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Abstract

Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, films, 

spoken narratives) provide insights into cognitive function “in the wild”. Natural stimuli typically 

possess crowded, spectrally dense, dynamic, and multimodal properties within a rich multiscale 

structure. However, when using natural stimuli, various challenges exist for creating parametric 

manipulations with tight experimental control. Here, we revisit the typical spectral composition 

and statistical dependences of natural scenes, which distinguish them from abstract stimuli. We 

then demonstrate how to selectively degrade subtle statistical dependences within specific spatial 

scales using the wavelet transform. Such manipulations leave basic features of the stimuli, such as 

luminance and contrast, intact. Using functional neuroimaging of human participants viewing 

degraded natural images, we demonstrate that cortical responses at different levels of the visual 

hierarchy are differentially sensitive to subtle statistical dependences in natural images. This 

demonstration supports the notion that perceptual systems in the brain are optimally tuned to the 

complex statistical properties of the natural world. The code to undertake these stimulus 

manipulations, and their natural extension to dynamic natural scenes (films), is freely available.
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1. Introduction

Although the entire possible set of images that could be constructed (or imagined) is 

incredibly vast, the actual set of images encountered in the natural environment represents 

but a small subset of these possibilities (Field, 1994). All natural images share a number of 

characteristics, and this restricts the degree to which natural images occupy the state-space 

of all possible images. For example, the intensities, colors, and spectral properties of 

adjacent regions of a natural image are similar - with the correlation decreasing with 

distance (Burton and Moorhead, 1987; Frazor and Geisler, 2006). This lower-order pattern 

of pairwise correlations is, however, only part of the picture. Natural images also share a 

number of higher-order statistical relationships (Graham et al., 2016; Hermundstad et al., 

2014; Karklin and Lewicki, 2009; Tkacik et al., 2010). For example, spectral properties at 

one spatial scale (such as high contrast edges) are conditionally dependent on those at other 

scales (such as shading and contours). Together, these statistical properties impart the spatial 

structure typical of natural images - that is, they produce the patterns we associate with trees, 

forests, faces, rivers, rocks, and the like.

Given that all natural images are structured in a statistically similar way, it is not surprising 

that the mammalian visual system appears to be specifically tuned for this structure. A great 

deal of work has been done to elucidate the response properties of neurons in the visual 

cortex of a number of mammals (e.g., cat, monkey, and man) (Hubel and Wiesel, 1959, 

1968; Yoshor et al., 2007). Across these species, it has been shown that the receptive fields 

in primary visual cortex are spatially localized, oriented, and selective to structure at various 

spatial scales (i.e., acting as bandpass filters) (Field, 1999). It has been suggested that, by 

being sensitive to specific spatial frequencies and orientations, the simple cells in primary 

visual cortex are matched to the higher-order structure found in natural images. Pertinently, 

it has been shown that filters modeled after these simple cells (i.e., similar orientation and 

bandpass parameters) respond with a high degree of kurtosis when presented with images of 

natural scenes. That is, they respond particularly precisely to local features in natural scenes 

with properties matched to their preferred stimulus properties. Moreover, this kurtosis 

diminishes when the filter parameters differ from those found in the mammalian visual 

system (Sekuler and Bennett, 2001) so that they respond less precisely and more diffusively 

to local stimulus features. This has been interpreted as evidence that the visual system is 

developed to optimize the coding of natural image content as the high degree of kurtosis 

leads to sparse, distributed responses - an efficient coding strategy whereby most of the 

information for each instance of a specific natural scene is represented by a small, unique set 

of cells (Field, 1999).

To account for such response properties of neurons in primary visual cortex and their sparse 

coding of natural image content, it has been shown that receptive fields can be represented 
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mathematically by a wavelet-like transform. The wavelet transform is similar to the more 

widely known Fourier transform in the sense that it can decompose a very broad variety of 

functions and empirical data into a set of oscillatory basis functions. However, rather than 

transforming the data into a domain of simple sine and cosine functions, the wavelet 

transform represents the data with more complex functions - called wavelets (Graps, 1995). 

These functions are localized in space and process data at different spatial scales - similar to 

the receptive fields in mammalian visual cortex. Importantly, whereas successive frequencies 

in the Fourier domain are linearly spaced, successive wavelet scales are dyadic and hence 

logarithmically spaced - that is, every scale is twice (or half) the frequency than the level 

above (or below). Hence, when applied to images of natural scenes, different wavelet 

functions are sensitive to the sparse, higher-order statistical structure that is present at 

different spatial scales (Field, 1999; Olshausen and Field, 1996).

Understanding and manipulating the statistics of natural scenes holds potential to test the 

hypothesis that the visual system is tuned to their expected (typical) properties. Here we 

exploit the relationship between receptive field properties and wavelets to manipulate the 

higher-order statistical structure in natural scenes. This paper comprises two distinct but 

complementary parts. In the first part, we show how the wavelet transform can be used to 

parametrically degrade natural image structure: (1) at specific spatial scales, (2) in a global 

or locally-targeted fashion, and (3) for dynamic (i.e., films) as well as static scenes. We first 

provide a didactic introduction to wavelet resampling. We then provide novel extensions to 

adopt the procedure from its classic application in non-parametric inference to its use in 

naturalistic paradigms, preserving the color palette of stimuli, and manipulating dynamic 

natural scenes (films). We also present a novel extension using incremental resampling to 

more deeply probe the statistical structure of natural scenes and their relationship to other 

natural phenomena. In the second part, we demonstrate the utility of this approach by 

showing how it can be used to create stimuli that can be used along with fMRI to probe the 

hierarchy of human visual cortex - showing that cortical responses at different levels of the 

visual stream are differentially sensitive to the subtle, wavelet-based parametric statistical 

manipulations.

2. Manipulating natural image structure - the wavelet transform

Natural images are usually defined as any image of the natural, physical, or material world 

and can portray general scenes (e.g., beaches, forests, mountain ranges) or specific objects 

(e.g., rocks, trees, waterfalls). Fig. 1A, a photograph of a patch of fallen leaves, is an 

example of such a natural image. Contrasting this natural image with luminance-matched 

noise images (Fig. 1B,C) provides insight into the structure and properties of natural images. 

