
151Cancer Informatics 2016:15

Background
Cancer is a genetically heterogeneous disease, both across 
cancer types and within. Nevertheless, most patients are 
prescribed treatments without regard to any specific bio-
logical signatures of their disease. Exceptions to this gener-
ally take the form of drug selection based on a single genetic 
mutation (examples include vemurafenib for BRAFv600 
mutations, erlotinib for EGFR mutations, and crizotinib for 
ALK mutations) or in limited research settings based on a 
signature derived from a small number of genes (anywhere 
from one to about 50).1,2 Such genomic-based partitioning of 
patients fails to predict with appropriate levels of confidence 
whether a potentially highly toxic drug will be effective or 
what side effects, and their intensities, may occur. This issue is 
compounded by the fact that advanced therapies are designed 
to target specific pathways, meaning treatments dependent 
on pathway regulation are being prescribed with incomplete 
knowledge of the state of the pathway itself.

A typical scenario for developing a predictive model for 
cancer treatment involves a small cohort of patients, usually less 
than 100, and gene expression data for each of them with upward 
of 20,000 gene expression levels measured. In this setting, one 
must be careful to avoid correlations that appear due to chance 
alone.3 One way to deal with this is to collapse gene-level data 

into more compact, functional pathway-level data. A biological 
pathway is a set of biochemical reactions that perform a specific 
nameable function. A classic example of a metabolic pathway is 
the production of ATP from glucose. Some researchers attempt 
to discover pathways, or more generally interaction networks, 
through gene expression and protein–protein interaction data, 
and use that information to classify patients.4,5 We take a dif-
ferent approach: utilizing pathways that have already been 
been discovered through decades of laboratory research and are 
systematically curated in several publicly accessible resources, 
including KEGG,6 BioCarta,7 Reactome,8 and WikiPath-
ways.9 Several research teams have developed techniques to 
use pathways to aid in the interpretation of gene expression 
data. Some of the methods output a score indicating how dys-
regulated each pathway is for each patient.10–16 Of these, Path-
ifier12 and Kim-DeLisi16 additionally use the pathway scores 
to classify patients. However, these algorithms are encumbered 
by computational challenges and limited scope and thus have 
not yet been successfully applied to actually improve treatment 
response prediction. For example, the algorithm closest to ours 
is Pathifier. The nonlinear dimensionality reduction scheme 
used in Pathifier can take up to a day to run, depending on the 
size of the pathways and the number of pathways. Our method 
runs in minutes. The utility of the purely linear approach (PCA) 
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is suggested in the appendix of Ref. 12; our work here verifies 
that computationally simple scoring algorithms are adequate. 
A method that runs in minutes as opposed to hours is very 
useful for data exploration.

We developed the Pathway-Informed Classification Sys-
tem (PICS) to extend the utility of pathway-based approaches 
to cancer classification with a method that is fast, robust, and 
scalable to large patient cohorts across all available cancer types. 
We validated the method on both pan-cancer cohorts, where we 
show separation of cancer types, and on individual cancer type 
cohorts, where we show that the patient clusters found split the 
patients into statistically distinct survival classes. This work serves 
as a stepping stone to a biologically informed statistical approach 
to predicting patient response to drugs and radiation therapy.

Methods
PICS consists of two steps: the first step assigns to each patient 
and each biological pathway a score, which is either a single 
scalar value or a small set of numbers, and the second step 
takes these pathway scores for the entire cohort of patients and 
uses them to cluster the patients.

The input to PICS is a matrix of messenger RNA 
(mRNA) expression values for a large number of genes for all 
the patients of a cohort. We require the matrix to be full and 
that all the patient samples, which may include patients from 
across disease types and noncancerous matched tissue samples 
as well, come from the same microarray technology so that 
the values are comparable. We will discuss the incorporation 
of other types of genomic data as well, but for this report, we 
use only mRNA expression-level data, which we obtain from 
publicly available resources.

