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Abstract: The hypoxic microenvironment caused by oral pathogens is the most important cause
of the disruption of dynamic hemostasis between the oral microbiome and the immune system.
Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes
vascular changes. The chronicity of inflammation becomes systemic as a link between oral and
systemic diseases. The vascular network plays a central role in controlling infection and regulating
the immune response. In this review, we focus on the local and systemic vascular network change
mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases.
Understanding how the vascular network influences the pathology of periodontal diseases and the
systemic complication associated with this pathology is essential for the discovery of both local and
systemic proactive control mechanisms.
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1. Introduction: Overview of the Vascular Impact of Periodontal and
Oral Inflammation

Physical barriers are the first lines of defense against pathogenic microorganisms.
The skin covering the outer surface of the body and the mucosal surfaces covering the
internal spaces prevent external agents, including the microorganisms, from penetrating
deeper tissue compartments and causing disease in the host. This notion primarily applies
to bacteria, viruses, and other “foreign” organisms as opposed to physical and chemical
agents. The human body hosts ten times more bacteria than its own cells at any given time
and therefore has its own bacterial species living in complex microbiome communities.
The mouth is among the most microorganism-populated environments in the human
body, where the mucosal surfaces come into contact with the highest number and vari-
ety of microbial species [1]. As shown by the Human Microbiome Project [2], mutual
and pathogenic bacteria groups in the oral cavity present a complex environment where
salivary proteins, glycoproteins, epithelial cell debris, and food debris contribute. Thus,
there is a need for a highly specialized immune surveillance network in such a complex
environment to modulate and stabilize interactions between the host and pathogenic or
commensal bacteria [3]. The oral mucosal immune network is specialized in tissue-specific
immunological tolerance, tissue homeostasis, interactions with microbiome species, and
developing defense.

Immune system balance is critical for a sustained host response. While an inadequate
immune response would facilitate infection, an excessive inflammatory response due to
an overreacting immune system would cause tissue damage to the self [4]. Inflammation
appears to be tissue-specific; however, it can lead to pathologies in distant tissues or organs
when the process becomes chronic. It is, thus, plausible that there is a link between inflam-
matory diseases, considering that mediators, cells, and mechanisms play a similar role
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in local and systemic processes. The earliest evidence for such a link was demonstrated
between periodontal diseases and diabetes as a bi-directional association [5]. As a result of
impaired insulin metabolism in diabetes mellitus, the hyperglycemic environment around
the vessels may cause uncontrolled inflammation. There is also evidence that inflammation
associated with periodontal disease adversely affects glycemic control [6–8]. In patients
with diabetes and periodontitis, systemic inflammation caused by an oral infection may
thus affect vascular endothelial cells with free oxygen radicals and inflammatory media-
tors. As a result, endothelial cells exposed to oxidative stress may contribute to diabetes
pathologies with increased insulin resistance, suggesting that a link between periodontal
diseases and systemic pathologies may be through vascular dysfunction and mediated
by endothelial cells. Indeed, later studies demonstrated that cardiovascular diseases as-
sociated with atherosclerotic changes might be exacerbated by periodontal infection and
inflammation, emphasizing the vascular link as a potential pathogenetic mechanism where
oral pathogens were detected in atherosclerosis plaques [9].

Bacteremia, which impairs vascular hemostasis, can cause a series of reactions that
cause the release of prothrombotic mediators from endothelial cells and shift vascular
tone in the vasoconstrictive direction [10]. As a result, lipid peroxidation increases and
helps develop atherosclerotic plaque [11–13]. The oral pathogens can modify low-density
lipoproteins [14], activating prothrombotic factors and promoting foam cell formation in
the vessel. Decrease in nitric oxide release, oxidative stress, and increase in angiotensin II
causes loss of function in the vessel. An inflammatory response occurs in the vessel, the
vessel’s destruction, and plaque formation on its surface. In particular, the decrease in
nitric oxide bioavailability triggers inflammation from endothelial cells.

The relationship between atherosclerosis and periodontitis involves the release of
periodontal disease-related pro-inflammatory cytokines and acute-phase proteins in cir-
culation, changing vascular endothelial cell function. Studies have shown that patients
with atherosclerosis and periodontitis have similar cytokine profiles [1,15–17] with high
pro-inflammatory cytokines such as IL-6 [18], TNF-α [19], and acute-phase proteins
(e.g., CRP) [18,20] in serum. These inflammatory mediators can trigger endothelial cell
activation, leading to vascular inflammation, mononuclear cell inflammation, adhesion
molecule expression, platelet aggregation, foam cell formation, and atherosclerotic plaque
formation. Strong evidence for this link comes from studies that showed a decrease in early
atherosclerotic plaque formation and systemic inflammation after periodontal treatment [21,22].

