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Abstract

Background: Our study focuses on discovering gene regulatory networks from time series gene expression data
using the Granger causality (GC) model. However, the number of available time points (T ) usually is much smaller than
the number of target genes (n) in biological datasets. The widely applied pairwise GC model (PGC) and other
regularization strategies can lead to a significant number of false identifications when n >> T .

Results: In this study, we proposed a new method, viz., CGC-2SPR (CGC using two-step prior Ridge regularization) to
resolve the problem by incorporating prior biological knowledge about a target gene data set. In our simulation
experiments, the propose new methodology CGC-2SPR showed significant performance improvement in terms of
accuracy over other widely used GC modeling (PGC, Ridge and Lasso) and MI-based (MRNET and ARACNE) methods.
In addition, we applied CGC-2SPR to a real biological dataset, i.e., the yeast metabolic cycle, and discovered more true
positive edges with CGC-2SPR than with the other existing methods.

Conclusions: In our research, we noticed a “1 + 1 > 2” effect when we combined prior knowledge and gene
expression data to discover regulatory networks. Based on causality networks, we made a functional prediction that
the Abm1 gene (its functions previously were unknown) might be related to the yeast’s responses to different levels of
glucose. Our research improves causality modeling by combining heterogeneous knowledge, which is well aligned
with the future direction in system biology. Furthermore, we proposed a method of Monte Carlo significance
estimation (MCSE) to calculate the edge significances which provide statistical meanings to the discovered causality
networks. All of our data and source codes will be available under the link https://bitbucket.org/dtyu/granger-
causality/wiki/Home.
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Background
Technology advances in molecular biology, especially
those in Next Generation Sequencing (NGS) have inno-
vated the principles of biology research [1]. These novel
approaches have enabled biologists to perform high
throughput parallel experiments efficiently in terms of
time and cost. However, to analyze such data became a
new challenge in the field of bioinformatics [2]. In all data
mining tasks, gene regulatory network (GRN) inference
and prediction has become one of the most exciting topics
in the current era [3]. After sequencing and identifying the
genes of an organism, researchers then became interested
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in how the genes regulate each other. The results of the
recently finished ENCODE project further highlighted the
importance of GRNs by revealing that most non-coding
DNAs are involved in regulating gene expressions [4].
In short, research on GRN inference will continue to be
important in the coming decade.
Although there are numerous studies onGRN inference,

only a few of them have focused on the newly emerging
type of data: i.e. time series gene expression data.With the
help of NGS technology, researchers, for example [1], can
easily acquire this type of data from a biological process,
e.g., the cell cycle. Since nearly every individual biologi-
cal phenomenon is a dynamic process involving in a time
domain, biologists have become increasingly interested
in collecting and analyzing time series gene expression
data. Indeed, the well-known Gene Expression Omnibus
(GEO) database has collected more and more time series
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data in recent years [5]. Thereby, developing reliable GRN
inference strategies and algorithms for time series gene
expression data has become an emergent task.
One popular approaches for predicting gene regula-

tory networks from time series data is Dynamic Bayesian
Network (DBN) modeling. Early DBN methods rested
on Boolean Network (BN) theories. Existing BN infer-
ence approaches include the REVEAL algorithm [6], the
MDL algorithm [7] and other methods incorporating
prior knowledge [8, 9]. Later studies on DBNmodels have
also employed Gaussian distribution and BIC to model
the continuous expression values, which yielded better
results, though with a higher computation cost [10–13].
The DBNmethod performs well in general, but it can only
handle a limited number of genes (network size) due to the
combinatorial complexity in the model’s searching space
[13, 14].
Furthermore, mutual information (MI) methods based

on information theory were applied in a few studies
[15, 16]. The networks resulting from these mutual infor-
mation methods are usually non-directional. However,
several recent studies have also utilized time delay MI
methods to successfully generate small-scale directional
networks [17–19].
Due to the increased expression data dimension size

in recent years, another family of methods came into
focus: Vector AutoRegressive (VAR) methods. Granger
causality inference is one of the most popular VAR meth-
ods, originally proposed in economic studies [20, 21],
and now introduced to gene regulatory network infer-
ence. Recently, researchers have compared the Granger
causality approachwith DBNmethods using variousmod-
els [13]. They discovered that Granger causality inference
has a similar performance to that of DBN methods, but
is much faster than DBN. With a growing number of
genes to analyze, Granger causality inference will be the
more preferable method to use due to its computational
efficiency.
Nevertheless, there are still problems when traditional

Granger causality inference is applied to biological gene
expression data that have a common property: Data often
contain a large number of genes (n) but an extremely
small number of time points (T). On the one hand, pair-
wise Granger causality (PGC) model [22, 23] has been
tried in considering two genes at a time. The limita-
tion of data along the time dimension makes the PGC
model susceptible to random noises. In addition, previous
studies showed that PGC model could not differentiate
direct causalities from indirect causalities effectively [24].
On the other hand, conditional Granger causality (CGC)
model was also utilized and improved in different studies
[22–25]. These improvements included the incorporation
of different regularization terms to control the prior dis-
tribution of the regression parameters. However, these

regularization methods based on non-informative priors
did not add new information to the gene expression data,
and thereby resulted only in a limited improvement.
It is noteworthy that there are still many types of tradi-

tional biological experiment data available in addition to
those from high throughput experiments. To improve the
performance, it is natural to incorporate such prior knowl-
edge into GCmodeling. Studies in Boolean Network (BN)
inference have utilized prior knowledge to constrain the
connectivity of nodes, so reducing the searching space
[9]. Further, prior knowledge could also be used in DBN
modeling to define the prior likelihood of a model [26].
However, these earlier methods cannot efficiently handle
unbalanced time series data with lots of genes and few
time points. To the best of our knowledge, no previous
researches have tried to use prior knowledge to guide GC
analysis.
In this paper, we offer the following contributions to

handle the problem of unbalanced datasets (n >> T):
First, we investigated the effects from unbalanced datasets
based on simulations, and showed that none of the pre-
vious works performs well under n >>T . At the n >>T
condition, the performance of pairwise models, includ-
ing the PGC and MI methods deteriorates significantly.
Moreover, simply incorporating regularization terms will
not lead to a noticeable improvement. Our research is
the first attempt to investigate the n >> T condition
thoroughly in the field. Second, to overcome this prob-
lem, we propose to combine other evidence or prior
knowledge into the conditional Granger causality analy-
sis, termed CGC-2SPR, i.e. CGC using a two-step prior
Ridge regularization. When prior knowledge is naively
incorporated into regularization, positive and negative
regulations cannot be distinguished properly. Our two-
step procedure guarantees the correctness of integrating
the prior knowledge in both positive and negative regula-
tory relationships. Third, we cannot simply use F-tests or
other statistical tests due to n >> T . Then, we propose a
Monte Carlo method, namely MCSE, to estimate signifi-
cance levels, and obtain reasonable results when n >> T .
Finally, we applied CGC-2SPR to a real biological dataset
(yeast metabolic cycle gene expression data) and dis-
covered a significantly larger number of known gene
regulations than those revealed by the baseline methods,
including PGC, MI modeling, and simple regularization
methods.