We obtain pathway descriptions from the KEGG data-
base API, which is also publicly available. The KEGG path-
way database contains 301 pathways related to humans. The 
definition of a biological pathway, in particular the boundar-
ies of the pathways, is not well agreed on, and indeed some 
KEGG pathways are combinations of more primitive KEGG 
pathways. Some pathways have been attributed to a specific 
cancer (eg, KEGG HSA:05216, thyroid cancer pathway) when 
really those pathways contain gene interactions that are impli-
cated in cancer in general. The set of pathways used will have 
an effect on the results of the PICS algorithm, but as a first 
pass, we start by including all possible pathways from a given 
resource (KEGG in our case) without regard to the pathway’s 
speculated involvement in cancer. We also use KEGG modules, 
which are descriptions of more basic reactions and therefore 
generally involve fewer genes. The KEGG database contains 
187 modules for humans.

PICS step 1: scoring pathways. For our purposes, a path-
way or module will be represented by the set of genes in that 
pathway. We ignore the network topological structure of the 
pathway and instead view the pathway as a set of genes. Since 
our goal is an improved classification and predictive frame-
work, we believe this representation is an appropriate level 
of detail, where biology in terms of closely interacting gene 
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Figure 1. Hierarchical clustering across all pathways (scored by PCA 
method with two PCs per pathway) of five cancer cohorts combined into 
a single gene expression matrix. This figure serves as a proof of concept 
of pathway-based clustering by demonstrating the successful grouping of 
patients into their respective disease types via their gene expression levels. 
The hierarchical clustering results are shown in the upper tree dendrogram 
diagram, which has been suppressed for the pathway (row) sorting. The 
pathway list for this heatmap appears in Supplementary Information. We 
intentionally do not show a color key for the heatmaps when the particular 
values (magnitude, sign, etc.) of the matrix being plotted are not directly 
interpretable or valuable. In this case, since the values are from PCA, we 
do not include a color key. Note that the two ovarian sets intermingle and 
thus are not individually discernible, which validates that mRNA data from 
different studies can be analyzed together.
Abbreviations: K, kidney; OS, osteosarcoma.

Table 1. Information for the individual disease site classifications. Note that the melanoma set (*) does not have normal tissue samples and so is 
analyzed slightly differently, see text.

Cancer type Source Dataset Genes in 
expression matrix

Number of 
normal samples

Number of cancer 
samples

Pancreatic ductal adenocarcinoma PRECOG GSE21501 20936 30 102

Non-small cell lung carcinoma PRECOG GSE19188 42423 65 82

Adult germ cell carcinoma and seminoma PRECOG GSE3218 20936 6 74

Ovarian PRECOG GSE26712 20965 10 185

Glioblastoma PRECOG GSE13041 42391 4 80

Sub-optimally debulked ovarian PRECOG GSE26712 20965 10 95

Melanoma* TCGA NA 20512 0 470
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Figure 2. B-cell receptor signaling pathway gene expression levels for pan-cancer analysis. Levels are directly from the pan-cancer gene expression 
datasets, which have been log2 normalized.

Figure 3. Clustergram for lung case including normal tissues. Colors are automatically scaled for optimal visual distinction; thus, the color bar is omitted. 
For the cancer samples (group 1 and group 2), red indicates increased expression levels of genes in the pathways and blue indicates decreased 
expression levels. The first letter of each pathway is an abbreviation for the KEGG pathway grouping. “+” stands for increased expression of the pathway 
genes in the cancer samples and “–” stands for decreased expression.
Abbreviations: E, environmental information processing; O, other organismal systems; D, diseases other than cancer; M, metabolic; C, cellular 
processes; P, pathways in cancer; N, endocrine.

products is taken into consideration, but detailed interactions 
are ignored.12 It would not be hard to include the network 
structure of the pathways however, as has been done.10,11,13 The 
only requirement for our pathway scoring is to take the gene 
expression data for pathway genes and condense this informa-
tion into a single number or small set of numbers. For this, 
we introduce three methods: principal component analysis 

(PCA), normal tissue centroid (NTC), and gene expression 
deviation (GED). PCA can be used for any dataset, whereas 
NTC and GED methods require the dataset to have normal 
tissue samples.

