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Abstract

Frequently, vital rates are driven by directional, long-term environmental

changes. Many of these are of great importance, such as land degradation, cli-

mate change, and succession. Traditional demographic methods assume a con-

stant or stationary environment, and thus are inappropriate to analyze

populations subject to these changes. They also require repeat surveys of the

individuals as change unfolds. Methods for reconstructing such lengthy pro-

cesses are needed. We present a model that, based on a time series of popula-

tion size structures and densities, reconstructs the impact of directional

environmental changes on vital rates. The model uses integral projection mod-

els and maximum likelihood to identify the rates that best reconstructs the time

series. The procedure was validated with artificial and real data. The former

involved simulated species with widely different demographic behaviors. The

latter used a chronosequence of populations of an endangered cactus subject to

increasing anthropogenic disturbance. In our simulations, the vital rates and

their change were always reconstructed accurately. Nevertheless, the model

frequently produced alternative results. The use of coarse knowledge of the

species’ biology (whether vital rates increase or decrease with size or their

plausible values) allowed the correct rates to be identified with a 90% success

rate. With real data, the model correctly reconstructed the effects of disturbance

on vital rates. These effects were previously known from two populations for

which demographic data were available. Our procedure seems robust, as the

data violated several of the model’s assumptions. Thus, time series of size struc-

tures and densities contain the necessary information to reconstruct changing

vital rates. However, additional biological knowledge may be required to provide

reliable results. Because time series of size structures and densities are available

for many species or can be rapidly generated, our model can contribute to

understand populations that face highly pressing environmental problems.

Introduction

Understanding the effects of the environment on popula-

tions is central to ecology (Heller and Zavaleta 2009;

Pereira et al. 2010; Crone et al. 2011). However, many

environmental drivers of population change, such as land

degradation, climate change, pollutant buildup, ocean

acidification, and succession, operate on a long-term,

directional basis (Singh 1998; Parr et al. 2003; Kroeker

et al. 2010; Wake 2012). The timescales involved make

the study of the impact of environmental change on vital

rates (survival, growth, and reproduction) impracticable.

The correct identification of such impact will allow con-

servation efforts to be directed more appropriately, to

better understand the basis of population change, or even

to track the evolutionary changes in life-history traits

through time. This calls for specific methods that tackle

this problem (Doak and Morris 1999; Pereira et al. 2010;

Crone et al. 2011).

Traditional demographic modeling does not provide a

solution, as it often assumes that environment change

does not occur in a directional fashion (Caswell 2001;
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Ellner and Rees 2007). Nevertheless, if the environmental

driver we are studying changes directionally, population

would never reach stability, which is usually the focus of

traditional models. Assuming stability in a changing pop-

ulation leads to biased conclusions (Koons et al. 2005).

Furthermore, traditional models use repeat surveys of the

individuals as input (Caswell 2001). Doing this for the

decades or centuries required for environmental change

to unfold is impracticable. A substitute, but also costly,

approach would be to survey over a representative time

period the individuals of a series of populations at differ-

ent stages of environmental change (Dahlgren and Ehrl�en

2011). However, if we are to accomplish global goals such

as the assessment of the conservation status and long-

term threats for all plant species by 2020 (COP 10 2010),

a faster and cheaper alternative to such traditional demo-

graphic methods becomes imperative.

A viable approach would be to use time series of sta-

tic, population-level data, such as population densities

and structures, to reconstruct the species vital rates and

their change through time as the environment changes.

Such datasets have been recorded over several years for

different species in the context of forestry, hunting, fish-

eries, and long-term ecological research (Waters 1999;

Hobbie et al. 2003; Parr et al. 2003; Clucas 2011). Also,

this kind of data can be rapidly collected for several

populations that represent different stages of environ-

mental change, and integrated into a chronosequence

(Matthews and Whittaker 1987; Mori et al. 2007). This

reconstruction of vital rates from static data has been

successfully applied in the context of fisheries stock

assessment (e.g., Fournier et al. 1998; Quinn 2003; Mau-

ry et al. 2005; Hilborn 2012). However, the translation

of these models into an ecological context is not

straightforward, as the amount of information and bio-

logical knowledge available in fisheries rarely exists for

noncommercial species (Quinn 2003). For instance, the

available data for most species will usually be sparsely

distributed in time, and not surveyed annually as in fish-

eries. Also, the demographic behavior of the species that

ecologists study can be quite complex, as in many

species the vital rates depend on size, rather than on

age. In plants, for example, organisms having originally

different sizes may end up having the same size after

1 year, due to growth, shrinkage, or stasis (Caswell

2001), thus complicating the relationship between size

structure and vital rates. Therefore, a model is needed

that accommodates these complexities as well as a wide

variety of life cycles.