Fig. 1B was generated by random assignment of pixel luminance values from Fig. 1A (i.e., 

white noise) and has little in common with natural images. Fig. 1C is also random but was 

generated with the additional constraint that the distribution of energy across spatial 

frequencies matched that of the natural image. That is, it is characterized by a similar 1/fα 

amplitude spectrum (Fig. 1D) — a property which describes the distribution of amplitude 

(luminance intensity) as a function of spatial frequency. Across natural scenes, the slope (α) 

of this distribution is remarkably similar with values typically ranging between 0.8–1.2 

(Burton and Moorhead, 1987; Field, 1987; Ruderman and Bialek, 1994; Tolhurst et al., 
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1992; van der Schaaf and van Hateren, 1996). If the distribution of luminance intensity 

variations in nature was random and independent of spatial scale, then natural scenes would 

possess the amplitude spectra of white noise (α = 0) (Fig. 1B), where amplitude is the same 

across all spatial frequencies.

Despite the similarity between the amplitude spectra of an actual natural scene (Fig. 1A) and 

of “natural” (or colored) noise (Fig. 1C), one would have no trouble identifying the true 

natural scene. This demonstrates how matching lower-order statistical properties is 

insufficient to produce the structure present in natural images. Rather, the structure is a 

consequence of higher-order statistical relationships. Being able to parametrically 

manipulate these statistical dependences permits the controlled investigation of how the 

visual system processes this structure and is the main objective of the wavelet technique 

described below.

To manipulate natural image structure using wavelets, the discrete wavelet transform (DWT) 

is first used to perform a multi-resolution decomposition of the image data (Breakspear et 

al., 2004). This decomposition uses a family of wavelet basis functions sensitive to variance 

at specific spatial scales. At each scale, the data are decomposed into two orthogonal 

components containing information about the variation in signal intensity at that spatial scale 

(i.e., the detail coefficients) and the residual of the signal after those and all smaller details 

have been removed (i.e., the approximation coefficients). Because the image data is two-

dimensional, the detail coefficients are further decomposed into horizontal, vertical, and 

diagonal components. Note that the original image can be recovered, without loss, by 

linearly adding the approximation of the signal at a specific spatial scale together with the 

details at that scale and all smaller scales. A more detailed description of the two-

dimensional DWT can be found in the Supplementary Material (S1).

2.1. Degrading scale-specific information

As emphasized above, the DWT yields a representation of the image data across a hierarchy 

of spatial scales. Whereas the original image is spatially correlated, the DWT is a 

“whitening” transform and adjacent wavelet coefficients are statistically independent 

(Bullmore et al., 2001). It is therefore possible to randomly permute the detail coefficients 

within any level of this hierarchy - essentially destroying the higher-order statistical 

dependences at the specific spatial scale represented by that level without loss of energy. 

This crucially differs from smoothing, filtering, or adding noise to the data. Following this 

permutation, the inverse DWT is performed, yielding an image nearly identical to the 

original but without structure at the targeted spatial scale. Fig. 2 illustrates the results of this 

process in which the structure present in a natural image (Fig. 2A) is degraded at individual 

spatial scales (Fig. 2B,C) as well as at multiple scales (Fig. 2D,E). Importantly, this process 

only degrades the higher-order statistical relationships while maintaining the lower-level 

image content such as the contrast, luminance histogram, and spatial frequency content (Fig. 

2F).

Inspection of this process reveals the effects of degrading the structure present in a natural 

image at various spatial scales. Close inspection of Fig. 2B(b) reveals that the very fine 

structures have been degraded -including veins of leaves and the sharp edges of the plant 
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blades. This is in contrast to Fig. 2C(c) in which the finer details are still present, but coarser 

structures (e.g., at the level of entire leaves) have been disrupted. Fig. 2D(d) illustrates the 

effect of degrading the structure at all scales except the fine scale with the image being 

nearly devoid of all natural image structure. However, from what is otherwise a pure colored 

noise image, one can distinctly make out the very sharp edge details that were otherwise 

degraded in Fig. 2B(b). Finally, Fig. 2E(e) illustrates the effect of degrading this remaining 

scale of information (along with all others) - producing a colored noise image with no 

apparent natural image structure but with nearly identical low-level image content as the 

original natural image (Fig. 2F). That is, the original and wavelet scrambled (or 

“wavestrapped”) data are essentially identical in terms of very basic visual features (e.g., 

luminance, contrast, and spectral content). The more elusive properties that couple details, 

edges, and outlines to depth, shadows, and context - and that convey the meaningful 

properties of natural visual scenes - have been randomized.

2.2. Wavestrapping can be spatially-localized

Unlike the Fourier transform, the wavelet basis functions are localized in space. This 

attribute makes it possible to use the wavelet transform to degrade natural image structure in 

a spatially-restricted manner, rather than uniformly across the entire image. The procedure is 

similar to that described above, except that only detail coefficients associated with a specific 

spatial domain are permuted before performing the inverse DWT - the detail coefficients 

outside that domain are left unchanged. The result of such a spatially-restricted degradation 

are illustrated in Fig. 3. Here, we have independently resampled the coefficients associated 

with the central region of a natural scene image and its surround. If fixating at the center of 

the image, this procedure can be used to degrade natural image structure to probe foveal vs. 

peripheral visual processing. Notably, any spatial domain can be used to restrict the 

permutation process. This same basic procedure can hence be used to target processing 

associated with specific hemifields or quadrants of an image.

2.3. Extension to color images

The wavestrapping approach can be extended to color images (Fig. 4A). However, the 

addition of color information does require further considerations. While each pixel in a 

grayscale image can be described by a single number (intensity), color images contain three 

numbers per pixel - one for each color channel: red, green, and blue. The simplest extension 

of the above randomization techniques to a color image is to degrade the spatial structure in 

each channel independently. However, doing so does not preserve the color palette (Fig. 4B). 

To preserve the original colors (the color equivalent of preserving the pixel amplitude 

distribution), the image structure within each channel needs to be permuted in the same way 

across channels. In practice this can be achieved by permuting the detail coefficients within 

each color channel beginning with the same random seed (Fig. 4C).