Principal component analysis. The simplest way to reduce 
the dimensionality of a set of gene expression levels across 
a set of patients is using PCA.17 Using PCA also provides 
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a straightforward means to condense the expression data to 
either a scalar (ie, the first principal component, that is, the 
projection of each patient’s gene expression values onto the 
vector representing the first principal component) or a vec-
tor that consists of the first s principal component projections. 
The number of PCs used in a specific pathway scoring is a 
parameter. One can input either a fixed integer value (eg, 2) 
or a fraction f, which gets interpreted as round (f × ID) where 
ID is the intrinsic dimensionality estimate18 of the pathway 
data matrix. In this way, pathways with a larger intrinsic 
dimensionality will be represented by a larger number of 
principal components.

The PCA method makes no assumptions about the 
underlying datasets and is thus applicable to pan-cancer 
cohorts, datasets that include normal tissue samples, and 
single cancer-type datasets that contain just cancer samples. 
For sets that do have normal tissue samples, we provide two 
specialized methods, NTC and GED, which score pathways 
based on the differences of their gene expression values com-
pared to the normal samples. Pan-cancer cohorts that do con-
tain normal samples could in theory use the NTC or GED 
method, but for that one would have to combine all of the 
normal samples (further information below in the individual 
methods descriptions), or choose a set of them from only one 
of the cancers. Since neither of these makes sense from a bio-
logical perspective, we recommend and use the PCA method 
for pan-cancer analyses.

Normal tissue centroid. For a set of g genes (the genes of 
a particular pathway), each tissue sample can be viewed as 
a point in g-dimensional space. The NTC, or normal tissue 
centroid, is the location in this space computed by averaging 
the coordinates of each of the normal tissues. One can then 
score each sample by computing its distance in g-space from 
the NTC. This method is similar to the Pathifier method 
which, for each sample, computes the distance away from 
the normal samples along a curved line passing through the 
normal samples.12

Gene expression deviation. The resulting numerical data 
from the PCA and the NTC methods do not allow one to 
differentiate between gene over- and underexpression within 
a pathway, since this information gets lost in the algebra of 
those methods. We thus present a third scoring method called 
GED, or gene expression deviation. The GED score gives 
two numbers for each patient and each pathway: an aggregate 
overexpression score and an aggregate underexpression score. 
For each pathway, pathway genes are selected for inclusion in 
this score based on how the distribution of expression values 
for the cancer samples differs from that of the normal samples. 
Specifically, the Kolmogorov–Smirnov test for the difference 
of distributions is used. If a gene g passes the test, meaning 
its gene expression values are distributed significantly differ-
ently from the normal to the cancerous tissues, then for each 
patient p and that gene g, we form the differential-expression 
score ∆pg as:

	

∆pg
pg g

g

=
−e m

s
N

N

where epg is the expression level for patient p of gene g, mNg is 
the mean expression level of gene g for the normal samples, 
and sNg is the standard deviation of the expression levels across 
the normal samples. Then for each sample we form two scores: 
one which adds up the positive values of ∆pg across the path-
way genes and one which adds up the negative values.

Deciding which genes to include. Many genes are involved in 
multiple pathways. For example, MAPK, PI3K, and AKT genes 
are all involved in over 60 KEGG pathways. Therefore, the gene 
expression levels of these genes may not be closely tied to the activ-
ity of any one of its particular pathways. On the other hand, most 
pathways contain at least a few genes that are unique to that path-
way. For all scoring methods, we investigate which gene expres-
sions should go into a pathway score based on how many other 
pathways the gene belongs to. In particular, we define a parameter 
called Mcut, for membership cutoff: a gene is included in a path-
way score only if that gene belongs to Mcut or fewer pathways.