As a time series of static, population-level data does

not inform on the fate of individuals, more than one

combination of vital rates would be expected to lead to

the same series. For instance, a high proportion of

seedlings in a population may result from a large fecun-

dity, a low seedling mortality, or impediments to seedling

growth. In a model that uses population-level data, Ghosh

et al. (2012) envisage this problem. However, as their aim

is to forecast population structures, they circumvent the

problem by making assumptions on the vital rates that

simplify their model but that do not reflect their behavior

at the individual level (Ellner 2012). However, if we are

interested in correctly reconstructing vital rates, we can-

not make such assumptions.

In this article, we develop a model that, based on a

time series of population size structures and densities,

reconstructs the shifts in vital rates caused by a direction-

ally changing environmental driver. The model was vali-

dated with artificially generated data and with data from

a threatened cactus subject to long-term human distur-

bance. We show that, although more than one scenario

may be obtained, the correct solution is always provided

by the model, and that basic information on the biology

of the species is frequently enough to discard alternative

solutions.

The Model

Our model attempts to reconstruct the vital rates (sur-

vival, growth, and reproduction) and their change over

time based on a time series of size structures and densi-

ties. If these rates change as the environmental driver

shifts, the structure and density of the population would

be expected to evolve accordingly. The model explores a

variety of vital rates, seeking the ones that produce the

size structures and densities that best resemble the

observed time series. A succinct description of the model

is presented below. Please refer to Appendix S1 for the

full details.

The vital rates of the size-structured population were

modeled by means of an integral projection model (IPM;

Easterling et al. 2000). An IPM integrates the vital rates

into a function k known as the kernel. This function

establishes the log-sizes y that individuals of log-size x

may reach from time t to t + 1, as well as the number

and sizes of their descendants. The IPM is expressed

through the equation

nðy; t þ 1Þ ¼
Z

kðy; x; tÞ � nðx; tÞdx; (1)

where n is the size structure of the population. Note that,

in our model, k is a function of time because the vital

rates are driven by environmental change.

The kernel comprises the functions associated to the

survival probability, s, growth, g, number of newborns, f1,

and the sizes of these, f2, which relate as
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kðy; x; tÞ ¼ sðx; tÞ � gðy; x; tÞ þ f1ðx; tÞ � f2ðy; tÞ: (2)

We used the following simple functions to determine

these vital rates:

logitðsðx; tÞÞ ¼ b1 þ b2 � x þ b3 � t þ b4 � x � t
gðy; x; tÞ� normalðl ¼ b5 þ b6 � x þ b7 � t

þ b8 � x � t; r2 ¼ b9Þ
logðf1ðx; tÞÞ ¼ b10 þ b11 � x þ b12 � t þ b13 � x � t

f2ðy; tÞ� normalðl ¼ b14 þ b15 � t; r2 ¼ b16Þ

(3)

As can be seen from these equations, the vital rates and

their change through time are determined by 16 para-

meters.

To assess whether any given set of 16 parameter values

is able to reproduce the observed time series, we first cal-

culated the vital rates for every year in the period over

which environmental change takes place by substituting

the parameter values in equations (3). We then calculated

the time series of size structures through the iteration of

equation (1). To do so, an initial size structure, n(x,t0), is

required. If no environmental change had occurred before

the initial time (i.e., if the environment had remained

constant), it would be safe to assume that the population

was in its stable state (Caswell 2001). Therefore, in the

first iteration of equation (1), we used the stable (asymp-

totic) size structure associated with the vital rates at the

initial observed time. The time series of densities was

obtained by integrating the size structures. Finally, we

compared these two time series with the observed ones

through the composite log-likelihood:

l ¼ ln þ w � ld; (4)

where ln and ld are the log-likelihoods associated with the

size structures and with the densities, respectively, and w

is a weighting factor of the relative importance of the fit

of the observed size structures versus that of the observed

population densities. Because at each observed point in

time there is only one datum for density, but several for

size structure, not using a weighting factor could belittle

the contribution of density to l. The right value for w

was determined experimentally (see below). The values of

the 16 parameters that resulted in the highest l-value

determined the kernel that best resembled the observed

data.