Methods
In this section, we propose a new methodology of applying
Granger causality modeling to time series gene expression
data. Firstly, we introduce two general GC modeling stra-
tegies as the foundation of ourmethods. Then, we illustrate the
problems of applying general strategies and regularization
methods to real gene expression data where n >> T .
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Lastly, we propose our newmethodCGC-2SPR and imple-
ment an efficient algorithm to apply the new method.

Granger causality modeling
Granger causality proposed in the 1960s [20, 21], has
proven to be an operational notion of causality (w.r.t. true
causality) in time series data analysis. If there is a causal
relationship between two random variables, the past val-
ues of the “cause” variable will contribute to predicting the
future values of the “effect” variable.

Bivariate Granger causalitymodeling
To describe Granger causality modeling mathematically,
we assume there are two time series data y1,t and y2,t with
the same time length T. For simplicity, we simultaneously
consider two Granger causalities y1 ⇒ y2 and y2 ⇒ y1.
The maximum lag allowed in the past observation val-
ues is defined as a model order (p). The regressions for
two random variables can be written as the following two
equations (t = p + 1, p + 2, ...,T):

y1,t =
p∑

i=1
(a1,1,iy1,t−i + a2,1,iy2,t−i) + e1,t

y2,t =
p∑

i=1
(a1,2,iy1,t−i + a2,2,iy2,t−i) + e2,t

(1)

where e1,t and e2,t represent the residuals of the two ran-
dom variables, and a represents the model’s regression
coefficients that can be re-written together in a 2 × 2
matrix form:

Ai =
[
a1,1,i a2,1,i
a1,2,i a2,2,i

]
, i = 1, 2, ..., p.

Together, m = T − p pairs of equations exist in the
model (1), and can be represented together as a single
matrix form:

Y = XB + E (2)

where

Y
(m×2)

=

⎡
⎢⎢⎢⎣
y1,p+1 y2,p+1
y1,p+2 y2,p+2

...
...

y1,T y2,T

⎤
⎥⎥⎥⎦ ,

X
(m×2p)

=

⎡
⎢⎢⎢⎣

y1,p y2,p · · · y1,1 y2,1
y1,p+1 y2,p+1 · · · y1,2 y2,2

...
...

. . .
...

...
y1,T−1 y2,T−1 · · · y1,T−p y2,T−p

⎤
⎥⎥⎥⎦ ,

B
(2p×2)

=

⎡
⎢⎢⎢⎣
A′
1

A′
2
...
A′
p

⎤
⎥⎥⎥⎦ , E

(m×2)
=

⎡
⎢⎢⎢⎣
e1,p+1 e2,p+1
e1,p+2 e2,p+2

...
...

e1,T e2,T

⎤
⎥⎥⎥⎦ .

Also there are two regressions for time series that are
based only on its own past value:

y1,t =
p∑

i=1
a1,1,iy1,t−i + e1,t

y2,t =
p∑

i=1
a2,2,iy2,t−i + e2,t

(3)

To compare the models (Eq. 1) and (Eq. 3), we can
calculate the residual square sum (RSS) of these regres-
sions. Assuming the residual e1,t and e2,t have a zero
mean Gaussian distribution, the maximum likelihood
estimation (MLE) of the regression coefficients could be
obtained by the ordinary least square (OLS) calculation.
In this case, the regression solution B (Eq. 2) is equivalent
to optimizing the following function:

B̂ = argmin
B

1
2
||Y − XB||2F (4)

or in matrix notations,

B̂ = argmin
B

1
2
tr((Y − XB)T (Y − XB)). (5)

When XTX is invertible, the estimation of B could be
written as follows:

B̂ = (XTX)−1XTY . (6)

From the estimation of B, the RSS1 of the full model
(Eq. 1) can be determined. Through a similar procedure,
the RSS2 of the reduced model (Eq. 3) can be calculated
as well. Based the RSS values from the models (Eq. 1)
and (Eq. 3), the F-score can be calculated through the
following equation:

F = (RSS2 − RSS1)/p
RSS1/(m − 2p)

(7)

If the time series data come from two independent vari-
ables, the F-score will follow the F(p,m − 2p) distribu-
tion. Thus statistical tests could be applied to determine
whether or not the former model is significantly better
than the latter one.
In real biological research, when bivariate Granger

causality model is used to deal with a target gene set
with size n, all the possible causality pairs (n(n − 1)
directed pairs) are calculated independently. Thus, bivari-
ate Granger causality model is also known as a pairwise
Granger causality (PGC) model. Previous studies showed
that PGC model suffers from a large number of false dis-
coveries [24], due to the existence of indirect causalities
(Fig. 1).

Multivariate Granger causalitymodeling
Tomitigate the false discovery problemwith the PGCmodel,
we can extend a bivariate Granger causality modeling to a
multivariate one in which three or more random variables
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Fig. 1 The application of PGC modeling will lead to high false
discovery rate due to the existence of indirect causalities

of time series with T time points are considered (n ≥ 3).
Here, we use a single n × 1 vector yt to represent the
observed values of all variables at time point t. In this case,
the Granger causalitymodel could be expressed as follows:

yt =
p∑

i=1
Aiyt−i + et , t = p + 1, ...,T . (8)

By stacking the equations together, we could obtain the
same matrix as (Eq. 2):

Y = XB + E (9)

where

Y
(m×n)

=

⎡
⎢⎢⎢⎣

y′
p+1
y′
p+2
...
y′
T

⎤
⎥⎥⎥⎦ , X

(m×np)
=

⎡
⎢⎢⎢⎢⎣

y′
p y′

p−1 · · · y′
1

y′
p+1 y′

p · · · y′
2

...
...

. . .
...

y′
T−1 y′

T−2 · · · y′
T−p

⎤
⎥⎥⎥⎥⎦ ,

B
(np×n)

=

⎡
⎢⎢⎢⎣
A′
1

A′
2
...
A′
p

⎤
⎥⎥⎥⎦ , E

(m×n)
=

⎡
⎢⎢⎢⎣

e′p+1
e′p+2
...
e′T

⎤
⎥⎥⎥⎦ .