2.4. Extension to naturalistic movies

The above principles can be extended to dynamic natural scenes - i.e., film stimuli. In this 

case there is the additional dimension of time. Film stimuli incorporate the rich temporal 

variations in our environment and hence can provide a more engaging and ecologically-valid 

naturalistic experience than traditional static images (Hasson et al., 2004; Roberts et al., 
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2013; Sonkusare et al., 2019). The key consideration then is how to handle the temporal 

domain alongside the degradation of the spatial dimensions. One simple possibility is to 

permute the (spatial) wavelet coefficients within each frame independently, breaking the 

temporal structure associated with the scrambled spatial scales. However, this whitens the 

temporal spectra - introducing spurious high frequencies - as each frame differs abruptly 

from the preceding one. To fully preserve the temporal structure, one can use the same 

random seed for each frame (and for color videos, within each color channel too). Even with 

all spatial scales scrambled, preserving the temporal structure leaves an “imprint” of moving 

objects within the scene, as well as pans and cuts (see Supplementary Material S2, Sup 

Movie 1 for an example). Given the importance of motion to the visual system - including 

the “biological motion” of humans (Allison et al., 2000; Schultz and Pilz, 2009) - this 

preservation of apparent motion is crucial when permuting dynamic films in the wavelet 

domain to study the visual cortex.

This second strategy of a constant random seed destroys higher order statistics in the spatial 

domain but leaves those in the temporal domain exactly preserved. Wavelet resampling can 

also be applied in the temporal domain, treating the video as a single multidimensional time 

series, rather than as a series of discrete two-dimensional images. Notably, temporal variance 

of dynamic natural scenes also possesses a 1/fα amplitude spectrum (Fig. 5A). This spatio-

temporal wavestrapping can be achieved in two steps: parallel two-dimensional spatial 

resampling followed by parallel one-dimensional temporal resampling (Fig. 5B). 

Alternatively, the entire film could be wavestrapped using a single three-dimensional DWT 

following the same principles as wavestrapping a single three-dimensional spatial object 

(such as a single whole-brain fMRI volume (Breakspear et al., 2004)), although this mixes 

together information from the spatial and temporal domains.

Using wavelets to manipulate movie data in the time domain can also adopt extensions 

outlined above for spatial images - namely focusing on high or low temporal scales and/or 

choosing specific temporal moments (such as scene transitions) and leaving other blocks 

unchanged. Temporal resampling can also extend to the parallel stream of audio information.

2.5. Thermodynamics of natural scenes

Recent work has shown that static (Saremi and Sejnowski, 2013) and dynamic (Munn and 

Gong, 2018) natural scenes possess the statistical hallmarks of criticality - that is, they reside 

close to a phase transition (i.e., a statistical boundary) between order and disorder. 

Computational analyses of natural scenes using the methods of statistical mechanics has 

suggested that this phase transition resides within specific latent layers of a natural scene 

(Saremi and Sejnowski, 2013) and is associated with thermodynamic “frustration” (see 

Supplementary Material, S3). By residing near these phase transitions, natural scenes are 

able to reflect a critical balance between (1) the ordered arrangement of the contours, edges, 

and textures of various sizes that endow it with structure and information and (2) the 

idiosyncratic and haphazard nature of this arrangement into the objects that characterize any 

specific scene and hence yield its semantic meaning and unique visual impression.

By applying our wavestrapping approach progressively it is possible to demonstrate the 

balance between order and disorder inherent to natural images (Fig. 6). This is because the 
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randomization can be realized in varying degrees of depth, from just a few permuted 

coefficients up to full permutation. This is achieved by selecting random subsets of 

coefficients for permutation, leaving others invariant. Fig. 7A and Movie 1 both demonstrate 

the process of progressively disordering a natural image, which can be thought of as 

“heating” the scene. As can be seen in Fig. 7B, the amount of variability between 

realizations increases monotonically with the depth of randomization. Note that fully 

randomized realizations (i.e., randomization depth of 100%) are the most highly variable - 

akin to a gas. These highly variable realizations can be appreciated if one “boils” the scene 

(i.e., continues to randomize at a depth of 100% - see Movie 2). However, incremental 

permutations do show scale-specific expressions of variability (Fig. 7C) which differ 

between scenes. That is, despite their featureless 1/f spatial spectra, each natural scene has a 

distinct signature of increasing variability at different scales. Incremental wavelet 

resampling thus unpacks the latent statistical frustration within natural scenes which is not 

uniform across scales and scenes.

The wavelet-based randomization (or heating) can easily be reversed. For example, Movie 3 

shows the process of “cooling” the scene back down from a boil (i.e., a fully randomized 

state) to its natural state. Interestingly, we can then continue to cool the image beyond its 

natural state and hence approach a single ordered state - akin to a solid (Movie 4). This 

process of “freezing” is further demonstrated in Fig. 8A, which shows the process of 

progressive ordering of a natural image. As can be seen in Fig. 8B, the amount of variability 

between realizations increases to a maximum at approximately 50% of wavelets ordered, 

corresponding to a mixture of natural and ordered phases, then decreases again as the single 

ordered state is approached. Similar to the process of randomization, the incremental 

ordering permutations do show scale-specific expressions of variability (Fig. 8C) which 

differ between scenes. Finally, we can “thaw” a frozen image (i.e., in a 100% ordered state) 

to its original, natural state (Movie 5) by progressive randomization (or heating) as described 

above.

Fig. 9 further demonstrates the notion of natural image thermodynamics with natural images 

being positioned at a critical phase between fully ordered and disordered states. Subtle 

manipulations of dynamic natural scenes, using wavelet resampling to parametrically disrupt 

the complex statistics of their criticality whilst measuring cortical dynamics, represents an 

elusive but untested means of understanding how the structure of cortical dynamics are 

tuned adaptively to those of the natural world. Interestingly, the “critical” nature of dynamic 

natural scenes (i.e., that they are perched between order and disorder reflecting the balance 

of scene stability and sudden, spontaneous transitions) mirrors the critical, avalanche-like 

dynamics that occur throughout cortical systems (Cocchi et al., 2017). Incremental 

disruption - both “heating” (randomizing) and “cooling” (ordering) - allows tuning of a 

natural scene through its critical point and could be used in conjunction with imaging or 

neurophysiological recordings to further explore this intriguing area.

3. Probing the visual hierarchy - an fMRI demonstration

We conducted an fMRI experiment to illustrate the application of wavelet-based 

manipulations of natural images to probe the functional architecture of the visual hierarchy. 
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As outlined above, there are numerous potential ways to manipulate static and dynamic 

natural scenes using wavelets. We designed a parametric, passive-fixation task to 

demonstrate some of the practical considerations of performing an fMRI experiment using 

wavelet-degraded stimuli (e.g., number of conditions can multiply quickly, use of a fixation 

task aimed at controlling attentional resources, etc.). Our proof-of-principle application to a 

visual fMRI experiment builds upon prior research in this field with the overarching goal 

being to contrast levels of cortical activity in different visual regions elicited by the 

presentation of intact natural images vs. wavelet-degraded natural images. Importantly, the 

basic image properties (luminance, spectra) remain the same between the two image types; 

only the higher-order statistical dependences (i.e., the structure of that image content) differ. 