Deciding which pathways to include. Depending on the 
scoring technique, we can use various methods to decide 
whether or not to include a particular pathway in the matrix 
used for clustering.

For datasets containing normal tissue samples, we imple-
ment the PCA compression of the pathway as the first step in 
the selection process. Using the PCA representation, we com-
pute silhouette scores for each sample19 by using the groups, 
normal and cancerous. For each sample, the silhouette score is 
a measure of how well that sample fits into its defined group, 
given the data used for the clustering, which is the PCA com-
pression. The maximum possible silhouette score for a sample 
point is 1, indicating that the sample perfectly belongs to the 
rest of the samples in that group. The average of all the sil-
houette scores gives a measure of how well the normal and 
cancerous samples cluster. Only pathways that have an average 
silhouette score above a given threshold are included in the 
final pathway score matrix.

For datasets that do not have normal samples, we rely 
on the patient cohort survival data to judge a pathway’s use-
fulness. For these datasets, the PCA compressed pathway is 
clustered into two groups using either k-means or k-medoids 
clustering.20 Given these two clusters, a pathway is accepted if 
the Kaplan–Meier survival curves for these groups separate at 
a P-value that is lower than a user-defined threshold.

PICS step 2: patient classification based on pathway 
scores. The above pathway selection and scoring results in 
the conversion of a gene expression-patient sample matrix, m, 
into a pathway score matrix, p. Matrix m is of size [number of 
genes]*[number of patients]. If each pathway is represented, 
for example, by two principal components, and h is the num-
ber of pathway that pass the silhouette score, then the size of 
the matrix p will be [2h]*[number of patients]. Note that in 
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general 2h ,, [number of genes], which means we have regu-
larized or compressed the gene expression data.

We use three types of clustering to form distinct patient 
groups: k-means, k-medoids, and hierarchical. K-means and 
k-medoids are useful for fixing the number of clusters, for 
example, two, which makes for easier interpretability of sepa-
ration of Kaplan–Meier curves. The k-medoids method, where 
the cluster centers are chosen as the “median” sample point 
of the cluster rather than the weighted average, that is, mean 
location, is more stable against outliers in the data. Hierarchi-
cal clustering is a more natural grouping of patients that does 
not involve prespecifying the number of groups. For hierar-
chical clustering, we use UPGMA (Unweighted Pair Group 
Method with Arithmetic mean) implemented in the Matlab 
(Version R2015b, Natick MA) function clustergram.

Data sources. The pan-cancer set contains six data-
sets consisting of 568 patients for five cancer types (acute 
myeloid leukemia [AML], kidney, adult germ cell [AGC], 
osteosarcoma, and ovarian) obtained from the PRECOG 

database (Prediction of Clinical Outcomes from Genomic 
Profiles).21 Two sets were used from different ovarian studies 
to verify that “like” cancer types from different studies cluster 
together using our method. All sets were profiled using 
the same microarray, the Affymetrix U133A, to minimize 
cross-set variability. The adult germ cell dataset included 
six normal tissue samples. None of the other sets included 
normal samples.

We also downloaded and normalized six datasets of can-
cers with normal tissue from the NCBI database via PRECOG: 
localized pancreatic duct adenocarcinoma (GSE21501),22 non-
small cell lung carcinoma (GSE19188),23 adult germ cell car-
cinoma and seminoma (GSE3218),24 ovarian (GSE26712),25 
glioblastoma (GSE13041),26 and suboptimally debulked ovar-
ian (GSE-26712). The adult germ cell, ovarian, glioblastoma 
(GBM), and suboptimally debulked ovarian datasets were pro-
led with the Affymetrix Human Genome U133A array. The 
pancreas set was profiled using the Agilent-014850  Whole 
Genome microarray. The lung set was profiled with the 
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Affymetrix U133Plus array. Datasets varied in the number of 
normal tissue samples, number of cancerous tissue samples, 
and number of genes reported (see Table 1). We also included 
one dataset, which did not have normal samples present – a 
melanoma cohort of 470 patient RNA-seq samples. This was a 
TCGA dataset obtained via the Broad Institute’s GDAC fire-
hose (gdac.broadinstitute.org, Skin Cutaneous Melanoma).