We could estimate the coefficient matrix B by OLS, the
same as the bivariate GC model:

B̂ = (XTX)−1XTY . (10)

when XTX is invertible, in which casem ≥ np.
Based on the estimation results, the Granger causality

relationship between two variable i and j can be evalu-
ated. With B̂, we can calculate the RSSi for i. We also
could repeat the above process excluding variable j (totally
(n − 1) variables) and get another RSSij value. By con-
structing the F score from the two prediction errors, we
also can statistically analyze the Granger causality rela-
tionship between variable i and j based on [24]. It is note-
worthy that in the multivariate GC model, the causality

relationship between the two variables is analyzed in the
condition of the other (n−2) variables. Therefore, it is also
referred as conditional Granger causality (CGC) model.
The key prerequisite to apply multivariate Granger

causality model to a time series dataset is m ≥ np. Con-
sidering m = T − p, the essential condition for applying
multivariate Granger causality model is

T ≥ (n + 1)p. (11)

The problems of existing strategies
Both Granger causality modeling methods have prob-
lems when they are applied to real biological datasets.
Figures 1 and 2 show the problems of these two strategies.
On one hand, earlier studies [24] revealed that the PGC
model tends to generate more false discoveries than CGC
model due to the existence of indirect causalities and ran-
dom coincidences. The problem will deteriorate when the

Fig. 2 For real biological dataset [51], the number of genes (n) is far
more than the number of time points (T ), limiting the usage of CGC
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number of genes increases, and the true causality network
becomes more complex. On the other hand, CGC model
has its own limitations in that it requires enough data on
the time dimension to satisfy the condition (Eq. 11), viz.
that the number of time points exceeds the size of the
target gene set. However, in real biological datasets, the
number of random variables is much bigger than the num-
ber of time points n >> T . For instance, in the human
HeLa cell cycle dataset n = 1099 and T = 47 [27] and in
the yeast metabolic cycle dataset n = 2935 and T = 36
[28]. Therefore, it is a challenge to apply a solid traditional
GC modeling approach to these real biological datasets.
Next, we describe our new method CGC-2SPR to address
the challenge.

CGC-2SPR: Prior knowledge driven Granger causality
modeling
To resolve the problems of applying the Granger causality
model to real data with a limited number of time points,
we proposed a new framework for the biological field to
apply Granger causality analysis: Prior knowledge driven
Granger causality modeling. In order to reduce the false
discovery rate of PGC model, we consider all the genes
together in the new framework as CGCmodel does. How-
ever, the standard CGC model cannot be applied here
due to the aforementioned problem, and we must revise
the CGC model to make it fit real biological data where
n >> T .
As described in the previous section, CGC model could

be viewed as an optimization problem (the same as Eq. 5):

B̂ = argmin
B

1
2
||Y − XB||2F

where the matrix Y (m × n), X(m × np) and B(np × n)

follow the same notation as in Eq. 9.
When T < (n + 1)p, Y = XB is an under-determined

problem and has an infinite number of solutions. How-
ever, with Ridge or Lasso regularization terms [29, 30]
on the optimization function, the equation will have cer-
tain solutions with the desired properties. For instance,
Ridge regularization gives preference to smooth solutions
while Lasso regularization prefers sparse solutions. Using
regularizations can mitigate the problem of overfitting.
Considering all the genes together with the Ridge or

Lasso regularization, we can formulate two additional
optimization problems:

Ridge regularization :

B̂ = argmin
B

1
2

∗ ||Y − XB||2F + 1
2
λ1 ∗ ||B||2F

Lasso regularization :

B̂ = argmin
B

1
2

∗ ||Y − XB||2F + λ1||B||1.

(12)

where ||B||F is the “entrywise” L2-norm of matrix ||B||
(Frobenius norm), representing the square root of the ele-
ment square summation and ||B||1 is the “entrywise” L1-
norm of matrix B, representing the sum of the element’s
absolute values.
Although regularizationsmay reduce the overfitting and

generate sparse solutions, the information in the results
comes only from the gene expression data. Due to the
lack of data in the time dimension, the results are not sta-
ble in reality. Previous studies [31] illustrated that in the
under-determined condition (e.g., T < (n + 1)p), the lin-
ear regression solution (Lasso) is not unique, thus making
it difficult to interpret the results.
To ensure that the causality network prediction is

more stable and accurate, we propose to add rich bio-
logical prior knowledge to guide the solution using
regularizations.
Prior knowledge in the public databases can be summa-

rized to pairwise gene-gene relationships. In this paper,
we formulate the prior knowledge about an organism as a
weighted graph among the target gene set G = (V ,E). A
node set, V, represents the target gene set, where |V | = n.
An edge set, E, represents the association between two dif-
ferent genes, which could be either directed or undirected
depending on the prior knowledge. Also, Eij is used to rep-
resent the weight of the edge i ⇒ j (typically Eij ≥ 0).
Since we could straightforwardly convert the undirected
graph into a directed graph by setting Eij = Eji, we only
discuss the directed case here.
Inspired by the idea of Bayesian priors [32], we got the

idea of building a weight matrix, W, to guide the regu-
larization process. First, we constructed a weight n × n
matrix W ′, from the prior knowledge graph G = (V ,E).
Building prior knowledge matrix W ′ is a case-by-case
process for scientists: for continuous values like TF bind-
ing scores and YeastNet association network, we use a
linear mapping to build W ′ from E; for discrete val-
ues like protein-protein interaction, we use 0 − 1 binary
mapping to build W ′. The guideline is that higher the
absolute value of W ′

ij is, the more likely there is a causal-
ity/regulatory relationship between gene node i and j.
When prior knowledge does not indicate any model order
information, we simply repeat the prior knowledge n ×
n matrix W ′ p times to obtain the following np × n
matrixW :

W
(np×n)

=

⎡
⎢⎢⎢⎣
W ′
W ′
...

W ′

⎤
⎥⎥⎥⎦ .