Model Validation

We performed two validation procedures: one using 10

artificial species for which we simulated time series of size

structures and densities, and another using the threatened

cactus Mammillaria dixanthocentron Backeb. The latter

data come from a chronosequence of 11 populations that

represent different stages of degradation due to chronic

anthropogenic disturbance (CAD). For two of these pop-

ulations, the vital rates were known from repeat surveys

(Ureta and Martorell 2009). Both validations were con-

ducted by comparing the vital rates reconstructed by the

model with the known ones.

Artificial species

We randomly generated the vital rates of 10 different arti-

ficial species by: (1) Establishing intervals for the 16 ker-

nel parameters ample enough to accommodate a wide set

of possible demographic behaviors: each vital rate could

relate with size and time in a positive or negative way, or

even not be affected by any of them. (2) Randomly

choosing parameter values within these intervals to obtain

the kernel for each artificial species. The resulting species

had very different demographic behaviors (see Appendix

S2 for details and Appendix S3 for a graphical representa-

tion of these behaviors).

We then generated a time series of size structures and

densities for each species by (3) iterating the kernel over

a time interval of 100 years following the procedure

described in the Model section. (4) Randomly choosing

10 points in time in the range 1–100 to simulate the likely

scenario in which the population is not systematically

sampled, and data are available for a few, sparse years.

(5) Generating samples of the population at the selected

points in time. We assumed that sampling effort was

constant, so that sample size was proportional to density.

To introduce sampling error, the number of individuals

sampled at each of the 10 points in time was simulated

from a lognormal distribution with mean equal to the

population density at that time. The size of each individual

was obtained through a Monte Carlo simulation using

the size structure of the year in question as the probabil-

ity distribution (see Appendix S2).

We used the simulated time series as input to the model.

To maximize the likelihood (eq. 4), we used the Automatic

Differentiation Model Builder (ADMB; Fournier et al.

2012; see Appendix S4 for the model code). As it happens

when complex functions are optimized, the program may

reach different maxima depending on the starting parame-

ter values (Myung 2003). Therefore, we tried 41 different

initial sets of values. These were generated by introducing

increasingly larger errors (0, 5, 10, 25, and 50%) to the

parameter values of the known kernel (see Appendix S2).

This allowed us to evaluate how close the initial values had

to be from the known ones to correctly reconstruct the ker-

nel. Additionally, to experimentally assess the effect of w

(eq. 4), the 41 sets of initial values were run with w-values
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of 0, 1, 10, 100, and 1000. To assess whether the vital rates

were correctly reconstructed, the Pearson correlation coef-

ficient between the known and obtained survival, growth,

and fecundity functions (s, g, and f1 in eq. 2) was calcu-

lated. These three values, together with the correlation

between the reconstructed and observed densities (rd), were

averaged and a mean coefficient (rm) was calculated and

used as an overall measure of fit.

When more than one solution is obtained by an opti-

mization procedure, the researcher needs criteria to dis-

card the incorrect ones. Two different approaches may be

used. First, the researcher may resort to goodness-of-fit

measures such as the likelihood associated with the size

structures (ln in eq. 4), or the correlation between the

reconstructed and observed densities (rd). Second,

the decision may be based on biological knowledge of the

species: the researcher may discard solutions that do not

match the expected relations between size and vital rates,

or the values of the latter are unrealistic.

Real species: Mammillaria dixanthocentron

Mammillaria dixanthocentron (Fig. 1) is a long-lived

globose cactus that grows in tropical and temperate

forests in the Mexican states of Puebla and Oaxaca. The

region has experienced CAD since pre-Columbian times

(McAuliffe et al. 2001), resulting in a mosaic of patches

at different stages of degradation. Through demographic

models, we know that this species responds negatively to

CAD (Ureta and Martorell 2009).

CAD is characterized by a long-term series of frequent,

low-intensity disturbance events (Singh 1998). It is a mul-

tivariate driver typical of traditional management forms

such as extensive grazing, branch cutting, and extraction

of nontimber forest products, and has a cumulative effect

over time (Singh 1998; Martorell and Peters 2009). Thus,

it can be assumed that more disturbed populations have

been exposed to CAD for a longer time, and that in the

past they resembled the less disturbed populations (i.e.,

chronosequence assumptions hold; Pickett 1989).