Analysis overview. For the pan-cancer analysis, we used 
all 301 pathways from KEGG and PCA scoring with 2 PCs 
per pathway. For the six cohorts with normal samples pres-
ent, we looped through various scoring methods (PCA, NTC, 
GED), clustering types (k-means, k-medoids), pathway sil-
houette cutoffs, gene-pathway membership cutoff Mcut, and 
the number of principal components used in order to find the 
parameter set that best grouped the patients. After a coarse 
parameter search, we fine-tuned the parameters within that 
range to approach the “optimal” solution, which was deter-
mined by Kaplan–Meier curve separation via two-group clus-
tering. The result was a reduced, cancer-specific pathway score 
matrix, which provides functional biological information and 
improved survival clustering.

We analyzed a melanoma dataset from TCGA consisting 
of 470 samples across disease stages. Since this patient cohort 
was large, and since the pathway selection criteria, due to the 
lack of normal samples, were based on the ability of the path-
way to separate the KM curves, we split this dataset into a 
training and test set in order to gain more confidence in the 
robustness of the resulting classification. Similar to the classi-
fication of the individual cancer type datasets that had normal 
tissues, we looped through a wide range of parameter settings 
to find the best set of parameters to cluster the melanoma 
dataset. We additionally repeated the run for each parameter 
set 40 times, each time randomly splitting the cohort into a 

training set and a test set, and we finally chose the parameter 
set that consistently, across most of the 40 runs, effectively 
(regarding KM separation) clustered patients in both sets. We 
searched over the respective sizes of the training and test sets 
and found that a 50–50 split was optimal (this splitting was 
done for each of the runs by flipping a weighted coin for each 
patient, so the training and test group sizes are not always 
the same across the runs). Since there is a trade-off between 
how well you can separate the training set and how well you 
generalize to the testing set, we chose a point on the Pareto 
trade-off curve between these two objectives that balanced the 
two goals on average.

The optimal parameter set found was NumPCs = 2 and 
the cutoff value for the P-value of the KM curve separation for 
each pathway was 0.05. For displaying the results, we chose 
the median result (regarding the P-value for the Kaplan–Meier 
separation of the training set) over the 40 replicates.

Results
Pan-cancer clustering. Figure 1 demonstrates the suc-

cessful hierarchical clustering by disease type. Pathways gen-
erally sort by type, which therefore allows us to add broad 
labels to the pathway groupings. See the Supplementary 
Information for the names of the pathways, from the top row 
downward. For example, all but one metabolic pathway is con-
tained within the first grouping. This initial check validates 
that PCA can sort cancer types using pathway information via 
gene expression data. The two ovarian sets clustered together 
(mixed), and the normal tissues for the AGC normal samples 
clustered alongside the cancerous AGC samples (they are the 
six leftmost columns in that block). The most similar two can-
cer types from this viewpoint are kidney and AGC. AML and 
ovarian are similar with regard to metabolic and cell processes 
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pathways but differ in their immune and endocrine signature. 
Since PCA decomposition was used to score these pathways, 
the absolute values of the pathway scores are not biologically 
meaningful (principal components are arbitrarily oriented; 
the magnitudes of the values are relevant but not the signs). 
In order to assess the differences across cancers regarding a 
particular pathway, we can plot the gene expression levels for 
the genes in that pathway across the five cancer types. As an 
example, gene expression levels for the B-cell receptor signal-
ing pathway are shown in Figure 2. This confirms the data in 
the pan-cancer clustergram by showing that for this immune 
pathway, AML and kidney are similar, osteosarcoma and 
ovarian are similar, and AGC falls in between. Additionally, 
Figure 2 reveals that AML and kidney have the highest gene 
expression levels for this pathway overall and osteosarcoma 
and ovarian have the lowest.