Based on the prior knowledge matrix W, we can subse-
quently modify the optimization formula to a new form:
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B̂ = argmin
B

1
2

∗ ||Y −XB||2F + 1
2

∗λ1||B−λ2W ||2F . (13)

It is noteworthy that the regression parameters in solu-
tion Bmight be either positive or negative, corresponding
to positive or negative regulation relationships. Therefore,
we employ a preliminary estimation, B∗, resulting from
ordinary Ridge regression to modify the sign ofWij before
W is incorporated into the regularization. Together, we
design a new Granger causality modeling method that
is regularized by prior knowledge, viz., CGC using a
two-step prior knowledge Ridge regularization, termed
CGC-2SPR:

Algorithm 1: CGC-2SPR
Input: Gene expression data Y and X; prior

knowledge matrixW
Output: Regression matrix B

1 Solve the ordinary Ridge problem in Eq. 12 to get a
solution matrix B∗;

2 Use the sign of the B∗ matrix elements to determine
the sign of the correspondingW matrix elements:
W ∗ = W . ∗ sign(B∗);

3 Use theW ∗ matrix to the prior knowledge assisted
Ridge regression problem Eq. 13.

All the Ridge or Ridge-like problems could be solved by
convex optimization strategies (Eq. 13). First, we rewrite
the objective function (Eq. 13) as the following form:

f (B) =1
2

∗ tr((Y − XB)T (Y − XB))

+ 1
2

∗ λ1tr((B − λ2W )T (B − λ2W ))

(14)

where f (B) is the objective function, Y and X, respectively,
are the observation and feature matrix which are the same
as (9). W is the prior knowledge weight matrix generated
by the aforementioned procedures.
Then we calculate a partial derivative of f (B) with

respect to Bmatrix:
∂f
∂B

= XT (XB − Y ) + λ1(B − λ2W ). (15)

When ∂ f
∂B = 0, f obtains its optimal (minima) solution:

B̂ = (XTX + λ1I)−1(XTY + λ1λ2W ). (16)

Other Ridge-like problems could be solved similarly.
For Lasso problems, they have a form that is similar to

the second equation in (Eq. 12). We utilized GLMNET
algorithm to solve Lasso optimization [33]. In the exper-
iments with lots of genes, it turns out that the Lasso GC
model is much slower than the Ridge GC model due to

the L1 loss term. As a result, the Ridge-based CGC-2SPR
is more preferred to efficiently analyze real data.

Significance level estimation using Monte Carlo simulation
A common practice in biological research is that the final
analysis results are judged and compared with statistical
meaningful significance levels. However, when n >> T ,
the standard F-tests for any conditional Granger causal-
ity cannot be applied anymore as its assumption is vio-
lated. Specifically, to estimate the F distribution for CGC,
F(p,T − p − n ∗ p), T − p − n ∗ pmust be positive. How-
ever, it is always below zero when n >> T . When T is
an extremely small number, it is very difficult to apply the
Wald test [34] as well.
To solve the challenge, we propose to use Monte Carlo

methods to approximate the distribution of B. Then based
on its distribution, we are able to calculate and estimate
the significance levels of the discovered causality edges
and networks: Assuming there is a resulting causality edge
from variable i (source) to j (target), our proposed Monte
Carlo Significance Estimation (MCSE) algorithm is shown
in Algorithm 2.

Algorithm 2:MCSE
Input: Gene expression data Y, X, λ; CGC-2SPR

regression parameter B∗
ij

Output: Significance value α

1 Generate a random expression vector; normalize it;
2 Replace the time series of source variable i to the
random normalized vector;

3 Use normal Ridge without prior knowledge on the
replaced expression data; store Bij;

4 Repeat step (1–3) k times to get the distribution of Bij;
5 Rank the regression parameter B∗

ij obtained from
CGC-2SPR in Bij’s distribution to estimate α.

We can parallelize the MCSE computation to quickly
estimate the level of significance.MCSE works like the F-
test in the CGC model in the sense that it keeps all the
other expression data besides i and j as a context during
the calculation. Also, it is flexible in terms of a reference
(null hypothesis H0) selection. In this study we chose the
normal Ridge regression as a reference in order to decide
the combined significance level from the gene expression
data and prior knowledge.

Results
Simulation dataset experiments
It is nearly impossible to obtain a real-life exemplary biol-
ogy dataset with all the ground truth. In this section,
we perform realistic simulation experiments to compare
the performance of various causality algorithms with our
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proposed CGC-2SPR. Previous studies [13, 24] utilized
the classic five-variable model (shown in Fig. 3(a)) to
evaluate the performance of GRN inference methods.
However, the five-variable simulation model can reflect
neither the real biological regulatory networks which gen-
erally consist of hierarchical modularized sub-networks,
nor real experimental data which contains many more
genes than time points (n >> T). To better simulate
real biological dataset, we here first generate a mod-
ularized hierarchical network, and then add simulated
expression data that contain only a few time points to

fit the n >> T condition. Through making these two
major changes, we could better understand how the
causality inference algorithms work in a more realistic
dataset.

Modularized hierarchical simulation network generation
Real biological regulatory networks can be described to
have hierarchical structures with only a few top level mas-
ter regulators andmany low level effectors [35–37]. Before
generating the simulation networks, we first provide a few

a

b

Fig. 3 The five-variable model (a) was previously used in several studies [13, 24] to evaluate the performance of different gene regulatory network
inference methods. However, it lacks the hierarchical modularized structure described in the real biological regulatory networks [35–37]. In this
study, we generated a simulated hierarchical modularized network based on the 1→ 3 →9 module and the random perturbations (b).
a Five-variable model. bModularized hierarchical model
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definitions: In the gene regulatory networks, gene nodes
that are not regulated by others are defined as master
regulators, while the remaining genes are called effectors.
Notably, some effectors can also regulate other genes, as
shown in the middle layer of Fig. 3(b).
The basis of our proposed simulation model is rooted

in a simple 1→ 3 →9 regulatory module, representing
the basic unit of the three-layer hierarchical regulatory
network (Shown in Fig. 3(b)). Such a basic three-layer
hierarchical regulatory module (13 genes) is repeated 60
times to create the initial network, with 13 × 60 = 780
nodes. Then, we add random perturbations edges to the
initial network to create connections among different
modules.
In real biological experiment, only a subset of acti-

vated genes with different expression values across time
points will be selected to be analyzed. To simulate the
condition, we randomly decided whether the master reg-
ulators are activated in the biological process and activate
around half of the regulatory network. In this case, a
total of 651 genes are activated and survive the filtering
process. Moreover, we added 349 independent (isolated)
nodes with periodic expression as a background noise to
interfere with the learning. Altogether, a regulatory net-
work with 1000 nodes and 1082 regulatory edges was
generated for the simulation purpose. A simpler network
with only five repeats is shown in Fig. 4, representing
the modularized hierarchical layout of the actual simu-
lation network. The final network will be used as the
golden standard for both expression data generation and
the evaluation criteria for different causality inference
methods.