To control for possible transition effects between (natural and wavestrapped) stimuli, we 

designed a factorial experiment which counterbalances the nature and order of their 

presentation.

Although primarily demonstrative, the experiment was motivated by a central hypothesis: 

that higher visual areas would be more sensitive to the complex structure present in natural 

images than lower visual areas. This was motivated by decades of previous research showing 

that primate visual cortex is organized hierarchically, with neurons responding to 

increasingly complex features as one progresses up the cortical hierarchy (DeYoe and Van 

Essen, 1988; Felleman and Van Essen, 1991; Van Essen, 2004).

3.1. Materials and methods

3.1.1. Subjects—Seven, right-handed participants (22–24 years, mean 22.9 years; 3 

male, 4 female) who disavowed a history of neurological or psychiatric diseases completed a 

functional neuroimaging experiment. All participants had normal or corrected to normal 

vision. The experiment was conducted with the written consent of each participant following 

approval by the local human research ethics committee in accordance with national 

guidelines.

3.1.2. Experimental design—Stimuli were presented in blocks of 8 s while 

participants fixated on a small superimposed crosshair. Stimuli consisted of natural images, 

degraded images obtained through wavestrapping these natural images at select (fine or 

coarse) scales, and colored noise control images matched for luminance and spectra content 

obtained through wavestrapping the natural images at all spatial scales.

A partial 3 × 2 × 2 within-subjects factorial design was used. The independent variables 

were type of image manipulation (N1: degrade from natural image, N2: degrade from noise, 

N3: restore from noise), spatial scale manipulated (S1: fine and S2: coarse), and presentation 

of manipulation (F1: flip vs. F2: flick). All experimental conditions are summarized in the 

Supplementary Material (S2, Table 1), with representative conditions described in detail 

below:

• N1,S1,F1 - the fine scale information (S1) of a natural image was permuted (N1). 

This resulted in the degradation of the structure at that scale and hence a natural 

image with all scales of structure intact except the fine scale. The experimental 
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block involved flipping back and forth (F1) between the original image and the 

degraded image.

• N1,S2,F2 - the coarse scale information (S2) of a natural image was permuted 

(N1). This resulted in the degradation of the structure at that scale and hence a 

natural image with all scales of structure intact except the coarse scale. The 

experimental block involved flicking through (F2) a series permutations of the 

same source image (i.e., the permutation was carried out a number of times on 

the same natural image, and were presented in succession during the imaging 

block).

• N2,S2,F2 - the coarse scale information (S2) of a noise image was permuted 

(N2). Since we began with a noise image, there was no natural scene structure to 

degrade; however, the permutation was identical to what was performed on a 

natural image and leads to a slightly distinct noise image that differs only at the 

targeted spatial scale. The experimental block involved flicking through (F2) a 

series of permutations on the same source image.

• N3,S2,F1 - the coarse scale information (S2) from a natural image was put into a 

noise image (N3). The experimental block involved flipping back and forth (F1) 

between the original noise image and the noise image with structure added.

These stimuli permutations were designed to parametrically control the depth of image 

manipulation and the spatial scale targeted while controlling for the effects of image 

transitions. The factorial design was incomplete (partial) in that it was not possible to test the 

flick presentation type (F2) for the condition that involved adding structure to a noise image 

(N3). That is, for any given natural scene there is only one possible instance of structure that 

can be added to remain faithful to the original scene (i.e., any alteration of this structure 

would change the scene). In contrast, there is no limit to the number of instances of noise 

images that can be constructed from each natural scene due to the randomized nature of the 

wavestrapped permutations. In addition to the above conditions (all of which involve a 

changing stimulus, whether flipping or flicking), we also included two static image block 

types: a natural image (N1, S0, F0) and a noise image (N2, S0, F0). An isoluminant gray 

background was shown as a baseline block.

In total then, there were 12 different experimental block types and a baseline. Each block 

was presented three times per scan run. All experimental blocks were presented for 8 s and 

the gray background baseline was presented for 12 s. During the ON period for the stimulus 

blocks with image change (i.e., flip or flick), the transition occurred every 0.5 s. The block 

types were pseudo-randomized except that we ensured that each block type followed the 

gray background baseline condition an equal number of times and that the last block of 

every run was the gray background condition to permit the fMRI signal to return to baseline. 

12 runs were collected per subject, in a single scan session.

To control attention, aid fixation, and monitor subject alertness, a color/orientation 

conjunction task was performed at fixation throughout the entire run (Puckett and DeYoe, 

2015; Treisman and Gelade, 1980). For this purpose, a small circle (10 × 10 pixels, 

subtending 0.15° visual angle) was superimposed upon the images. The circle contained a 
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pattern that randomly changed every 2 s among 4 possible configurations: red horizontal, red 

vertical, green horizontal, and green vertical. The participant was required to report the 

nature of each change via one of two button presses (button 1 = red horizontal or green 

vertical, button 2 = red vertical or green horizontal). In addition to the color/orientation 

patch, a fine grid was overlaid on the images to aid fixation (Schira et al., 2007).

An example of the visual stimulus and block paradigm (with annotation), is presented in the 

Supplementary Material (S2, Sup Movie 2).

3.1.3. image manipulation—Stimuli were constructed by manipulating a set of natural 

images using the wavelet transform (as outlined in Section 2). The natural images were 

sourced from the “Zurich natural images” database, which is freely available for academic 

use (Einhauser and Konig, 2003). Note that the subset of images from this database used 

here are shown in the Supplementary Material (S2, Sup Figs. 1 and 2). In general, 

constructing the stimuli involved: converting the RGB image to greyscale, permuting the 

detail coefficients at a specific spatial scale (or scales) using the wavelet transform, resizing 

the image (to 768 × 768, subtending 11° visual angle), and then adjusting the luminance 

values so that the resampled amplitude spectra matched those from the original natural 

images. More specifically:

• To degrade a single spatial scale of natural image structure (factor N1), we 

permuted the coefficients associated with one of two spatial scales (i.e., levels): 

fine (S1) and coarse (S2). Note that the coefficient levels corresponding to fine 

and coarse natural image structure are dependent on the input image size and 

were determined empirically. For this, we permuted the coefficients across a 

series of levels and chose the two levels corresponding to fine and coarse natural 

image structure by visual inspection. Note that the fine scale manipulation 

targeted structure in the range of 4.5 – 8.8 cycles per degree and the coarse scale 

manipulation targeted structure in the range of 1.3 – 2.4 cycles per degree.