Individual cancer site clustering with normal tissue 
present. Table 2 summarizes the runs and displays the best 
parameter sets/scoring types for each case. All six patient 
cohorts reached statistically significant solutions with P val-
ues  ,0.05. Pancreas and GBM were the most difficult to 
separate according to their P values of 0.03. The subopti-
mally debulked ovarian set had the best separation, per its 
low P value (0.0008). This is an improvement over an earlier 
gene expression–oriented study of the same dataset, which 
had a P  value of 0.02 (the other studies did not produce 
patient groupings with Kaplan–Meier separation, so no 
comparisons can be made).25 There is a general trend toward 
low P value (good separability) and low number of pathways 
and modules used in the classification; however, the pan-
creas dataset defies the trend being both relatively hard to 
separate and using very few pathways for optimal separation 
(discussed below).

For the lung case, hierarchical clustering of the final path-
way matrix yields three distinct groups: the normal samples, 

and Groups 1 and 2 (Fig.  3). This figure, and similar ones 
in the Supplementary Information, demonstrates that there 
is greater heterogeneity across tumor samples than across 
the noncancerous samples of the same tissue origin. The 
same Groups 1 and 2 were also uncovered via k-medoids clus-
tering into two sets of just the cancer samples (Fig. 4). The clus-
tergram colors (Fig. 3) are rescaled automatically for improved 
visualization of the groups, whereas in Figure  4, there is 
no scaling – the values are directly from the GED pathway 
scoring. Signaling pathways are the predominant type of path-
ways used in the lung cancer classification. The general trend, 
best observed in Figure  4, is that most pathways have both 
upregulation of the gene expression in the cancer groups (the 
bottom right red section) and downregulation of genes in those 
same pathways (the upper right blue section). The heatmap in 
Figure 4 shows a prominent center white strip. The color values 
in this heatmap correspond to the actual GED values of the 
pathway scoring (they are not rescaled) and thus we see that for 
these center strip pathways, the upregulation color values are 
close to zero, meaning those pathways, for the cancer samples, 
are almost exclusively downregulated. These downregulated 
pathways for the cancer samples are three endocrine system 
pathways, two organismal pathways, and two environmental 
information-processing pathways. We also see from both color 
maps that Group 2, which has less favorable survival statistics, 
is more distant from the normal gene levels than is Group 1.

Figure 5 displays a hybrid heatmap for the pancreas data-
set. PICS reduced the 301 pathways and 187  modules from 
KEGG to a single metabolic pathway (arginine biosynthesis), 
two cancer pathways (thyroid and endometrial), and two mod-
ules (polyamine biosynthesis and urea cycle-1). The pathway 
signature produced by PICS clustered the patient cohort into 
three distinct groupings: normal tissue (not shown in heatmap), 
Group 1, and Group 2. Note that cancer pathways curated in 
KEGG, such as the thyroid cancer and the endometrial cancer, 

Table 2. PICS parameter settings and results for individual disease site classifications. Silhouette cutoff for pathways based on their 
membership in other pathways. P-values are for the logrank statistic for Kaplan–Meier curve separation, and for the melanoma dataset, the two 
values are for the training and the test subsets.

Cancer type Pathway 
scoring 
method

Clustering 
type

Silhouette 
cutoff

Mcut Pathways & 
modules used

Group 1 
size

Group 2 
size

P-Value* 
(,0.05)