Gene expression data generation
Guided by the golden standard regulatory network
generated from the previous step, we used a linear model
to obtain the time series gene expression data. The

expression values of master regulators and effectors are
generated differently according to the regulatory graph.
For the master regulator nodes, their expression values

are generated from a periodicAR(2)model [38], similar to
the condition of the yeast metabolic cycle (YMC) dataset
used in this study.

x(j, t) = a ∗ d(j) ∗ x(j, t − 1) + b ∗ d(j)2 ∗ x(j, t − 2) + e(j, t)
(17)

where the cyclic controlling coefficients are:

a = exp
(
1
6
π i

)
+ exp

(
−1
6
π i

)
= √

3

b = exp
(
1
6
π i

)
∗ exp

(
−1
6
π i

)
= 1

(18)

x(j, t) denotes the expression of gene j at time point t. d(j)
is the decay factor of gene j expression, and is randomly
sampled from a uniform distribution U(0.95, 1). e(j, t) is
the random noise that conforms to a Gaussian distribu-
tionN(0, 1). In this case, themaster regulator’s expression
values form a periodic pattern every 12 time points due to
the coefficients a and b in the AR(2) model [38].
The expression values of the effectors are controlled by

their parents in the regulatory graph at different model
orders.

x(k, t) =
n∑

j=1
r(j ⇒ k) ∗ x(j, t − p(j ⇒ k)) + e(k, t)

(19)

If gene j regulates gene k, r(j ⇒ k) ∼ U(−1, 1). Otherwise,
r(j ⇒ k) = 0. p(j ⇒ k) represents the model order of
the regulation from gene j to k, and is generated randomly
from [ 1 . . . 3]. e(k, t) is the random noise that conforms to
a Gaussian distribution N(0, 1).

Fig. 4 The overall hierarchical layered structure of the generated golden standard regulatory networks. For simplicity, a sample network with only 5
repeats of the basic modules is shown here
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The expression values of all the genes in the first three
time points are generated randomly from a Gaussian dis-
tribution N(0, 1). Afterward, the expression values of all
the other time points are calculated by the rules described
above. Altogether, only 20 time points of gene expres-
sion data have been generated from the model, similar to
real biological studies. This is another major difference
from previous studies which usually use hundreds of time
points to train the model [13, 24]. As a last step to sim-
ulate real studies, we normalized the resulting expression
data across different time points to have zero means and
unit variances. The overview of the simulation expression
data is shown in Fig. 5.

Prior knowledge graph generation
The prior knowledge graph needs to be carefully selected
to confer group information to the expression data anal-
ysis. In this study, the clique graph structure in each
subgroup is used as prior knowledge to represent group
information. Essentially, it is a bidirectional clique graph
under each 1→ 3 →9 regulatory unit. The basic struc-
ture of the prior knowledge graph is shown in Fig. 6. We
note that the prior knowledge graph did not include ran-
dom cross-module links that were added into the ground
truth regulatory network. Due to the aforementioned fil-
tering process, some of the clique regulatory relationships
are not included in this prior knowledge graph.
The theoretical accuracy of the prior knowledge graph

is 12/(13 ∗ 12) ≈ 7.7%. After the random activation
and filtering, the actual accuracy of the remaining prior
knowledge graph is about 7.5%. With the help of prior
knowledge, we compare the performance of CGC-2SPR

Fig. 5 The overview of the simulation expression dataset. The
simulation dataset was generated with a linear model guided by a
simulated modularized hierarchical network. For simplicity, we only
plotted the expression values of randomly selected 10 genes

Fig. 6 The prior knowledge structure used by CGC-2SPR on the
simulation dataset. It consists of the 13-variable cliquemotif repeatedly
in the basic module and could provide the group information for
analyzing gene expression data

to the standard regularization methods and other popular
methods in the domain.
After establishing prior knowledge graph E (1000 nodes,

6748 edges), we can build the W matrix for CGC-2SPR.
Firstly we convert the graph E to a 1000 × 1000 matrix
form: if there is an edge from node i to j, Eij = 1;
otherwise Eij = 0. Since the prior knowledge did not
have information on the possible time lag information, we
directly expanded E three times to obtain the W matrix
(3000 × 1000). Lastly, the W matrix will be applied to
improve Granger causality analysis by conferring group
information.

Comparison of differentmethodologies
We evaluated various representative methods for ana-
lyzing time series gene expression data on the simu-
lation dataset. In terms of regression approaches, the
performance of Ridge [29], Lasso [30] and Elastic net
[39] are tested on the simulation dataset. The regular-
ization parameters were selected through cross valida-
tion. These methods were previously implemented in
MATLAB using the GLMNET algorithm [33]. More-
over, pairwise GC model was also considered using the
GCCA toolbox [40]. For information theory approaches,
MRNET and ARACNE are used for comparisons. They
are implemented in minet package in R [41]. We also
tested the DBN modeling using the GeneNet ([42]). DBN
generally displayed a good performance in other studies
[10–12]. However, it could not complete the processing of



Yao et al. BMC Bioinformatics  (2015) 16:273 Page 10 of 18

a dataset with up to 1000 genes [13, 14] and its reported
performance was similar to that of regression approaches.
To evaluate the performance of different methods, each

method will generate a ranking list of the causality edges.
For PGCmodel, the edges are ranked by their significance
values. For regression methods including Ridge, Lasso,
Enet and CGC-2SPR, the edges are ranked by the abso-
lute values of the corresponding regression coefficients.
For information theory methods, the edges are ranked
by the weight calculated from the corresponding method.
Afterwards, evaluations can be applied on the ranked lists
generated by different models.
Firstly, Precision-Recall (PRC) curves [43] are plotted to

compare the performance of different methods. As shown
in Fig. 7(a), the newly proposed method CGC-2SPR dis-
plays a considerable improvement over the other methods
in the field. The second closest method is Lasso. How-
ever Fig. 7(a) shows that as we scan through the ranking
list, Lasso generates much more false positives due to the
lack of prior knowledge. Moreover, Ridge regression per-
formed much worse than CGC-2SPR and even worse than
PGC, thereby confirming the importance of incorporating
prior knowledge. The information theoretic models could
not detect regulatory relationships correctly and perform
the worst among all methods.
In practice, biologists usually focus on the most signifi-

cant edges. In other words, the high precision area that is
on the left of the two plots in Fig. 7(a) are of more inter-
est. Therefore, the top 1082 (edge number of the golden
standard graph) causality relationships are selected by dif-
ferent models to calculate precision P, recall R, and then
F1 score. The results are shown in Table 1.
The results confirm again what we observed from the

Precision-Recall curve: our proposed model showed 65%
performance improvement over the second best method,
Lasso. Noticing that the prior knowledge itself has an
accuracy of 7.5%, CGC-2SPR actually performs better
than the combination of prior knowledge and Ridge
together (0.150 > 0.075 + 0.058). The additional perfor-
mance is attributed to the fact that CGC-2SPR modeling
can more effectively rule out random coincidences with
the help from the group information provided by the prior
knowledge.