• To construct noise images that shared the same basic image properties as our 

natural images (factor N2), we simply performed the wavelet degradation on the 

natural images across all spatial scales. This destroys all natural image structure, 

leaving a noise image with the same 1/fα frequency distribution as the original 

natural image.

• To put natural image back into a noise image (factor N3), we first degraded all 

the spatial scales except that of interest (i.e., all but S1 or S2). Then we degraded 

the remaining structure at that scale. This produced a pair of images: one noise 

image (all scales permuted) and another that was identical to the noise image 

except that one spatial scale of information still remained.

All wavelet resampling was performed using Daubechies wavelets, which are a family of 

orthogonal wavelets characterized by a maximal number of vanishing moments while 

minimizing asymmetry (here we used the db6 wavelet with 6 vanishing moments). To avoid 

edge effects when performing the wavelet degrading, which manifest as sharp horizontal or 

vertical striping in the image, we did not perform the wavelet degradation over the entire 

image. Instead, we left an outer border (1/20th of the image size) untouched around the 
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entire image. After the detail coefficients associated with spatial locations inside this border 

were permuted, the image was cropped so that only the permuted portion remained.

3.1.4. Retinotopic localizer—To localize cortical responses to visual images, we 

performed two types of phase-encoded retinotopic mapping: one to map polar angle and the 

other to map eccentricity representations. Briefly, the polar angle stimulus consisted of a 

rotating bowtie (two wedges opposite one another and meeting at fixation) and the 

eccentricity stimulus consisted of an expanding ring (Schira et al., 2009). The aperture 

contained one of three colored texture patterns (checkers, expanding and contracting spirals, 

or rotating sinusoidal gratings) which changed randomly every 250 ms. Participants 

performed a fixation color detection task at a central maker, and a fixation grid was overlaid 

atop the stimuli.

3.1.5. Magnetic resonance imaging data acquisition—Data were acquired on a 

Philips 3T Achieva X Series equipped with Quasar Dual gradients and a 32-channel head 

coil. Whole-brain, anatomical images were collected using a magnetization-prepared rapid 

acquisition with gradient echo MPRAGE sequence with a TE of 2.8 ms, TR of 6.3 ms, flip 

angle of 8°, FOV of 256 mm × 256 mm, a matrix size of 340 × 340, and 250 slices that were 

0.75 mm thick - resulting in an isotropic voxel size of 0.75 mm.

The voxel resolution of the functional echo planar images (EPIs) collected here was 1.5 × 

1.5 × 1.5 mm3 across 31–32 oblique coronal slices covering the occipital pole. EPIs were 

acquired with a TR of 2 s, a TE of 25 ms, a SENSE factor of 2, a 128 × 128 matrix 

(ascending acquisition), and a FOV of 192 mm. For polar angle mapping 186 vol were 

collected, for eccentricity mapping 174 vol were collected, and for the natural image 

experiment 184 vol were collected. Before data analysis, the first few volumes were 

discarded to account for the high T1 saturation that occurs at the beginning of a scan. For 

both mapping protocols the first 6 vol were discarded, and for the natural image experiment 

the first 4 vol were discarded.

3.1.6. Data analysis—Pre-processing of the functional data was performed using SPM8 

(SPM software package, Wellcome Department, London, UK; http://

www.fil.ion.ucl.ac.uk/spm/). Data were motion corrected using a rigid body transform and 

7th degree B-spline interpolation. Images were slice scan time corrected using the first 

image as the reference slice and resliced into the space of the first image.

For retinotopic mapping, “traveling-wave” analysis procedures were conducted using the 

mrVista Toolbox (Stanford University, Stanford, CA; http://white.stanford.edu/software/). 

The cyclic retinotopic mapping data was analysed using a fast Fourier transform based 

correlation analysis, as built in the mrLoadRet software from the mrVISTA toolbox. This 

estimates a coherency value for each voxel in the cortex as a ratio between the power at the 

stimulus frequency and noise. The retinotopic location (both polar angle and eccentricity) 

for each voxel was determined by the phase value at the stimulus frequency. The retinotopy 

data were then displayed on a 3D rendered brain surface (Engel et al., 1997; Schira et al., 

2009).
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Volumetric segmentation of white matter was performed manually using ITK Gray 

(Yushkevich et al., 2006). 3D surface reconstructions of the left and right hemisphere were 

generated using mrMesh (a function within the mrVista Toolbox) by growing a 3-voxel thick 

layer (1.5 mm isotropic voxels) above the gray/white boundary. To improve data 

visualization (i.e. when projecting functional data onto surfaces), these surfaces were also 

computationally-inflated using the “smoothMesh” option in mrMesh (8 iterations). Note that 

the cortical surface models were only used for data visualization and region-of-interest 

(ROI) definition. All analyses and statistics were performed using the volumetric data.

Further analysis in the mrVista Toolbox included a general linear model (GLM) of responses 

across early visual areas (V1, V2, V3) for each individual subject. The Boynton Gamma 

HRF was used to model the haemodynamic response function (Boynton et al., 1996). All 

runs were concatenated and the null gray background condition was used as baseline.

3.2. Results

We first used the retinotopic mapping data to define V1, V2, and V3 ROIs in both 

hemispheres for each individual (Fig. 10). We then extracted the GLM-derived β-weights 

associated with each experimental condition from all voxels in each ROI. The mean β-

weight was then computed for each visual area, combining both hemispheres.

Fig. 11A shows the average response in each of the visual area ROIs for each condition 

across all subjects. Inspection of Fig. 11A reveals a few salient, interesting response 

differences across visual areas and across experimental conditions. Notably, as one 

progresses up the visual hierarchy (V1 → V2 → V3), the response amplitude decreases 

across all conditions. It also appears that, in general, the natural images elicit greater 

activation than the noise images (N1>N2,N3). This is true not only for the conditions 

involving image manipulation, but also for the no manipulation conditions (N1,S0,F0 vs. 

N2,S0,F0). However, the degree of difference between natural image (N1) vs. noise image 

(N2) conditions appears to become greater as one progresses up the hierarchy.