Pancreatic ductal 
adenocarcinoma

NTC K-means 0.4 2.5 5 64 38 0.03

Non-small cell lung 
carcinoma

GED K-medoids 0.67 50 44 35 47 0.02

Adult germ cell carcinoma 
and seminoma

GED K-means 0.375 15 224 15 59 0.02

Ovarian GED K-medoids 0.7 40 43 125 60 0.01

Giloblastoma GED K-medoids 0.475 25 363 48 32 0.03

Sub-optimally debulked 
ovarian

NTC K-medoids 0.775 15 14 61 34 ,0.01

Melanoma PCA K-medoids NA 10 74 285 185 0.03, 0.04
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are in fact relatively general cancer pathways, containing the 
signaling sub-pathways commonly implicated in cancer, 
including MAPK, RAS, PI3K-AKT, Wnt, p53, and ErbB. The 
heatmap shows that Group 2, which has worse survivability, 
is more dysregulated, as judged by NTC score, than Group 1. 
Since it is not possible to directly assess increased or decreased 
gene expression levels for pathways in the heatmap figure with 
the NTC method, Figure 6 displays the gene expression levels 
across the groups for one of the pathways used in the pan-
creas clustering, the thyroid cancer pathway. Here, we observe 
that most genes in this pathway are on average similar across 
the three groups, with a tendency toward more variability in 

Group 2, but some genes, such as MAPK1, PAX8, and CCDC6, 
are upregulated.

See the Supplementary Information for the heatmaps and 
Kaplan–Meier curves for the other individual disease sites.

Individual cancer site clustering without normal 
samples. Figure  7  shows the KM curve separation for this 
run for the training and the test sets.

Figure  8 displays the resulting pathway matrix for the 
melanoma run as a heatmap and contains the entire dataset 
(training and test). The most prominent pathway groupings 
are the thick red-blue band toward the top and the thinner 
blue-red band at the bottom. Investigation into the pathways 
involved in these bands (which are not shown due to the large 
number of pathways used, but see the Supplementary Infor-
mation for the list of pathways in the same order as the heat-
map rows) reveals that these are immune system pathways, 
which align with the general opinion of the relevance of the 
immune system in melanoma.27 Group 1, which has generally 
higher levels of active immune system genes – as demonstrated 
in Figure 9, which shows the gene expression comparison for 
the T-cell receptor signaling pathway – also shows better 
survival characteristics.

Discussion and Conclusions
The heterogeneity across cancers, even within the same type 
of cancer, has been discussed much in the literature over the 
past decade.28 However, for the most part, it has not been 
known how to use this information to better inform treat-
ment decisions for patients.29 In this report, we have intro-
duced a method called PICS that can classify cancer patients 
based on their gene expression levels by compressing this 
information from the gene level to the pathway level. We 
view this data regularization/dimension reduction technique 
and the accompanying classification system as the first step in 
building a computational tool to aid with patient treatment 
planning decision making. PICS is advantageous due to its 
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Figure 7. Kaplan–Meier curves for a representative run from the optimal parameter set found for the melanoma dataset. Both the training set and the test 
set show statistically significant separation between the two clustered groups.
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Figure 8. Hierarchical clustering for the pathways and k-medoids 
clustering for the combined training and testing samples. Pathway labels 
have been suppressed since 148 pathways and modules were used. The 
prominent red–blue band toward the top and blue–red band at the bottom 
are dominated by immune system–related pathways, and investigation 
into the gene expression levels from those pathways reveals heightened 
immune system expression for group 1, which showed higher overall 
median survival. The color scale values are the values from the PCA and 
are thus not directly interpretable; hence, no color key is shown.
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speed (a PICS run takes minutes compared to the related 
method Pathifier,12 which takes hours), its interpretability, 
and its flexibility to handle a variety of types of datasets, as 
we have demonstrated. Although our main focus is broader 
and more statistical in nature, we welcome deeper biologi-
cal analysis on the multitude of discovered pathway-cancer 
corollaries.

The ultimate vision is a system that takes into account a 
plethora of patient-level information (tumor site, stage, size, 
tumor and germline genomics data, patient age, etc.) and pre-
dicts what drugs and drug levels (including radiation) will likely 
be most beneficial and least toxic to the patient. With this goal 
in mind, we began with a method that classifies patients based 
only on their gene expression data, as measured by microarrays 
(RNAseq data would also be immediately possible to use). We 
have shown across a wide range of cancer types that classifica-
tion based on biological pathway distillation of gene expression 
data allows for grouping patients, via clustering algorithms, 
into distinct survivability classes. The next steps are to obtain 
datasets containing treatment information as well as genomic 
and clinical variables, by mining currently existing sources, by 
performing clinical trials, or by gathering institutional data, in 
order to build a machine learning system for outcome predic-
tion. We hypothesize that compressing the genetic information 
into pathway level scores will be useful in this broader context.