Rheumatoid arthritis (RA) and chronic periodontitis also have similar pathological
processes. In both diseases, chronic inflammatory process, soft and hard tissue destruction,
the release of pro-inflammatory cytokines and immune cell inflammation during active
periods of disease, osteoclast differentiation, and maturation by RANK-L pathway acti-
vation (nuclear factor kappa B-ligand) are observed [23,24]. In addition, both diseases
cause an increase in serum CRP and systemic inflammation [19,25] responsible for tissue
destruction. In the context of RA, a “two-hit” mechanism was suggested to explain its
association with periodontal disease [1]. According to this theory, the first hit is that the
oral pathogen initiates the pathogenesis of RA by impairing tolerance. The second hit
involves systemic inflammation that increases circulating biomarkers associated with oral
bacteria. This inflammatory induction is thought to increase the activation of cells, causing
tissue destruction and osteoclast differentiation and activity in both the synovium and oral
tissue. Oral pathogenic bacteria can enter the circulation and reach the synovial fluid as
shown by detecting Porphyromonas gingivalis [25], Treponema denticola, Prevotella intermedia,
Prevotella nigrescens, Tannerella forsythia, and Fusobacterium nucleatum DNAs in synovial
fluid of RA patients [26]. In particular, the contribution of P. gingivalis to the pathogenesis
of RA has been demonstrated [27–29]. P. gingivalis can form neoepitopes through antigen
mimicry, one of the escape mechanisms of bacteria from the immune system [30]. These
epitopes cause citrullination of peptides at the protein folding stage using the peptidyl
arginine deiminase (PAD) enzymes [31]. P. gingivalis citrullination presents its proteins
and host proteins as new epitopes to the RA-specific genetic risk factor HLA DRB1*01 and
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DRB1*04 alleles. After antigen presentation, the immune system will initiate a reactive
T cell response specific to autoantigens. These cells would then migrate to the synovial
fluid and initiate the pathogenesis with the formation of autoantibodies. As a result, local
inflammation may progress in the periodontium and joint capsules of RA patients via Fc
and C5a receptors [32].

Early studies on the link between IBD (inflammatory bowel disease) and periodontal
diseases suggested that mucosal inflammation derives from common pathogenesis in
both processes [33,34]. IBD is characterized by invasion of commensal bacteria into the
subepithelial space or lamina propria and has two major forms, ulcerative colitis (UC) and
Crohn’s disease (CH). Bacterial invasion triggers a strong and unregulated inflammatory
response that leads to increased epithelial permeability, intense neutrophil infiltration,
and mucosal damage with impaired hemostasis. There are two hypotheses for the loss
of immune tolerance to commensal bacteria. The first of these is a genetic predisposition
that leads to an irregular and unbalanced mucosal immune response. The second is the
changes in the intestinal microbiota composition that will provoke the normal inflammatory
response. It is likely that both hypotheses contributes to the pathogenesis. Although the
linkage mechanisms between periodontal disease and IBD are not yet fully understood,
bacterial etiology, formation of dysbiosis, and the mechanisms of the similar immune
response against dysbiosis suggest a relationship between the two diseases. Recent studies
have provided substantial evidence for this association [35]. Comparing CD and UC
patient microbiome and microbiome samples from healthy individuals, it was shown
that oral pathogens Firmicutes and Fusobacteria were dominant in patient samples, but the
normal flora bacteria Bacteroidetes and Actinobacteria were found in healthy individuals [36].
The entry of bacteremia from the oral cavity, albeit at a low level and chronic, into the
system and especially the enteral spread of gastric acid-resistant oral pathogens cause
colonization of oral bacteria located in the gut [37]. Moreover, in periodontitis, it is a
possible mechanism that pathogens migrate to the intestine via the lymphatic route with
a predominant Th17 response and then exacerbate inflammation with similar cytokine
network and immune response profiles after causing microbiome changes [37–39]. The
oral pathogen P. gingivalis given orally to subjects has been found to alter the composition
of the gut microbiota, impairing serum metabolites and intestinal barrier function [40].
F. nucleatum is the most common strain in the altered microbiome of patients with IBD,
and patients with F. nucleatum+ CD are significantly predisposed to settle in the gut [36].
Concomitantly, F. nucleatum has been shown to be an important risk factor for colorectal
cancer and associated IBD [41]. In 10–90% of patients with colorectal cancer, F. nucleatum
is found in tissues where F. nucleatum induces the growth of colorectal cancer cells by
activating Wnt/β-catenin signaling [42].

