5. Here, we significantly expanded this result and revealed
the full SSN stability repertoire.

Multiplicity of Steady States. In the previous two paragraphs, we demon-
strated how to determine the location of steady states and to character-
ize their stability using the characteristic function. Here, we build on these

Table 2. Synaptic and neuronal parameters in Figs. 2–4

Fig. 2 Fig. 3 Fig. 4

Parameters A B C D A B A B

JEE 1.1 1.5 1.1 2.25 1.5 1.5 1.5 1.5
JEI 0.9 1 1 44.4 1 1 1 1
JIE 2 0.5 0.5 1 0.5 0.5 10 10
JII 1 1 0.1 20 0.1 0.1 1 1
gE 0.4 0.1 0.2 0.2808 0 0 0.7 5
gI 0.3 0.1 0.01 0.015 0 0 0.01 0.01
τE 1 1 1 1 1 15 0.1 0.1

For all figures, we use αE =αI = 3 and τI = 1.
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findings and use the characteristic function to derive the multiplicity of pos-
sible steady states. To provide exact results, we limit our analysis to integer
power-law exponents αE =αI = n with n≥ 2. The numerical study in Fig. S1
indicates that integer exponents are a good starting point to understand
the expected location and multiplicity of the SSN steady states. In Multi-
plicity of Steady States, we detailed why the maximal number of coexistent
steady states with equal integer exponents is four and that at most two
can be stable simultaneously. This proves that bistability is supported by the
SSN model.

To determine the multiplicity of steady states, we need to find the num-
ber of F zero crossings. To this end, we separate the parameter space into
nine distinct classes as indicated in Table 1 and determine possible multi-
plicity configurations of zero crossings in each class. The goal of parame-
ter separation is to simplify the equation for the characteristic function Eq.
15 in each class and make it more accessible for mathematical analysis. We
distinguish three subsets of the parameter space according to the sign of
det J, because they lead to different functions in Eq. 15. Further, we sepa-
rate parameter space based on the sign of C±.

To understand why, consider the expressions (P(z))+ and (z)+ which enter
the definition of the characteristic function F . As long as z is negative, the
expression (z)+ is zero. If z is positive, then (z)+ = z. The critical point for
(z)+ is z = 0. Similarly, since P is a monotonically increasing function, there
is a unique critical point z0 for P; i.e., (P(z))+ = P(z) for z> z0 and zero
for z≤ z0. The parameter, which determines whether the critical point z0

is above or below the critical point 0, is the sign of C±. Specifically, we have
z0 < 0, z0 = 0, or z0 > 0, if C±> 0, C± = 0, or C±< 0, respectively. Thus,
different signs of C± lead to different separations of the z axis into subin-
tervals, where F coincides with an usual polynomial. Taken together, we
partition the parameter space into nine classes that correspond to different
signs of det J and C± as presented in Table 1. Following the steps outlined
in Multiplicity of Steady States, we determine possible stability and multi-
plicity configurations of steady states in each class. The parameter classes in

which two stable steady states can coexist are indicated in boldface type
in Table 1. The constants C+ and C− are modifications of the constants
ΩE = JIIgE − JEIgI and ΩI = JIEgE − JEEgI introduced in ref. 10.

Persistent Stable State. A persistent state is a stable positive steady state for
zero input. To guarantee its existence, it is necessary to show two features.
First, we show the existence of a positive zero-crossing z with F ′(z)< 0 for
zero input gE = gI = 0 because only such zero crossing can lead to a positive
stable steady state. Second, we verify that this steady state is indeed stable
(see Eq. 5). Using the steps outlined in Existence of Persistent States, we
show that a required positive zero crossing of the characteristic function
with the negative derivative exists in absence of inputs if and only if det J is
constrained as

0< det J< (JEE − J1−n
EI xn

0 )(x0− JII). [17]

Here, x0 is the unique solution of the equation

(n + 1)xn
0 − JIInxn−1

0 − Jn−1
EI JEE = 0 [18]

in the interval (JII, J
n−1

n
EI J

1
n
EE).

Based on this result, we derived an easy-to-verify necessary condition Eq.
6 for the existence of a stable persistent state. For n = 2, the explicit solution
of Eq. 18 can be directly inserted in the inequality Eq. 17; see Existence of
Persistent States for more details.
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