Qualitative assessment of Fig. 11A appears to support the core hypothesis that higher 

cortical areas are more sensitive to more complex statistical features of natural scenes than 

V1 (i.e., cortical areas respond more strongly when natural image structure is present than 

when absent and this difference increases as one progresses up the hierarchy). To test this, 

we collapsed the data across the spatial scale (S1 and S2) and presentation (F1 and F2) 

factors, and removed the static, no manipulation conditions (N1,S0,F0 and N2,S0,F0; Fig. 

11B). We then performed a 2-way repeated measures ANOVA to investigate if the visual 

areas differentially responded to the different image manipulations (N1, N2, and N3). We 

found that a differential response was indeed present. That is, in addition to significant main 

effects for both visual area [F = 52.3, p<0.001] and the type of image manipulation [F = 

11.2, p = 0.0018], there was also a significant interaction effect [F = 16.6, p<0.001]. 

Looking at Fig. 11B, it appears that the interaction effect reflects an increasing effect of 

natural image structure on the responses as one progresses from V1 to V3. Recall that N1 is 

a natural image with one scale of structure degraded, N2 is essentially a noise image (all 

scales of structure degraded), and N3 is mostly a noise image but still has one scale of 

structure present. Hence, N1 has the most natural image structure, N3 the second most, and 
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N2 has the least. In V1, there is little difference among the three conditions suggesting that 

V1 is only weakly influenced by the presence versus absence of the higher-order 

correlations that characterize natural image structure. In V2, however, the effect of image 

type on the average response becomes stronger and appears graded by the amount of 

structure present. This same differential response is further pronounced in V3.

Sensitivity to different spatial scales is known to vary as functions of both visual area and 

eccentricity. That is, receptive field size increases up the visual hierarchy and at increasingly 

peripheral eccentricities (Dumoulin and Wandell, 2008). We hence also explored the effect 

of the scale condition (S) and its interaction with visual area and eccentricity. For this, we 

first sub-divided each visual area ROI into 6 eccentricity bands using the retinotopic 

mapping data (0.06 ≤ Ecc 1 ≤ 0.48; 0.48 ≤ Ecc 2 ≤ 0.95; 0.95 ≤ Ecc 3 ≤ 1.36; 1.36 ≤ Ecc 4 ≤ 

1.93; 1.93 ≤ Ecc 5 ≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89°). We collapsed the data across the 

presentation (F1 and F2) and image manipulation (N1, N2, and N3) factors, and removed the 

static, no manipulation conditions (Fig. 11C). We then performed a 3-way repeated 

measures ANOVA finding a significant main effect again for visual area [F = 37.0, p < 

0.001] as well as significant main effects for eccentricity [F = 3.5, p = 0.014] and scale [F = 

80.6, p < 0.001]. There were also significant interaction effects between visual area and 

eccentricity [F = 3.3, p = 0.002] as well as between eccentricity and scale [F = 4.5, p = 

0.004] but not between visual area and scale [F = 1.3, p = 0.303] nor among the three [F = 

0.6, p = 0.804]. Looking at Fig. 11C, the main effects are clear. For visual area, we see a 

general diminishing of the response as one progresses up the visual hierarchy (similar to the 

effect of area seen in Fig. 11B). For eccentricity, we see a the same basic inverted-U pattern 

across eccentricity for each combination of spatial scale condition and visual area except for 

the fine scale condition in V3 (likely driving the interaction effect). For the scale condition, 

we see consistently greater responses to the coarse scale manipulation compared to the fine 

scale (also clearly seen in Fig. 11A), particularly at intermediate eccentricities.

With respect to the scale effect, note that the process of wavestrapping a noise image (N2) 

simply results in another noise image since no structure was originally present. However, it 

is important to understand that the resulting noise image is still different from the source 

noise image, and the difference is dependent on the manipulated scale. Therefore, when the 

images are presented by flicking between or flipping through the different instances, 

changes in the image occur at the targeted spatial scale. From our results then, it appears that 

when the changes occur at the coarse scale, a higher degree of activity is seen in visual 

cortex compared to when the changes occur at the fine scale. The perceptual difference 

between the fine and coarse scale resampling of noise can be seen by contrasting conditions 

N2,S1,F1 vs. N2,S2,F1 or N2,S1,F2 vs. N2,S2,F2 in Supplementary Movie 2.

Note that the primary motivation for ‘flipping’ or ‘flicking’ across multiple instances within 

a block was to make the stimuli “dynamic” and hence more salient to the visual system 

compared to using a static image across the block duration. The choice of flipping versus 

flicking was selected to probe the role of prior context on visual responses -i.e. whether a 

statistical violation (the wavelet-degraded scale) would have a greater cortical salience when 

introduced in and out of a preserved scene (F1), or whether the violation would accrue a 

stronger response when continually presented (F2). Whereas the dynamic conditions did 
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elicit greater responses than their corresponding static conditions (Fig. 11A), we did not find 

any main effect of the presentation factor (F1 vs. F2) [F = 0.2, p = 0.681] nor an interaction 

with visual area [F = 3.4, p = 0.067] when conducting a 2-way repeated measures ANOVA.

4. Discussion

Sensory and cognitive neuroscience has traditionally employed simple, abstract, and 

narrowband stimuli to examine cortical response properties. These stimuli have served the 

field well, offering a way to tightly control variables of interest and leading to an extensive 

characterization of the response of single neurons and populations of neurons to basic image 

properties such as luminance, contrast, orientation, and spatial frequency. Despite this, these 

stimuli lack ecological validity as they rarely come close to approximating the types of 

stimuli encountered in typical sensory experiences outside of experimental conditions. 

Pertinently, there is mounting evidence suggesting that the cortex may be more strongly 

‘tuned’ to the statistical properties of naturalistic stimuli (for review, see Sonkusare et al., 

2019). For example, a recent study (Isherwood et al., 2017) using broadband noise stimuli 

observed that stimuli with 1/fα spectra close to that of natural scenes (i.e., α = 1.25, Fig. 1C) 

elicited stronger BOLD responses than stimuli with 1/fα spectra outside of the natural range 

(i.e., α = 0.25 or α = 2.25). Interestingly, this apparent tuning of the cortex to the spectra of 

natural stimuli is mirrored by visual sensitivity and preference at the behavioral level. 

Discrimination sensitivity, detection sensitivity, as well as aesthetic preference are highest 

for noise stimuli with natural 1/fα spectra and lowest for unnatural 1/fα spectra (Spehar and 

Taylor, 2013; Spehar et al., 2015). This supports the notion that the visual system is tuned to 

the statistical properties of natural scenes. Findings such as these highlight the importance of 

using more complex, naturalistic stimuli in neuroscientific pursuits.