While we have explored several variants of the PICS 
algorithm for classifying the various cancer types studied, 
there is still room for refinement in the technique. For example, 
we relied solely on KEGG curated pathways. It remains to be 
investigated if other curated pathway databases might be better 
suited to the task. One shortcoming in KEGG is the redun-
dancy across pathways since many pathways are built up of 
other smaller pathways. The MSigDB30 database, which con-
solidates many pathway resources into a single repository, will 
likely be a useful resource. It also remains to be seen if using 
the network connectivity of the pathways rather than just the 
list of genes the pathways contain will be a useful adjustment to 
the algorithm. We hope that by building a method that allows 
for pan-cancer analysis, we can extend learning across cancer 
types and make cancer research less of an isolated, site-specific 
endeavor. If common pathway signatures across various cancer 
types end up being predictive of the success of drugs, the goals 
of biological knowledge building and improved patient care 
will both have been achieved.

There are pros and cons associated with each of the 
pathway-scoring methods introduced. The PCA method 
is the simplest method and is applicable to datasets that 
do not have normal tissues, but it was outperformed in 
the datasets that did contain normal tissues. This is likely 
because both the NTC and GED pathway-scoring meth-
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Figure 9. A sample gene expression value plot for the melanoma training set of the T-cell receptor signaling pathway showing that in general Group 1, the 
higher survivability class, has elevated expression levels for the genes involved in that pathway.
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ods are based on how different they are from the normal 
pathways, and this information, not surprisingly, is useful 
for classifying cancer patients. Our results echo the trend 
that has been observed earlier that the more dysregulation 
there is across pathways, the more malignant is the can-
cer.12,31 It may prove useful to combine different scoring 
methods in the same analysis; for example, some pathways 
might better be scored by GED and some better by NTC, 
but we have not investigated that as of yet. We also used the 
global parameter Mcut to vary how many genes are used to 
score each of the pathways, but the scoring of each pathway 
should likely be done in a more pathway-dependent man-
ner. Nevertheless, the results show good classification even 
without detailed modeling of pathway activity. We have 
intentionally tried to find the right balance between statis-
tical modeling and biology in this effort in order not to be 
pulled too far in either direction.

The most important genomic addition to PICS will be the 
ability to include more molecular information, including post-
transcriptional and post-translational data, into the pathway 
scoring. We chose pathways as our fundamental unit for clas-
sification based on the idea that they represent the right level 
of biological detail for the statistical prediction problem, and 
pathway activity can be informed by a large variety of genomic 
assays. Specifically, we expect gene mutations, chromosomal 
rearrangements and fusions, copy number variations, methy-
lation, and proteomics to yield useful information regarding 
pathway activity. Our current pathway scoring and clustering 
approach will also benefit from insights into biological redun-
dancies and more complex modeling of cellular and organismal 
functioning. For example, the use of logical statements such as 
AND, OR, and IF in modeling cellular systems will likely aid 
in classification, but this makes the search space for optimal 
classifiers combinatorial and therefore much harder. Inform-
ing these additions with known experimental biology will be 
necessary.

In this report, although we focused on classifying cancers, 
we also plan to apply PICS to classify normal tissues and the 
relevant organ systems of patients in order to build a system 
to predict toxicities and side effects as well, which is equally 
important for optimal cancer management. In the last five 
years, 70 cancer drugs were approved by the FDA. At this rate 
of oncology drug approval, sophisticated clinical decision tools 
are increasingly needed to make the best therapeutic choices.
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ways for five cancer cohorts. 
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Kaplan-Meier curve for all results not explicitly shown in the 
main text. 
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