Computational efficiency and scalability of CGC-2SPR
One of the major reasons that Granger causality anal-
ysis has become increasingly popular in recent years is
its efficiency in comparison to other network model-
ing methods. Our newly developed CGC-2SPR is based
on the Ridge regression thus is implemented with basic
matrix operations (especially SVD decomposition) [44].
Asymptotically, it has the same complexity as the Ridge
regression which itself is an efficient, and scalable method

a

b

Fig. 7 PRC plot for different methods including regression models
and mutual information models. Our newly proposed CGC-2SPR
shows significant performance improvements over all the other
models. a PRC curve. b Zoomed PRC curve

for inferring gene regulatory networks from thousands of
genes.
For the simulation dataset used in our experiment, we

tested the computation time of different methods on a
server with two Intel Xeon E5-2650L CPUs and 256 GB
memory. The results are listed in Table 2. Although the
mutual information methods ARACNE and MRNET run
faster than others, their performance is the worst in the
extreme condition (n >> T). Lasso has the second best
performance, but it is computationally expensive to run
cross validation on Lasso, which consumes around 100
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Table 1 F1 score comparison for different models

Method MRNET ARACNE PGC Ridge Lasso Enet CGC-2SPR

Accuracy (F1) 0.003 0.002 0.058 0.046 0.091 0.051 0.150

hours on a single CPU. Not only does the newly proposed
CGC-2SPR have the best performance compared with
other methods in the simulation study, it is also computa-
tionally efficient and scalable when handling thousands of
genes.

Biological case study on yeast metabolic network
Preprocessing the data
Next we applied our newmethod CGC-2SPR to a real bio-
logical dataset: “yeast metabolic cycle” (YMC) time series
gene expression data. The dataset is collected from the
experiments on the well-studied organism Saccharomyces
cerevisiae, a.k.a. the baker’s yeast [28]. The corresponding
GEO database [5] accession number is GSE3431. For this
dataset, n >> T holds true.
Published in 2005, YMC dataset consists of three

metabolic cycles covering about 15 hours together. Since
the gene expression measurements are taken every 25
minutes, there are 36 observations together in the time
dimension (T = 36). Through the periodicity and dif-
ference analysis, a list of periodic genes were identified
with different expression levels throughout the periodic
cycle [28]. Our study focuses on the periodic gene list,
which consists of 2935 genes together (n = 2935). The
expression data of these periodic genes are normalized
to zero-mean and unit variance. The normalized YMC
expression data are shown in Fig. 8.
Also, the model order (the maximum number of lags

allowed) p for all the approaches was chosen as two based
on the results of cross validation. For a higher model
order, p > 2, the noise in the gene expression data from

Table 2 Real calculation time of different gene regulatory
network modeling methods on the server. Since some modeling
methods could be scaled up to use multi-core (multithread), we
also estimated the time consumed on single thread

Method Real time # of threads Estimated time
consumed utilized consumed on

single thread

MRNET 1 min 1 1 min

ARACNE 1 min 1 1 min

PGC modeling 29 mins 1 29 mins

Ridge (cross validated) 5 mins ∼16 1 hour

CGC-2SPR 5 mins ∼16 1 hour

Lasso (cross validated) 8 hours 12 96 hours

Enet (cross validated) 84 hours 12 1008 hours

DBN NA(>1 mon) 1 NA(>1 mon)

Fig. 8 The overview of the normalized YMC expression dataset [28]. It
covered three metabolic cycles of yeast in a total of 15 hours.
Although only randomly selected 10 genes are plotted here, periodic
patterns can be clearly observed

the selected dataset will have more impact on the results
(data not shown). Nevertheless, all the approaches used
in our study could deal with a higher model order when
necessary.
To compare the effectiveness of different methods,

we created a golden standard for evaluation from the
functional transcriptional regulatory network generated
in the genome wide KO (knock out) experiments [45].
Based on the genetic interactions between different genes
discovered from the KO experiments, the golden stan-
dard includes direct and indirect regulatory relationships
among target genes. After being filtered by the target peri-
odic gene set dictionary, the golden standard contains
3201 causality edges which will be used to evaluate the
performance of different models on the real dataset.

Failure of PGCmodel on YMC dataset
Using the golden standard as a reference, we evaluated the
performance of PGCmodel by calculating the distribution
of the significance level values (p-value). If the PGCmodel
is able to recover the golden standard, the p-value distri-
bution of the golden standard pairs will differ from that of
all pairs in the target gene set.
We calculated the log10 p value distribution for three

types of scenarios: 1) Randomly generated time series
pairs, each of which has the same time length and model
order (T = 36, p = 2), 2) Randomly selected time series
pairs from the target gene set, and 3) time series of all
genes pairs from the golden standard.
Figure 9 shows that PGC is able to distinguish the

golden standard (Scenario 3) from time series data ran-
domly generated from a Gaussian or uniform distribution
(Scenario 1), but fails to differentiate the golden standard
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Fig. 9 The failure of PGC model on the YMC dataset. Evaluated by the
golden standard, although PGC model could distinguish golden
standard from totally random generated time series, it could not
distinguish the golden standard out from the random pairs in the
filtered 2935-gene set

from the target gene set average (Scenario 2) by a signifi-
cant margin. The main reason why PGCmodel fails is that
when n >> T , there is a high chance that a random pair
coincidentally gets low p-value from the PGC calculation,
and so becomes a false positive. This type of failure also
happens to other pairwise based models when applying to
a dataset with n >> T property.