Another level of evidence for the inflammatory link between periodontal disease
and systemic diseases comes from recent studies on Alzheimer’s disease. Alzheimer’s
disease is characterized by the accumulation of amyloid-beta proteins, an increase in tau
fibrils. Although the pathogenesis of Alzheimer’s is thought to be dependent on age
and genetic factors, it has been suggested that periodontal diseases induce or exacerbate
Alzheimer’s disease [43,44]. Bacteremia and an increase in circular biomarkers, particularly
CRP and IL-6 [45,46], can cause changes in the blood-brain barrier and activation of
resident and inactive microglial cells in the brain [47]. It has been shown that bacteria
or their toxins can enter the brain tissue and settle in amyloid plaques [48]. Immune
activation of neurovascular network endothelial cells may aggravate inflammation by
attracting systemic neutrophils and monocytes to the area. Astrocytes and microglial cells
near the vessels may contribute to this inflammatory cascade, increasing the production
of amyloid β40-42 proteins [47]. Thus, the production of amyloid protein is a form of
immune defense tool, but tissue composition deterioration and damage may be inevitable
due to uncontrollable inflammation. Therefore, it can be argued that chronic systemic
inflammation will play an important role in the pathogenesis of the disease over the years.
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Collectively, local inflammation generated by periodontal infection becomes chronic
and systemic as a link between oral and systemic diseases [49]. Meanwhile, periodontitis,
as an inflammatory disease, presents with an impaired immune regulation [49–52], where
inflammation-based therapeutic approaches provide a resolution for both periodontal
diseases and systemic inflammatory diseases in the same host, further demonstrating the
central role of inflammation as a link between local and systemic diseases [53,54]. The
vascular network plays a central role in this process, directing the immune response and
regulating the activation and resolution of inflammation. A few studies have shown how
vascular cells affect paracrine and autocrine and how this interaction affects systemic com-
plications. This review focuses on local and systemic vascular network change mechanisms
of periodontal inflammation and pathological processes of inflammatory diseases.

2. Host Immune Response to Oral Bacteria

The first defense components against oral microorganisms are the epithelial barriers,
saliva, complement system in the gingival crevicular fluid, and neutrophil cells below
the epithelium. Saliva contains several antimicrobial agents (immunoglobulins such as
IgA, IgM, IgG, and antimicrobial peptides such as histatins, lysozyme, lactoferrin, per-
oxidases) [55]. The periodontal disease begins with the invasion of oral bacteria into the
gingival tissue. The first response of the rich gingival vascular network and tissue to
bacterial invasion is vasodilation followed by increased permeability of blood capillaries,
increased blood flow, increased vascularity, and infiltration of inflammatory cells.

The majority of immune cells in the healthy gingival sulcus are neutrophils, repre-
senting approximately 95% of the total leukocytes and increases in inflammation [56].
Moutsopoulos and coworkers have performed a cohort study to evaluate the distribution
of immune cells and their subsets in the inflamed tissues of patients with severe bone loss
and previously untreated periodontitis [57]. In healthy samples, CD3+ T cells were the
densest among lymphocyte cell groups; B cells (CD19, CD20) were minimal. CD1ahigh

(EPCAM+) cells and CD4+ helper T cells dominated, followed by CD8+ helper T cells and
γδT cells. There was a significant increase in B cells in the samples with periodontitis
compared to the healthy group. In addition, Th17 cells were also detected in the samples
of patients with chronic periodontitis [58,59].

The most recent classification of periodontal and peri-implant diseases introduced
and established stages as a basis for recognizing the progressive pathogenetic mechanisms
underlying the periodontal diseases. While the information associating each stage with a
specific immunological and vascular profile is scarce and heavily based on pathological
specimens obtained from biopsy or surgical materials, evidence supports the new classifi-
cation at the biological level. However, the progression of periodontal disease is not always
linear and continuous. There are also several distinct forms of periodontal diseases, such
as molar/incisor pattern (previously referred to as local aggressive periodontitis), which
has stronger links to genetic and ethnic factors than the other forms of periodontitis. In
addition, it is clinically impossible to test whether all gingivitis cases will predispose to
periodontitis. Finally, evidence mounted for the immunological basis of periodontitis was
heavily derived from Stage 3 and 4 periodontitis, which requires further research in the
initial stages of periodontitis in the context of immunological pathways of inflammation.
Nevertheless, the most recent classification set a premise for understanding chronic inflam-
mation as a progressive process underlying periodontal diseases, which will be the basis of
this review.