Eleven populations that differed in CAD were studied.

In each one, the individuals in a variable number of

50 9 4 m random transects were counted, and their

diameter and height measured (see Martorell and Peters

2009 for details). Plant size was defined as the volume of

a cylinder. We measured CAD intensity using the Marto-

rell and Peters (2009) index. The rate of increase in dis-

turbance was estimated by measuring CAD at 32 sites

(eight of which were M. dixanthocentron’s study sites) in

1998 and 2010. We found that CAD increases linearly

over time, with an annual rate equal to the mean differ-

ence in CAD intensity among these 32 sites divided by

12 years. With this figure, we estimated the times since

CAD onset for the 11 study sites.

A modification to the kernel was required to achieve

biological realism: as in this species survival probability

increases with size, the logistic survival function used for

artificial species (s in eq. 3) may estimate zero mortality

in the largest individuals. To avoid this, we modified the

function by introducing an upper limit different from

one that was allowed to change through time. This limit,

smax(t) = [1 + exp(b1 + b2 � t)]�1, was multiplied by the

original function, raising the number of kernel parameters

to 18.

We ran the model using the size structures and densities

observed at the 11 sites as input. As before, we set wide

parameter intervals, allowing ADMB to select from very

contrasting demographic behaviors. However, the intervals

of the parameters associated with the effect of size over sur-

vival and fecundity were restricted to increase with size as

it happens in cacti (God�ınez-�Alvarez et al. 2003). Despite

this restriction, the interaction between size and time

(which could not be restricted without biasing the results)

could still modify the relation between size and survival/

fecundity as time passes by. One hundred starting points

were randomly selected within the parameter intervals, and

we used the same w-values as before. We compared the

reconstructed vital rates with the known ones of two

M. dixanthocentron populations that differ in the intensity

of CAD they experience (Ureta and Martorell 2009).

Results

Validation with artificial species

In all the artificial species, a solution with an rm higher

than 0.9 was obtained, indicating that the correct vitalFigure 1. Mammillaria dixanthocentron Backeb.
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rates were reconstructed very accurately (see Appendix S3

for a graphical representation of the solutions). However,

incorrect solutions were also produced in nine of these

species (Table 1). The goodness-of-fit approach to solu-

tion selection was ineffective, as neither ln nor rd were

consistently higher for the correct one (Table 1). The bio-

logical knowledge-based approach enabled us to distin-

guish two types of incorrect results. Type 1: Solutions

that grossly misrepresent the species biology. In these

cases, the reconstructed relationship between size and

vital rates either had an opposite sign to that known for

the species, or strong size dependence of these rates was

reconstructed when none existed. Most incorrect solu-

tions (94%) were in this category. Type 2: Biologically

plausible solutions that could not be discarded. For exam-

ple, all types of solutions were obtained for the problem-

atic species 3. The correct solution accurately

reconstructed the actual vital rates (Fig. 2a and b). A

type-1 solution was discarded based on its incorrect

reconstruction of fecundity: in this case, the number of

seedlings was independent of plant size, while a positive

relationship could be expected for the species (Fig. 2c).

The correct relationship between size and vital rates was

found in a type-2 solution, where fecundity was errone-

ously reconstructed as decreasing with time (Fig. 2d).

When population densities were not considered

(w = 0), the obtained solutions were often incorrect

(Table 1). Low, nonzero w-values frequently produced

the best results: after discarding type-1 incorrect results, a

single correct solution remained in seven species with

w = 1 (species 1, 4, 5, 6, 7, 9, and 10; Table 1). However,

in species 3 with this w-value, a type-2 result arose which

wrongly reconstructed the change through time of the

survival probability (solution 3.2 in Appendix S3);

although higher w-values produced good results, no crite-

ria could be used to discriminate the wrong reconstruc-

tions from the correct ones. For species 2 and 8, no

biologically realistic solutions were produced with

w < 1000 and 100, respectively; with these values, a single

realistic solution was obtained. Nevertheless, large w-

values increased the chances of observing type-2 results in

most species (Table 1).