The benefit of complementing studies using traditional, abstract stimuli with those that use 

more ecological stimuli is clear. The use of naturalistic stimuli, however, is still relatively 

nascent, and as such, considerable challenges remain. One such issue is determining how to 

manipulate these naturalistic stimuli with sufficient control and rigor. Seminal early work 

disrupted the temporal narrative by sharp block shuffling of movie segments in the time 

domain to unveil large-scale temporal hierarchies in the cortex (Hasson et al., 2008). The 

wavelet approach outlined in the present manuscript offers an alternative, more nuanced 

opportunity in this direction to turn the focus on hierarchies in the visual system. Our work 

demonstrates that it is possible to parametrically and subtly manipulate the complex 

statistical properties of natural scenes with a high degree of control and flexibility - and that 

the visual system is sensitive to these subtle manipulations.

There are a wide range of ways that wavelets can be used to manipulate stimuli to probe 

functional effects of natural scene statistics in the visual hierarchy, some of which were 

described in Part 1. The neuroimaging study here (Part 2) makes use of one of these, 

demonstrating some of the practical considerations of performing an fMRI experiment using 

wavelet-degraded stimuli. In doing so, we found evidence in support of our main hypothesis 

(that higher hierarchical regions in visual cortex are more sensitive to natural scene 

statistics). These results are convergent with other recent research, using substantially 

different visual stimuli, showing that sensitivity to the distinctive higher-order correlations of 
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natural scenes begins to arise in visual area V2. For example, Freeman et al. (2013) found 

that generated, naturalistic texture stimuli (with higher-order correlations) differentially 

modulated cortical responses in V2 but not V1 compared to spectrally matched noise 

(without the higher-order correlations). Notably, comparable results were found by the 

authors using both fMRI in humans and neural recordings in macaque. Yu et al. (2015) 

similarly showed that many neurons in macaque V2 (but few in V1) are sensitive to higher-

order properties of natural scenes. Rather than degrading natural images as done in the 

present study or constructing stimuli that mimic naturalistic textures (Freeman et al., 2013), 

Yu et al. used binary textures that were highly unnatural, but isolated specific multipoint 

correlations characteristic of natural images (i.e., the statistics of the combinations of 

luminance values that appear in several points of a natural image) (Hermundstad et al., 2014; 

rkacik et al., 2010). Note that the uniform textures generated by Freeman et al. (2013) 

appears more “natural” than the binary textures (Yu et al., 2015), although both can be easily 

visually disambiguated from an actual natural image as they lack the contextual information 

and complex variability present in natural scenes. It is clear then, that although selectivity to 

higher-order correlations in natural images begin to arise in V2, future work is required to 

determine where along the hierarchy further selectivity to additional natural image structure 

emerges.

The human visual system is composed of many functionally distinct cortical visual areas 

(Grill-Spector and Malach, 2004; Zeki et al., 1991). Sensory-driven responses tend to 

decrease as one progress up the visual hierarchy, and as such, our finding that responses to 

all of our stimuli decrease as one progresses up the visual hierarchy is unsurprising. Notably, 

however, we also found that the higher cortical areas appear to be more sensitive to the 

complex visual features - that is, the decrease in responses up the visual stream was more 

pronounced for wavelet resampled stimuli. The present application to fMRI data thus 

suggests that the higher order structure being degraded by the wavelet technique is directly 

related to the complex features that the higher visual areas encode. That is, cells along the 

visual hierarchy become increasingly sensitive to the conditional dependences among 

multiple neurons in lower hierarchical levels, mirroring the complex conditional 

dependences in unaltered natural scenes. Presumably, this effect would be stronger in even 

higher-order areas; however, our data are insufficient to test this. Due to the size and 

orientation of our fMRI acquisition slab, we only have partial coverage of hV4 for most 

participants. In addition, time constraints restricted the number of runs of each retinotopic 

mapping stimulus - limiting the data quality and thus our ability to confidently demarcate 

higher-order dorsal and lateral areas. Future studies could be designed to circumvent this 

issue, for example by having a separate scan session dedicated to the collection of a 

comprehensive, high-quality retinotopic mapping dataset.

One powerful aspect of the wavelet-based approach outlined here is the ability to target 

structure at specific spatial scales. As mentioned, receptive field size and hence spatial 

frequency sensitivity is known to vary both across visual areas as well as across 

eccentricities within a visual area (Dumoulin and Wandell, 2008; Yoshor et al., 2007). By 

combining the experiment with fMRI-based estimates of population receptive field sizes 

(Dumoulin and Wandell, 2008; Zeidman et al., 2018), future studies will be able to take a 

more detailed look at the relationship between cortical activity related to specific scales of 
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natural image structure and the underlying receptive field sizes. Our preliminary results 

suggest that manipulations to coarse scales elicit stronger results across the visual cortex 

than manipulations to the small scales. Interestingly, this is found when wavestrapping the 

noise images (N2) as well as those with structure present (N1). Although the mean 

perturbation across the images and realizations do not show a scale-specific effect, the 

variability is higher at coarser scales (see Fig. 11). Hence the greater responses to coarse 

scale manipulations (S2) compared to the fine scale manipulations (S1) may either reflect 

stronger neuronal sensitivity to coarse scale information or encoding of the trial-to-trial 

variability. In studying the effect of scale, it will also be important to test across the full 

range of spatial scales, rather than only two as done in the present study. Full-range, 

parametric studies are necessary to reveal any important non-monotonicity that might be 

present in the response properties (Rainer et al., 2001).

Although participants in our experiment attended to a fixation task while passively viewing 

raw and altered static natural images presented in successive transitions, it is important to 

note that perception in the wild is embedded in a broader action-perception cycle (Fuster, 

2002). It thus makes sense to not only use wavelet resampling to degrade the spatial and 

temporal statistics, but to do so while participants freely view movies (i.e., with unrestricted 

eye movements). As reviewed above, wavelet resampling is directly applicable to dynamic, 

spatio-temporal stimuli (S2, Sup Movie 1) - and there exists several different ways of 

achieving this: preserving, destroying, or manipulating the complex temporal statistics 

embedded in dynamic natural scenes. Block resampling is one variant of this broader class, 

preserving the temporal structure within blocks but degrading the temporal spectra - 

precisely and only at the time-scale of the block.