As in other forms of chronic inflammation, innate immunity is activated in the initial
phase of lesion formation against pathogens. In this stage, where there is a non-specific
response to the pathogen, cells of local epithelial origin initiate a response with local
neural cells, immune system cells, complement, fibrinolytic, and kinin systems, both
independently and in association with each other. Recognition of the pathogen is the most
critical step of defense. Pathogen-specific patterns are detected by specialized PRRs in
phagocytic, dendritic, and epithelial cells located at the entry sites of bacteria and lead to
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activation of the inflammatory cascade. PRRs are evolutionarily conserved extracellular or
intracellular non-self-recognition tools that bind to the common structures of pathogens
(pathogen-associated molecular patterns (PAMPs). Oral bacteria that migrate from the
surface biofilm to the subepithelial tissue during oral infection are detected by the PRRs
of tissue-resident neutrophils, macrophages, and epithelial cells, activating the innate
immune response. The most well-characterized PRRs are the TLR-2 (Toll-like receptor-2)
and TLR-4, which play a key role in bacterial recognition [60,61]. PRRs also include lectin
and scavenger receptors, nucleotide-binding oligomerization domain (NOD) proteins,
CD14 protein, non-cell-mediated and circulating complement receptor-3, mannose-binding
lectins, and C-reactive proteins.

Meanwhile, neuropeptides are released that will trigger the vascular network with
neuron stimulation and initiate lymphocyte migration, as well as the complement system, a
humoral response component of the innate immune system, is activated. The complement
system is involved in the phagocytosis of pathogens, damage to the bacterial membrane,
and triggering the innate immune response. They costimulate the innate immune response
with PRRs. The complement components in the gingival crevicular fluid in the oral cav-
ity activate the alternative pathway of the complement system against oral pathogens.
The C3a and C5a anaphylatoxin components of the alternative pathway induce chemo-
taxis and release vasoactive amines, free oxygen intermediates, and pro-inflammatory
cytokines TNF-α, IL-1, IL-6 from phagocytes [49]. In addition, the C5b-C9 membrane attack
complex, which is the end product of the pathway, is involved in the destruction of the
bacterial membrane.

Neutrophils, macrophages, and T cells produce a controlled and moderate immune
response against plaque biofilm. After recognizing pathogens, the release of chemoattrac-
tants and a pro-inflammatory cytokine network are initiated in the region. Endothelium,
activated by TNF-α, IL-1, IL-6 pro-inflammatory cytokines released from mononuclear
cells, increases lymphocyte infiltration by directing the response to the inflammation site.
At this stage, phagocytic cells—tissue-resident macrophages and neutrophils—are active,
and neutrophils infiltrate the area in the first hours of inflammation. Degranulation of neu-
trophil toxins has a rapid but brief effect in clearing pathogens. Degranulation also causes
the destruction of tissue cells and extracellular matrix. Both the destruction of the comple-
ment system by the pathogens on the cell surface and the phagocytosis of the pathogens it
opsonizes by phagocytic contribute to the destruction of pathogens. C3a and C5a activate
the mast cell, inducing the release of the pro-inflammatory cytokine and vasoactive amines
(histamine and leukotriene-4). These vasoactive substances initiate phagocyte chemotaxis
by expressing adhesion molecules and chemokines from endothelial cells and increasing
vascular permeability and leukocytes migration [62]. The neutrophil response acts as a
sensitive bridge between innate immunity and adaptive immunity. From the first hours of
the innate response to Day 3, neutrophil cells can regulate both inflammation and resolu-
tion [63]. If neutrophils eliminate the pathogens, the innate reaction will be suppressed,
and phagocytosis of cell debris will begin. Neutrophil granule proteins have been shown
to act as pro-inflammatory cytokine suppressor and anti-inflammatory signal modifier
in immunomodulation [64]. In addition, phagocytosis of apoptotic neutrophil causes the
production of anti-inflammatory cytokines such as IL-4, IL-10, IL-12, and TGFβ at the
resolution stage of inflammation and shifting of M1 macrophage (IFNγ-mediated innate re-
sponse) to M2 macrophage (anti-inflammatory effect) [55] also induce [56,57]. Meanwhile,
the acute inflammatory response is inhibited, and the biosynthesis of lipid mediators-
lipoxins and resolvins (LXA4, resolvin E1, resolvin D1, maresin-1, and protectin D1) is
increased in the repair of tissue damage. However, in cases where the infection cannot
be eliminated, and the lesion enlarges, the cross-talk of tissue neutrophils, macrophages,
and resident Langerhans cells (of similar phenotype in the skin) initiates the secondary
phase initiates the adaptive response. Langerhans cells and macrophages from the innate
immunity-associated antigen-presenting cells migrate to the nearest lymph node to present
the bacteria-specific antigen [65]. In the oral mucosa, Langerhans cells play a role in the
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selection of specific naive T cells. Naive T cells come to the area of inflammation, become
activated, and proliferate. CD4+T cells and antigen-presenting cells initiate the adaptive re-
sponse. Innate immunity-associated antigen-presenting cells migrate to the nearest lymph
node, and after antigen presentation, specific CD4+T cell selection determines whether
the response class should shift towards Th1, Th2, Th17, or Treg. The cytokine signaling
network determines the direction of the response. Each response class plays a different
protective role and contributes to immunopathology. Th1 cells interferon-γ, interleukin-2;
Th2 cells are inter-leukin-4, interleukin-5, interleukin-6, interleukin-10, interleukin-13;
Th17 cells interleukin-6, interleukin-21, and interleukin-23; Treg cells are characterized
by the release of trans-forming growing factor-β, interleukin-2 cytokines [59]. The regu-
lation of the response is determined by a complex cytokine network. Th1 cytokine class
IFNγ increase macrophage stimulation and antibody-dependent cell-mediated cytotoxi-
city, producing a phagocytosis-dominated, cell-mediated immune response. IL-12 is an
active stimulator of IFNγ production and therefore plays a role in regulating the response
class. The basic cytokine of the Th2 response, IL-4, suppresses the release of IFNγ, causing
the response to change from the Th1 direction to the Th2 direction. In this respect, IL-4
appears as a cytokine that both activates the Th2 response and regulates the response
class. Likewise, IL-10 reduces the expression of IL-12 and B7 costimulatory receptors of
antigen-presenting cells and inhibits cell proliferation. The Th17 response class stimulates
the humoral response. T-regulatory cells have a protective role against periodontal tissue
damage by expressing the glucocorticoid-inducible tumor necrosis factor receptor (GITR),
the inhibitory molecule cytotoxic T-lymphocyte-associated molecule 4 (CTLA-4) and cell
surface TGF-β1.