Increasing the error in the vector of starting parameter

values diminished the probability of finding the correct

solution (binary regression of the ratio of correct:incor-

rect solutions on the amount of error: v2 = 5.51,

P = 0.018). However, the model was relatively robust, as

the probability of finding a correct solution changed from

0.59 if the initial parameter values have no error, to 0.49

if error is large (Fig. 3, solid line). The ratio of type-2:

type-1 incorrect solutions did not depend on the amount

of error in the initial guess (v2 = 3.08, P = 0.079; Fig. 3,

dotted line). In some cases, ADMB was unable to find

any solution at all. This occurred more frequently when

poor initial values were provided (v2 = 198.79, P < 0.001;

Fig. 3, dashed line), meaning that more computational

time is required to find a solution when less biological

knowledge is available.

Validation with the real species

The application of the model to M. dixanthocentron

resulted in a solution that was similar to the vital rates

obtained from the two populations (Fig. 4a–c). The 500

ADMB runs (100 starting points with five w-values)

resulted in the identification of 10 solutions: three with

w = 0, two with w = 1, four with w = 100, and one with

w = 1000. A visual inspection of the reconstructed vital

rates allowed to discard nine of these solutions as biologi-

cally unrealistic (i.e., type-1 solutions; see Appendix S5):

eight presented survival probabilities over 80% for seed-

lings, which are known to present very low survival prob-

abilities in cacti (God�ınez-�Alvarez et al. 2003; Ortega-Baes

et al. 2010). Another solution was discarded as its fecun-

dity decreased with size, a pattern not expected in plants

(Aarssen and Taylor 1992; Weiner et al. 2009). Therefore,

only one solution was considered as biologically realistic.

This solution reached the limits of seven parameter inter-

vals; however, increasing such intervals did not result in

better solutions, but in unrealistic ones such as cacti pro-

ducing extremely large seedlings (not shown).

The demographic processes associated with the solution

were similar to the ones obtained through the repeat

survey of individuals (Fig. 4a–c). The model correctly

reconstructed the effects of CAD: as disturbance increases,

small individuals have lower survival, growth is not

affected, and fecundity is reduced regardless of size

(Fig. 4d–f). The relationship of size and vital rates was

also correctly reconstructed, but the exact values of the

latter were not identical to the known ones: the estimated

survival of adults (Fig. 4a) and the size of seedlings were

larger than the real ones, whereas the fecundity was

smaller (Fig. 4c).

Discussion

The model we present constitutes a viable alternative to

model vital rates when repeat surveys of individuals are

too costly, labor intensive, or simply impossible to con-

duct. Its major advantage is the data that it uses as input:

if we want to understand the demographic response of a

species to long-term environmental change, we only

require a series of size structures and densities distributed

over time. The model was successful using even very

incomplete time series as input. Artificial data showed

that the model is able to achieve its goal with a 90%
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success rate when its assumptions are met. Moreover, real

data showed that our procedure is robust to violations of

the assumptions. Nevertheless, a rough knowledge of the

species biology is essential to discard biologically implau-

sible (type-1) solutions.

Artificial species: the ideal scenario

The simulation of artificial populations showed that the

model successfully reconstructs the sought vital rates

under a scenario where all assumptions were fulfilled (see

(a)

(b)

(c)

(d)

Figure 2. Different kinds of solutions produced by the model. (a) Known vital rates and their change through time for artificial species 3;

(b) correct reconstruction; (c) incorrect reconstruction that could be discarded (type-1 solution) because the size-fecundity relation is not expected;

(d) erroneous reconstruction that was biologically feasible (type-2 solution) but wrongly estimated that fecundity decreases with time.
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Appendix S1 for a list of model assumptions). The demo-

graphic behavior of the artificial species was always

correctly reconstructed. Thus, temporally sparse size

structures and densities contain the necessary information

to reconstruct the correct species’ response to long-term

environmental change. However, this information was not

sufficient, as additional knowledge is required to discrimi-

nate among competing solutions, which were obtained in

60% of the cases. Nevertheless, even biological knowledge

may sometimes not suffice, as type-2 solutions can also

occur.

The question then arises on which solution represents

the correct reconstruction. Traditional statistical methods

used for this purpose were unsuccessful. From real data,

the user can only calculate the correlation coefficient

between the observed and estimated densities (rd) and the

likelihood associated with the size structures (ln). How-

ever, these statistics did not always have the highest values

associated with the correct solution, and thus should not

(nor those statistics derived from likelihood, such as

Akaike’s information criterion) be used as a selection cri-

terion. This called for a different selection strategy.