As a final consideration, image manipulations of higher order statistics could be made at the 

time of saccades, during fixational eye movements, or during scene transitions - introducing 

subtle stimulus errors into the active stream of visual perception, while avoiding low-level 

changes in luminance, contrast, or spectra. This inclusion of parametric prediction errors 

would allow novel probes of the predictive coding principles of visual function (Edwards et 

al., 2017; Friston, 2005; Vetter et al., 2012). Other recent work has used wavelet resampling 

to construct dynamic stimuli from a static natural scene by cyclically permuting the wavelet 

scales, hence tuning a static scene in and out of its (preserved) noise context (Koenig-Robert 

and VanRullen, 2013; Koenig-Robert et al., 2015). This approach allows cyclic presentation 

of both expected and surprising semantic content (of the natural scene) while keeping the 

spectral properties of the stimulus constant (unlike a traditional event related paradigm), thus 

probing cortical hierarchies for their role in predictive coding and error responses (Gordon et 

al., 2019a, 2017, 2019b).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Difference between a natural image and noise. (A) Natural image. (B) Random noise. (C) 1/

fα noise. (D) Spatial frequency spectra for A-C. Note that the image in A is from the Zurich 

natural images database (Einhauser and Konig, 2003).
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Fig. 2. 
Using wavelets to degrade scale-specific natural image structure. (A) Intact natural image. 

(B) Natural image with fine scale structure degraded. (C) Natural image with coarse scale 

structure degraded. (D) Natural image with all scales of structure degraded except the fine 

scale (arrows indicate examples of remaining fine scale structure). (E) Natural image with 

all scales of structure degraded (i.e.,1/fα noise). (F) Spatial frequency spectra for A-E. 

Lowercase a-e show a zoomed-in view (upper-right quadrant only) of images A-E to aid 

observation of the manipulations.
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Fig. 3. 
Using wavelets to degrade a spatially-restricted area. (A) Intact natural image with dashed 

circle denoting the targeted foveal region. (B) Natural image with only fine scale structure 

degraded near the fovea. (C) Natural image with all structure degraded near the fovea. 

Lowercase a-c show zoomed-in views of the central regions in A-C.
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Fig. 4. 
Application to color images. (A) Intact natural image with RGB color channels. (B) Image 

with color channels degraded independently. (C) Image with color channels degraded 

identically. Note that the color palette is preserved in C but not B. This can most easily be 

seen by the examining the body of the wombat, which is tannish/brown in both A and C but 

mottled with red, green, and blue patches in B. Lowercase a-c show a zoomed-in view of the 

images for closer examination. Source photo from author A.M.P.
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Fig. 5. 
Extension of wavestrapping to movies. (A) Temporal spectrum from a film clip shown as the 

power spectral density (PSD) across temporal frequency. Note that the spectrum was 

calculated from the red channel, middle pixel of Supplementary Movie 1 using a 10 second 

window and 50% overlap. (B) Schema for two-step wavestrapping of films. In Step 1, each 

frame and at each time point is spatially resampled (indicated by orange arrows). The 

resampling procedure is identical at the same scale for each time point and each frame. In 

Step 2, the time series from each pixel from the spatially wavestrapped data is resampled in 

the temporal dimension (indicated by yellow arrows). The resampling procedure at the same 

scale for each voxel is identical. All resampling is performed in the wavelet domain after 

appropriate wavelet decomposition (two-dimensional for Step 1 and one-dimensional for 

Step 2).
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Fig. 6. 
(A) Images used to demonstrate the thermodynamic properties of natural scenes. (B) 

Variability vs. wavelet scales. Each colored line is a single permutation of the corresponding 

image at one scale. Image variability is measured as the root mean squared differences 

between the original and scrambled image across pixels. Black lines show image averages. 

(C) Mean (black) across all four images ± standard deviation (red). There are no trends in 

mean image variability.
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Fig. 7. 
(A) Wavelet-based randomization (“heating”) of a natural scene, increasing incrementally 

from the original scene to fully randomized in steps of 25%. (B) Variability amongst an 

ensemble of random realizations increases monotonically with increasing depth of 

randomization at all scales. (C) However, some scales (here fine and coarse) show slightly 

greater variability with randomization than others (here mid-scales).
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Fig. 8. 
(A) Wavelet-based ordering (“cooling”) of a natural scene, increasing incrementally from 

the original scene to fully ordered in steps of 25%. (B) Variability amongst an ensemble of 

realizations increases to a maximum at approximately 50% of wavelets ordered, 

corresponding to a mixture of natural and ordered phases, then decreases again as the single 

ordered state is approached. (C) Some scales show greater variability with ordering than 

others.
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Fig. 9. 
Natural images (middle column) reside near a critical boundary between order and disorder. 

Incremental, wavelet-based randomization (or heating) and ordering (or cooling) lead to 

fully disordered (right most column) vs. fully ordered states (left most column), respectively. 

Sandwiched between the images are plots of the variability seen across both scale and the 

depth of ordering or randomization when cooling or heating the natural image.
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Fig. 10. 
Defining visual area ROIs. For each individual subject, early visual cortex was partitioned 

into V1, V2, and V3 ROIs using polar angle retinotopic mapping data. On the far left is an 

inflated cortical surface model for the left hemisphere of a single subject. Next to that is a 

zoomed-in view of the occipital cortex showing the polar angle retinotopic map (un-

thresholded). On the right is the same zoomed-in view of the occipital cortex, showing the 

three visual area ROIs overlaid upon the curvature pattern.
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Fig. 11. 
Activation across the early visual hierarchy for intact vs. degraded natural images. (A) 

Group averaged β-weights for all experimental conditions in each visual areas ROI. Error 

bars represent SEM across individuals. (B) β-weights in each visual area ROI for the 

different types of image manipulations (N1: degrade from natural image, N2: degrade from 

noise, N3: restore from noise), collapsed across all other factors. (C) β-weights across 

eccentricity for both scale conditions in each visual area, collapsed across other factors. Ecc 

1 to Ecc 6 range from the fovea to the periphery (0.06 ≤ Ecc 1 ≤ 0.48; 0.48 ≤ Ecc 2 ≤ 0.95; 

0.95 ≤ Ecc 3 ≤ 1.36; 1.36 ≤ Ecc 4 ≤ 1.93; 1.93 ≤ Ecc 5 ≤ 2.74; 2.74 ≤ Ecc 6 ≤ 3.89°). For (B) 

and (C), whiskers with caps show min/max, bottom and top edges of boxes indicate 25th and 

75th percentile, and central line marks the median across all participants.
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