The adaptive response is controlled by three mechanisms: (i) APC modulation: T cell
activation-costimulatory T cell anergic is made by suppressing CTLA-4, the APC inhibitor
ligand of CD28 receptor; (ii) apoptotic death of lymphocytes in clearing the infection: Apop-
totic death of lymphocytes is an extremely important mechanism of immune regulation.
Elimination of pathogen antigens by clearing the infection deprives immune cells of vital
signals such as growth factors. Active cells undergo apoptosis with the programmed cell
death mechanism in which caspase-9 and effector caspases are stimulated by the release
of intracellular cytochrome c and apoptosis activating factor-1. TNF-mediated activation-
induced cell death mechanism is another inhibition mechanism of active cells. Fas receptor
(CD95)-FasL interaction on the T cell surface stimulates the caspase cascade through cas-
pase 8 and causes apoptotic death of the cell; (iii) proliferation and activation of the T cell
occur with stimuli between the antigen-presenting cell and the T cell. T cell costimulatory
protein CD28-B7 interaction is essential for T cell activation. The APC inhibitor ligand
CTLA-4 (antagonist B-7) suppresses the CD28 receptor and makes the T cell anergic.

If the pathogens have been eliminated, cellular debris is formed after the adap-
tive immune response is cleared by phagocytosis, and immune cells will increase the
anti-inflammatory response by changing the cytokine network response class. As a re-
sult, both tissue homeostasis and vascular homeostasis are restored. However, in cases
where periodontal inflammation continues, microbial plaque growth is prolonged, and the
lesion expands.

The inflammatory lesion covers no more than 5–10 percent of the connective tissues
at this initial stage and is still not clinically evident [66]. The response is reversible when
the biofilm is removed, the immune response is modulated, and homeostasis is restored.
However, the persistence of the biofilm increases the immunological response and causes
it to become chronic.