Building a prior knowledge graph
Different prior knowledge might have different levels of
effectiveness on the inference of a causality relationship.
In this paper, two types of prior knowledge for yeast were
considered independently to improve the Ridge regres-
sion: the first is “YeastNet” [46], a general functional gene
association network, and the second is the transcriptional
factor (TF) binding profiles of yeast genes [47]. The sec-
ond type of prior knowledge is more specific for improv-
ing the inferences of gene regulatory networks than the
first one.
The first prior knowledge is “YeastNet”, generated by

summarizing heterogeneous knowledge from various tra-
ditional biological experiments [46]. In this study, we
directly used its functional association score to gener-
ate a prior-knowledge weight matrix W. Since “YeastNet”
is an undirected graph, in the prior knowledge matrix
W [ i, j]= W [ j, i]. After the prior knowledge graph is
filtered through the dictionary of target gene set, it con-
tains 33583 number of gene pairs, and then is used
to generate a prior knowledge weight matrix W with
33, 583 × 2(undirected)×2(model order)= 134332 non-
zero entries.
The other prior knowledge is the genome wide TF

binding profiles of the yeast genes [47], which is based

on the measurements of the binding specificity from 89
yeast transcription factors to “k-mer” motifs. The table
S5 in the study [47] is the “total occupancy scores” cal-
culated by “median intensity k-mer sums”, which indicate
the preferences of 85 TFs binding to different genes.
We directly used these scores to build the prior knowl-
edge matrix W. After target gene set dictionary based
extraction, the prior knowledge graph contains informa-
tion about 45(the number of TFs) ×2921(the number of
the target genes)= 131, 445 directed gene pairs, which
correspond to a prior knowledge weight matrix W with
131, 445×1(directed)×2(model order)= 262890 non-zero
entries.

CGC-2SPR on YMC dataset
As mentioned in the methodology section, we applied
CGC-2SPR to the dataset in a two-step process.
Firstly, a normal Ridge regression is optimized and

applied to the dataset. The optimal λ value in Eq. 12
obtained from cross validation is 0.01. The MSE of Ridge
regression at λ = 0.01 is much better than that of the
random model that is based only on the zero regression
coefficient matrix (Results not shown).
Based on the ordinary Ridge regression results (B∗ and

λ1), we started to incorporate prior knowledge into the
regularization process. λ1 was chosen as 0.01, the same as
the λ obtained from Ridge cross validation. To better mix
heterogeneous knowledge, we choose the value of λ2 such
that B is comparable to λ2W : λ2 = max(B∗)/max(W ).
With this approach to set parameters, λ2 is 5e − 3 for
CGC-2SPRwith “YeastNet” and 2e−6 for CGC-2SPRwith
“TF binding score”.
To compare the performance of CGC-2SPR using dif-

ferent types of prior knowledge, the resulting regression
coefficients (Bij) were sampled from either the filtered
gene set or the golden standard. Figure 10 shows the nor-
malized histogram of the sampled coefficients. A model
is performing well if it clearly distinguishes “golden stan-
dard pairs” from “average gene pairs within the filtered
gene set” on the normalized coefficient histogram. CGC-
2SPRwith YeastNet only displays amarginal improvement
that is barely recognizable with/without the prior knowl-
edge while the average pairs are not noticeably affected
(as shown in Fig. 10(a)). On the other hand, CGC-2SPR
with the TF binding score incurs a greater boost on the
gene pairs from the golden standard than those average
ones in the target gene set (as shown in Fig. 10(b)). The
reason that “TF binding score” provides a notable boost
may be that it is directly relevant to the discovery of gene
regulatory networks while “YeastNet” is mainly about the
functional association between different pairs.
To quantitatively evaluate the performance of differ-

ent models, we picked up the top 10000 causality entries
from each model (Corresponding to the rightmost part
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a

b

Fig. 10 Prior knowledge “TF binding score” and “YeastNet” were separately tested on the YMC dataset using CGC-2SPR. The result regression
coefficients (Bij) are sampled from either the filtered gene set (average pairs) or the golden standard. Then the normalized histograms are plotted in
this figure to compare the performance of CGC-2SPR with different prior knowledge. “TF binding score” prior knowledge affects golden standard
distribution significantly with minor effects on average pair distribution. Respectively “YeastNet” only has barely recognizable effect on the golden
standard distribution. a CGC-2SPR using “YeastNet”. b CGC-2SPR using “TF binding score”

in Fig. 10). Then we checked the overlap between the
golden standards and these selected entries for different
models. As Table 3 shows, CGC-2SPR provides signifi-
cant performance improvements over the other methods.
CGC-2SPR based on the transcriptional binding profile
performs more than 20 times better than Lasso. Consid-
ering that the golden standard for real data is generally

incomplete and indirect, the performance number might
be even better than the number listed in Table 3.
Moreover, the results of CGC-2SPR have shown that the

combination of heterogeneous knowledge might achieve
a “1 + 1 > 2” effect. For example, the RDS1⇒GAD1 reg-
ulatory relationship is neither discovered in Ridge, PGC,
Lasso, nor on the top lists of TF binding profile. However,

Table 3 The number of golden standards in top 10000 entries

Method PGC MRNET ARACNE Ridge Lasso YN CGC-2SPR(YN) TFBS CGC-2SPR(TFBS)

# of truth 1 5 1 7 5 20 28 87 109

YN (YeastNet) and TFBS (Transcription Factor) represent “YeastNet” and “Transcription Factor binding score” prior knowledge respectively
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the newly proposed CGC-2SPR along with the TF binding
score found the edge matching RDS1⇒GAD1.

Example networks and significance value calculations
After extracting the results from CGC-2SPR(TF), we ana-
lyzed the biological meanings of the discovered causality
networks. Furthermore, we employed the MCSE algo-
rithm to estimate the significance level of the identified
causality edges.
We plotted one causality network result using

Cytoscape [48], as shown in Fig. 11. The known functional
annotations of these genes are taken from the Saccha-
romyces genome database [49]. MIG2 is a known Zinc
finger transcription repressor, working in the glucose-
induced repression of many genes. ABM1 is a protein
with unknown function, but is required for normal micro-
tubule organization. HXT8 is also a protein with unknown
function, and its expression is affected by the level of
glucose. ECM22 is the sterol regulatory element binding
protein which regulates the transcription of sterol biosyn-
thetic genes. When glucose is at a high level, ECM22
activates the sterol biosynthetic process that consumes
glucose. HO, RDS1 and MCH2 are the downstream effec-
tor proteins that control different aspects of cell activities.
In other words, the causality network shown here is
involved in responding to different levels of glucose in
yeast. Based on this information, we could infer thatAbm1
might be a gene that responds to different glucose levels.