The successful identification of the correct solution can

frequently be achieved through an assessment of the

results using minimal biological knowledge. This was the

case of the real dataset and in 90% of the artificial species

(Table 1). Most of the incorrect solutions were discarded

because the relationship between size and vital rates was

opposite to that expected for the species. This is a very

general level of knowledge: for instance, it is known that

larger plants have higher fecundities (Aarssen and Taylor

1992; Weiner et al. 2009), and that survival is lower in

seedlings than in established plants (Harper and White

1974). Also, the user would expect parameters to take

certain values: for example, in mammals litter-size ranges

are well known (Haysson et al. 1993). This is indeed a

large percentage considering the limited information

available to the model and the researcher. The success

rate can also be increased if the values used to initiate the

likelihood maximization procedure are accurate (Fig. 3).

Finally, biological knowledge may be incorporated directly

into the analysis through a Bayesian framework, which

has been shown to be successful in fisheries models (Punt

and Hilborn 1997). However, this requires a much more

detailed knowledge of the species life history.

The identification of a correct solution also depends on

the factor weighting the fit of the population densities

versus that of the size structures (w in eq. 4). In 80% of

the cases, the lowest nonzero w-value for which a solution

was obtained produced the correct reconstruction of the

vital rates (Table 1). In the remaining 20%, increasing the

value of w until a result is obtained increases the proba-

bility that a correct solution is identified without further

intrusion of the researcher. Such increase will be expected

to be necessary when the size structures are noisy or not

sufficiently informative about the effect of the environ-

mental driver. For example, in artificial species 2, a cor-

rect solution was found with w = 1000 but not with

lower values (Table 1), probably because size structures

did not change appreciably through time (not shown).

However, large w-values often produce incorrect results,

probably because they lead to overfitted solutions where

even sampling errors in density are accounted for by the

model. Empirically, it seems that keeping the biologically

plausible solution with the lowest w-value (excluding

zero) will usually be the correct choice. It may be a good

idea to explore larger w-values; this increases (marginally)

the probability of reconstructing the vital rates correctly

at the cost of rising substantially the chances of finding

erroneous type-2 solutions. This sets a trade-off that the

researcher should consider depending on the aims of the

research.

Real species: a challenge

Once we showed that the model worked under ideal con-

ditions, we used actual data to evaluate its performance

under more realistic circumstances. The model correctly

reconstructed the effect of disturbance on the vital rates

of the two populations for which demographic data were

available. Nevertheless, basic biological knowledge was

again required to screen among different solutions.

Figure 3. Probabilities of obtaining different results depending on

the error in the initial parameters provided to the model. Dashed line:

probability of finding versus not finding a solution. Dotted line: ratio

of type-2 to type-1 incorrect solutions (see Results). Solid line: ratio of

correct to incorrect solutions.
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The reconstructed vital rates were in agreement with

what has been previously proposed for cacti sensitive to

disturbance: their populations (including M. dixanthocen-

tron’s) decline when seedling establishment is reduced by

disturbance-driven changes in the environment (Hern�an-

dez and God�ınez-�Alvarez 1994; God�ınez-�Alvarez et al.

2003; Ureta and Martorell 2009). In our case, the recon-

structed vital rates showed that CAD negatively affects the

number of seedlings that get established and seedling sur-

vival. Thus, the reconstruction correctly indicates that

CAD diminishes seedling performance.

The results for M. dixanthocentron reveal a possible

source for deviations in the reconstructed vital rates from

the actual ones. Compared with the known rates, the esti-

mated fecundity was smaller and seedling size was larger.

It is possible to envisage several scenarios in which

approximately the same population structure will result

from the balance between the size and number of seed-

lings produced: given that small seedlings have a very low

survival, producing few large seedlings will have a similar

effect on population structure than producing many small

ones. These solutions are likely to have similar likeli-

hoods, so it would be difficult to favor one over another.

However, it seems that this has no impact on the recon-

structed change in vital rates, which is the main motiva-

tion for using our model.

Previous biological knowledge becomes more relevant

when dealing with species for which poor data are avail-

able. Some parameters of the reconstructed vital rates

were found at the limits of the parameter intervals.

Extending the latter produced absurd results, suggesting

that our initial selection was sound. Therefore, when data

are scarce or violate model assumptions, special attention

should be put when establishing parameter intervals or

prior distributions as they may largely influence the

results.