The stabilization of the early lesion, IL-6, IL-1, and TNF-α pro-inflammatory cytokines
collectively lead to a severe response. With the release of these cytokines, the production of
acute-phase proteins and activation of the complement system and platelets occur—the
levels of serum proteins such as CRP, serum amyloid A increase in the circulating blood [66].
Myeloid-derived monocyte/macrophage cells from the blood migrate to the site of inflam-
mation, playing an essential role in regulating both effector cells and immune response.
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The release of macrophagic TNF-α and IL-1 induces chemokines and adhesion molecules
(ICAM-1, VCAM-1, LFA-1, E-selectin, P-selectin) from the vascular endothelium. As a
result, additional leukocyte groups migrate to the region. In an in vivo model of ligature-
induced periodontitis, macrophages were shown polarized to M1 from M2 by P. gingivalis
lipopolysaccharide (LPS) stimulation [67]. The indicator of progressive and chronic inflam-
mation is the presence of plasma cells in the lesion. The chronic inflammation process of
periodontitis from biofilm formation to tooth loss is shown in Figure 1.
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Figure 1. The immune response of periodontal diseases. There is a homeostatic balance between gingival bacteria and
the immune system in the oral cavity, modulated by the immune system. The invasion of bacteria into the gingival tissue
disrupts the delicate relationship, and an initial response develops in the gingival tissue. The bacterial invasion activates
the innate immune system. In the early stage, the immune response is reversible and at a level where the damage caused by
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inflammation can be repaired. Inflammation does not persist if the lesion is removed. This stage is compatible with the
pathogenesis of early gingivitis. Early gingivitis is the stage in which the invasion of dental plaque bacteria stimulates the
innate immune response into the tissue, and acute vasculitis occurs when blood vessels dilate, and plasma components
pass into the connective tissue compartment. With the activation of the endothelium, neutrophil infiltration begins in
the inflammatory region. The host responds to these signals with saliva and the production of antimicrobial peptides to
eliminate microorganisms. If the plaque cannot be removed, it can cause to establish gingivitis, inflammation exacerbation,
and lesion establish tissue edema. In the following period, increasing the number and diversity of plaque bacteria causes
an increased number of neutrophils, monocytes, and macrophages, T and B cells to migrate to the area of inflammation.
Acute-phase proteins such as CRP, serum alpha amyloid A, and fibrinogen also increase blood levels. At this stage, teeth
cleaning and plaque removal at this stage, tooth cleaning and plaque removal can revert gingivitis and restore periodontium
to a healthy stage. However, if the infection persists, inflammation increases tissue destruction, lesion formation and
enlargement are observed. The accompanying vascular dysfunction may cause the inflammation to spread and even become
systemic. At this stage, the disease has transformed from gingivitis to periodontitis. Continued bacterial invasion introduces
bacteria and their products into the systemic circulation, making both infection and inflammation chronic and aggravating.
Periodontitis is characterized by chronic inflammation, extensive tissue damage, and tooth loss. Pro-inflammatory cytokines,
acute-phase proteins, and CRP levels increase in serum, and inflammation spreads to distant sites by circulation.

3. Local Inflammation and Vascular Changes

The peptidoglycans of bacteria in the oral biofilms, lipoteichoic acid, LPS penetrate the
deeper tissues due to several destructive protease enzymes of microbial or host origin that
destroy the epithelial surface and periodontal ligament. These enzymes contribute to the
deepening of the dental pocket and disrupt the endothelium of the subepithelial vascular
network. In the first days of plaque accumulation, a new immune cell profile is being
formed, in which lymphocytes and macrophages join the neutrophils. This stage is followed
by activation of the capillary bed resulting in the expansion of bacterial plaque, perivascular
inflammatory infiltration, and vascular changes from early lesion. The production of
gingival fluid increases and edema occurs in the gingival tissue [68]. As a result, normal
angiogenic regulation is replaced by vasculature remodeling with vascular endothelial
growth factor (VEGF) expressed from the periodontal pocket epithelium [69].

Vascular endothelial growth factor (VEGF) is a 45 kDa heparin-binding homodimeric
glycoprotein with strong proangiogenic activity, and VEGF-A, VEGF-B, VEGF-C, VEGF-D,
VEGF-E (virally encoded), and placental growth factor (PlGF) proteins are members of
this family [64]. VEGF-A plays a dominant role in the regulation of angiogenesis. The
binding of VEGF to endothelial cell-expressed receptor tyrosine kinases VEGFR-1 and
VEGFR-2 stimulates endothelial cell migration, proliferation, and angiogenesis [65]. VEGF
is expressed predominantly on vascular endothelial cells but can also be found on non-
endothelial cells such as macrophages, keratinocytes, retinal pigmentary epithelial cells,
bronchial epithelial cells, fibroblasts, tumor cells, and mast cells [70]. VEGF-A plays a
dominant role in the regulation of angiogenesis. The binding of VEGF to endothelial cell-
expressed receptor tyrosine kinases VEGFR-1, VEGFR-2, and a soluble form carrying only
the ligand-binding region (sFlt-1/soluble VEGFR1) stimulate endothelial cell migration,
proliferation, and angiogenesis [71]. VEGF gene expression is regulated through receptor-
ligand balance and various signaling pathways such as phospholipase C-γ, protein kinase
C, Ca2+, extracellular-signal-regulated protein kinase (ERK), Akt, Src, focal adhesion kinase,
and calcineurin are involved in mediating multiple VEGF functions [72,73]. There is a cross-
talk between these signaling pathways in pathological conditions such as inflammation,
hypoxia, hypoglycemia, and cancer.

The main regulator of VEGF expression is the heterodimeric transcription factor
hypoxia-inducing factor-1 (HIF-1), which binds to the VEGF gene-specific
enhancer/promoter region.