Discussion
As we observed from the simulation experiments, nor-
mal Lasso performs better than normal Ridge due to

Fig. 11 One of the discovered causality networks using CGC-2SPR.
The edge significance values were estimated by ourMCSE algorithm

its feature selection effect. It is an interesting question
whether Lasso or Elastic net with prior knowledge can
provide even better performance than CGC-2SPR. How-
ever, the convergence properties for solving Lasso and
Elastic net problems [33] are not as good as that of Ridge
regression due to L1 norm, and, as a result Lasso or Elastic
net is much slower than Ridge. Nevertheless, the two-step
algorithm proposed in this paper is directly applicable to
both Lasso and Elastic net.
How to intelligently select the right model order p is

another interesting topic. Previous studies mentioned that
choosing different model order, p, can significantly impact
on the results [24, 25]. A higher model order generally
means that more information is considered than a lower
one, but potentially makes the model susceptible to noise.
In reality, a moderate model order, p, should be chosen
based on such a trade-off. We used a cross validation
approach to select the right model order p. However,
the cross validation process is computationally expensive,
which prompts us to explore other efficient ways to select
the appropriate model order p in future.
In addition, our real data experiments tested two differ-

ent types of prior knowledge. This special case study indi-
cated that closely relevant prior knowledge could assist
to generate better results than general prior knowledge.
Therefore, in real biological research, closely related prior
knowledge is preferred whenever available.
To successfully utilize network inference methods from

time series data, the corresponding biological experi-
ments should be carefully designed. A basic requirement
is that the time series should cover the whole biolog-
ical phenomenon interested. For cycled biological pro-
cesses, more samples in each cycle enable the possibil-
ity to discover gene regulatory relationships that hap-
pens in a smaller time scale. Also, it is preferable to
have time series expression measurements that cover
1.5-2 cycles according to Nyquist-Shannon sampling
theorem [50].
Last, a golden standard is usually not complete or even

far from complete in real biological studies. The perfor-
mance number measured by the golden standard might
be lower, or even far lower than its actual performance
for the real biological problem. Furthermore, the golden
standard itself could also be used as a solid prior knowl-
edge to assist the analysis of time series gene expression
data. On the other hand, other types of data (e.g. genome
wide TF binding data) might be noisy, but nevertheless
more adequate than the golden standard, and still can bet-
ter complement the expression data in discovering gene
regulations.

Conclusions
In this paper, we proposed a novel method, termed CGC-
2SPR, that can effectively incorporate prior knowledge
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Fig. 12 PRC plots for simulation datasets at different noise levels. In almost all the scenarios, CGC-2SPR has shown consistently better performance
over other methods at different noise levels. Only at noise level N(0, 0.25), Lasso and Enet (overlapping with each other in this special case) are
slightly better than CGC-2SPR. a Noise N(0,0.25). b Noise N(0,0.5). c Noise N(0,1). d Noise N(0,2). e Noise N(0,4)
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into Granger causality analysis, and accurately derive
causal relations between gene pairs from gene expression
time series data. In contrast to previous studies, we gen-
erated simulation datasets with a close-to-real condition
(n >> T) and used it to evaluate previous methods and
our new approach. In our simulation experiments, CGC-
2SPR showed significantly better prediction accuracy than
the other popular methods, including PGC, Ridge and
Lasso regularizations, information theory approaches. For
real data experiments, we applied the newmethod to infer
causal networks from the yeast metabolic cycle dataset,
along with two types of prior knowledge (TF binding
profile and YeastNet) respectively. Through the golden
standard data evaluation, CGC-2SPR demonstrated both
improved performance and the advantage of combining
heterogeneous knowledge. Furthermore, we proposed a
new Monte Carlo method MCSE to estimate the signifi-
cance levels of causal relations.

Appendix
The noise effect on the performance of network inference
methods
In this section, we studied the noise effect on the per-
formance of network inference methods that where eval-
uated in the manuscript, including CGC-2SPR, PGC,
Ridge, Lasso, Enet, ARACNE and MRNET. The sim-
ulation datasets are generated with the same golden
standard network, but at different noise levels with the
Gaussian distributions N(0, 0.25), N(0, 0.5), N(0, 1),
N(0, 2) and N(0, 4) respectively.
We evaluated the performance of the network infer-

ence methods over the generated simulated expression
profiles. Fig. 12 shows the Precision-Recall (PRC) curves
[43] of the results by these methods. When the simulation
dataset contains a very low level of noise, i.e., N(0, 0.25),
Lasso and Enet (The best Enet obtained from cross vali-
dation is Lasso in this special case) performed better than
CGC-2SPR. In all other noise levels, CGC-2SPR performs
stably and consistently better than all the remainingmeth-
ods. With the help of prior knowledge, the PRC curve of
CGC-2SPR only slightly drops as the noise level increases.

The performance of the time-lagged version of ARACNE
andMRNET
Time-delayed version of ARACNE and MRNET has been
verified in existing studies [17, 19] to be able to capture the
regulatory relationship and to provide better performance
than does the standard version of ARACNE and MRNET.
However, these studies have involved datasets with small
gene numbers (e.g. 5 nodes subnetwork) and tens of time
points (32 and 45 time points after preprocessing) [19]. In
this additional section, we tested the time-delayed version
of ARACNE and MRNET on our simulation dataset with
the noise level N(0, 1).

The time-delayed version of MRNET (TD-MRNET) is
implemented by following the descriptions in [19]: Firstly
we build a mutual information matrix based on the max-
imum value of different time-delayed mutual information
calculation and record time lag associated with the maxi-
mum mutual information; then we apply normal MRNET
algorithm to the mutual information matrix to infer reg-
ulatory networks; Lastly we adjust the direction of the
discovered regulatory relationships according to the time
lags recorded in the first step. The TD-ARACNE pro-
posed in [17] cannot be efficiently applied to large net-
works with 1000 nodes. Instead we developed a modified
TD-ARACNE version similar to TD-MRNET: building
the mutual information matrix with the time-delayed
mutual information then apply the normal ARACNE algo-
rithm to the matrix to generate a directed regulatory
network.
We compared the performance of TD-ARACNE, TD-

MRNET, ARACNE, MRNET and the two best perform-
ing methods, i.e., CGC-2SPR and Lasso in the paper.
As shown in Fig. 13, compared to Lasso and CGC-
2SPR, these mutual information based methods, includ-
ing ARACNE, MRNET, TD-ARACNE and TD-MRNET,
barely have the performance over zero. The major reason
is that when n >> T , these pairwise information-metric
based methods are quite susceptible to noise. Therefore,
random coincidence regulatory relationships will domi-
nate the results of ARACNE, MRNET, TD-ARACNE and
TD-MRNET. The tests on the other noise levels have
demonstrated similar results and are not shown here.

Fig. 13 The performance of TD-ARACNE and TD-MRNET are
compared to other methods described in the paper. In n >> T
dataset, TD-ARACNE and TD-MRNET have shown bad performances
similar to ARACNE and MRNET since they rely on pairwise mutual
information calculation
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