The system we studied was in fact a challenge for the

model, as the data we used as input violated many of its

assumptions (Appendix S1). First, time was measured

with error: it was estimated from a disturbance index, an

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4. Reconstructed vital rates of

Mammillaria dixanthocentron and their change

due to chronic anthropogenic disturbance. Left

panels: comparison of the observed (dotted

lines) and reconstructed (solid line) rates at the

less (blue) and more (red) disturbed sites. Right

panels: reconstructed effect of disturbance on

the vital rates along the entire time axis.
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approximation to the actual CAD experienced by the

population. Furthermore, the assumption that the CAD-

time relationship was linear is not necessarily true (Singh

1998). Second, sites should ideally differ only in CAD, rep-

resenting the different stages experienced by a population

as disturbance increases. However, the actual populations

differed in several aspects. To mention but one, altitude

ranged from 640 to 2500 m a.s.l. Third, climate fluctua-

tions are important in drylands (Schwinning et al. 2004),

and thus vital rates are not likely to be deterministic (Fie-

berg and Ellner 2001; Martorell et al. 2012) as assumed by

our model. Furthermore, given that we are working with

an endangered species, the samples were relatively small

(130 � 97 individuals per site), limiting the amount of

information supplied to the model. Despite these compli-

cations, the model was able to reconstruct correctly the

change in the vital rates due to CAD, an element pointing

toward the model’s robustness.

Advantages and problems

The use of easy-to-obtain information is the main asset

of the model. Size structures and densities require only

the count and measurement of the individuals in a popu-

lation at a single point in time. Comparatively, as demog-

raphers have experienced, years and resources are

required to repeatedly survey the demographic behavior

of even a single population. Yet, we acknowledge that

ours is a quick-and-dirty procedure (U.S. EPA 2002; Ben-

ton 2007), and that the results derived from it have a

lower degree of confidence compared with repeat surveys

of individuals.

Another asset is that the reconstructed vital rates are

free of short-time environmental noise. Repeat surveys of

individuals are highly dependent on the particular envi-

ronmental conditions experienced by the individuals dur-

ing the year(s) of study. In contrast, size structures and

densities reflect a longer time span (Wiegand et al. 2000;

Holmes and York 2003), where benign and adverse years

have been evened out. In this way, the reconstructed vital

rates represent the average behavior of the population as

the environment changes.

However, the model will be expected to give poor

results in two cases. First, when the species does not

respond to environmental change, the model is faced with

data that lack the effect of the phenomenon we want to

model. If so, only sampling error is fitted, making the

reconstruction difficult – if possible at all. In our case, for

one artificial species (number 8; Table 1), no single maxi-

mum was found probably because its survival probability

did not change over time. This situation has also been

observed when estimating growth rates of populations

that do not respond to environmental change (Gonz�alez

et al. 2012).

Second, the reconstruction of the vital rates will be hin-

dered when the functions that describe the behavior of the

species are inappropriate. For instance, a simple logistic

function for modeling survival in M. dixanthocentron

caused the largest individuals to become immortal, affect-

ing all the vital rates (not shown). The use of a modified

survival function with an asymptote different from one suc-

cessfully solved the problem, while depicting the biological

process more realistically. The specific function employed

is probably not so important (Gonz�alez et al. 2012) as long

as it captures the key attributes of the vital rate.

Future directions

Several aspects are in need of evaluation to further

increase our confidence on the model. Biologically, pro-

viding as much information as possible to the model will

probably reduce the number of alternative solutions

obtained. For instance, the function relating size and

fecundity could be easily known by synchronizing data

collection with the reproduction period of the species.

This information could serve to discard competing solu-

tions or included directly in the model.

Some mathematical aspects of the model also require

elaboration. While the case of M. dixanthocentron suggests

that the procedure is robust, we are yet unaware of how

the violation of different assumptions impacts the results.

The researcher may be interested in whether some vital

rates are significantly affected by environmental change,

for which hypothesis testing and model simplification

methods are required. However, we advise that the latter

should be avoided, as discarding effects related with a rel-

evant environmental driver when they do exist (type-II

error) is, from a conservation biology perspective, more

costly than keeping them (Haller 2000).

The modeling of vital rates based on time series of

population structures has been developed over the last

decades by fisheries researchers (Quinn 2003; Angelini

and Moloney 2007; Hilborn 2012), and, in this sense,

population ecologists are way behind them. The success

of fisheries models is encouraging, showing that proce-

dures based on time series have huge potential.
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