The decrease in oxygen tension suitable for cell physiology is the major trigger of oxy-
gen depletion, angiogenesis, and VEGF activation against cellular stress. VEGF expression
is induced by activation of HIF-1 in hypoxic tissues. Concomitantly, cellular stress causes
inflammation to be triggered by the release of inflammatory cytokines and chemokines. It
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induces VEGF expression by the NF-κB pathway of inflammatory mediators such as IL-1,
TNF-α, TGF-β. NF-κB and HIF-1 mutually up-regulate VEGF expression of inflammatory
cytokines and mediators [74–76]. Hypoxic microenvironment and inflammation trigger the
formation of ROS, causing activation of the COX-2-prostaglandin synthesis pathway [77].
This also activates the IL-1-NFκB-cyclooxygenase-2 (COX-2) axis bidirectionally and can
up-regulate HIF-1α and induces VEGF [78].

Epidermal growth factor (EGF), platelet-derived growth factor (PDGF), epidermal
growth, insulin-like growth factor, fibroblast growth factor, keratinocyte growth fac-
tor, up-regulate VEGF mRNA expression and are other factors responsible for VEGF
regulation [71,78].

Numerous oncogenic mutations (vhl, ras, wnt-kras signaling pathway genes) are also
involved with the regulation of VEGF expression. The AP-1 potential binding site sequences
of c-fos family transcription factors involved in the transcription of proto-oncogenes are
shown in the promoter region of the VEGF gene [71]. Therefore, oncogenic signaling
pathways may be an expression inducer in VEGF regulation.

VEGF protein affects the vascular network during the progression of periodontal
disease. Studies showed that tortuosity of vasculature and dilation increase with inflam-
mation. Oral inflammation affects periodontal pocket formation through capillaries and
venules in the early stages of the disease. There is a close relationship between vascular
basement membrane thickening and increased blood vessels in the later stage of peri-
odontal lesion formation [79]. Periodontitis is characterized by angiogenic changes within
the periodontal tissues. These changes exacerbate periodontal inflammation and tissue
damage by increasing the access of inflammation mediators and immune system cells to
periodontal tissues.

P. gingivalis can directly modulate endothelial cells and vascular networks by readily
binding to endothelial cells and invading with its fimbriae. P. gingivalis also increases gene
expression of various chemokines (e.g., CXCL8, CCL2), adhesion molecules [CD54, CD62E,
PECAM-1 (Platelet endothelial cell adhesion molecule)], and inflammatory factors from
endothelial cells [80–82] (Figure 2, Panel B). Gingipains, which are the proteolytic protein
produced and release by P. gingivalis, modulate inflammatory mediators (ICAM-1/CD54,
VCAM-1/CD106) expressed from endothelial cells and activate the kallikrein/kinin path-
way [83,84]. P. gingivalis-derived gingipains mediate vascular damage by degrading en-
dothelial PECAM-1 and VE-cadherin in vivo [9].

Increasing vascularity with angiogenesis in healthy tissues provides an advantage to
the host for pathogen elimination. However, in chronic periodontitis, abnormal vascular-
ization advances the severity of periodontal inflammation, as it facilitates the transport of
more inflammatory cells, chemical mediators, and cytokines (Figure 1). Thus, disrupted
angiogenesis is linked to tissue damage and uncontrolled inflammation in periodonti-
tis [85]. Thus, the systemic effect of a disrupted and dysregulated angiogenesis, such as
in rheumatoid arthritis, tumors, and ischemic vascular diseases, can be associated with
uncontrolled angiogenic factors in the local periodontal tissue.



Pathogens 2021, 10, 1280 10 of 18Pathogens 2021, 10, 1280 10 of 18 
 

 

 

Figure 2. Effects of hypoxia and inflammation on the vascular network. Panel A shows hypoxia 

and inflammation-related angiogenesis in periodontal diseases. Controlling biofilm formation in 

healthy tissues and effective immune modulation prevents tissue from being exposed to destructive 

inflammation. In gingivitis, biofilm formation on the tooth surface creates a hypoxic microenviron-

ment in the tissues and increases inflammation and angiogenesis. As a result, increased inflamma-

tion and angiogenesis lead to the formation of dental pockets, increased blood flow, edema, and 

vascular dysfunction. In the periodontitis stage, disrupted angiogenesis, enlarged periodontal 

pocket, and an expanded lesion are observed. As the angiogenesis becomes pathological, its effect 

causes vascular hemostasis dysfunction and uncontrolled inflammation. Panel B shows the effect 

of the hypoxic microenvironment in the periodontal pocket on the vascular network. The oxygen 

tension in the periodontal pocket is constantly changing. Oral pathogens exist in a gradient with 

time and changing hypoxic environment and undergo a dynamic colonization process. Hypoxia 

activates its primary mediator, the hypoxia-inducible factor (HIF-1), which is a transcription factor. 

VEGF expression from the epithelium and periodontal ligaments surrounding the vascular network 

in the periodontal pocket. At the same time, hypoxia induces inflammation via the NF-kB pathway. 

Both pathways lead to increased vascular permeability, increased vascularization, and decreased 

vascular bioavailability. 

  

Figure 2. Effects of hypoxia and inflammation on the vascular network. Panel (A) shows hypoxia and
inflammation-related angiogenesis in periodontal diseases. Controlling biofilm formation in healthy
tissues and effective immune modulation prevents tissue from being exposed to destructive inflammation.
In gingivitis, biofilm formation on the tooth surface creates a hypoxic microenvironment in the tissues
and increases inflammation and angiogenesis. As a result, increased inflammation and angiogenesis
lead to the formation of dental pockets, increased blood flow, edema, and vascular dysfunction. In the
periodontitis becomes pathological, its effect causes vascular hemostasis dysfunction and uncontrolled
inflammation. Panel (B) shows the effect of the hypoxic microenvironment in the periodontal pocket
on the vascular network. The oxygen tension in the periodontal pocket is constantly changing. Oral
pathogens exist in a gradient with time and changing hypoxic environment and undergo a dynamic
colonization process. Hypoxia activates its primary mediator, the hypoxia-inducible factor (HIF-1), which
is a transcription factor. VEGF expression from the epithelium and periodontal ligaments surrounding
the vascular network in the periodontal pocket. At the same time, hypoxia induces inflammation via the
NF-kB pathway. Both pathways lead to increased vascular permeability, increased vascularization, and
decreased vascular bioavailability.

4. Hypoxia in Local Inflammation

Oxygen is essential for normal tissue functions, tissue development, and homeostasis.
For the tissue to be defined as hypoxic, the amount of O2 required under normal condi-
tions must be reduced. A medium containing 3–5% O2 is defined as moderate hypoxia,
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while cells give reversible and adaptive physiological responses to moderate hypoxia. In
environments where oxygen tension drops to 0–1% O2 (low oxygen tension), cells may
become dysfunctional and even apoptotic [86]. Except for embryogenesis, cell proliferation
is low in healthy vascular tissues. Hypoxia enhances vascular development by stimulating
multiple endothelial and stromal cells [87].

Hypoxia-inducible factor-1 (HIF-1) is a transcriptional mediator that is the primary
regulator of O2 hemostasis and response to hypoxia. HIF-1 consists of a heterodimer of
two subunits, HIF-1α and HIF-1β. HIF-1 is rapidly degraded under normoxic conditions
via ubiquitination and subsequent proteasomal degradation. HIF-1a subunit has two
conserved proline residues (P402 and P564), which are oxygen- and iron-dependent prolyl
hydroxylases (PHDs) under normoxia [88]. Hypoxia inactivates PHDs, stabilizing the
HIF-1α subunit, and HIF1α translocates from the cytosol to the nucleus. The inactivation
of PHDs activates HIF-1 in the presence of iron and oxygen deprivation. It is inactive in
the cell under normoxic conditions. Under hypoxic conditions, it is activated and causes
the expression of proangiogenic factors such as nitric oxide synthase (NOS), VEGF, pro-
inflammatory cytokines, erythropoietin, endothelin 1, placental growth factor (PIGF), and
angiopoietins [89–92].

HIF-1 and NFκB are the most effective signaling pathways in the response of cells
and tissues to stress, which have major roles in hypoxia and inflammation. Cross-talk
connections between these two pathways lead to synergistic relationships involving co-
activating stimuli and shared regulators and targets. The main activator-regulatory protein
for NF-κB, IKK–TGFβ, is identified as a common general activator protein and TAK-
dependent manner induce in both NF-κB and HIF-1 pathways in hypoxia. It has also been
shown that NF-κB directly modulates HIF-1 expression by binding to the HIF-1 gene region
in inflammation and hypoxia [93]. In addition, many signaling pathways play a role in
HIF-1 regulation in inflammation. In the decreasing oxygen gradient due to inflammation,
immune cells trigger HIF-1 activation in the area of infection characterized by hypoxia.
After LPS stimulation, p44/42 mitogen protein kinases (MAPK) pathway for macrophage-
monocyte Cell is activated, increasing HIF-1 binding to HRE sequences [94] and LPS-TLR4
binding induce HIF-1 activation in human gingival fibroblasts [95]. On the other hand, TLR
signaling induces pro-inflammatory cytokine production by NF-κB activation from the
cell. In addition to stimulating the inflammatory response, NF-κB also induces a response
to hypoxia by modulation of HIF-1. For example, P. gingivalis and its LPS activates the
signaling of NF-κB and HIF-1 by hypoxia of periodontal ligament cells and stimulates the
expression of VEGF, IL-1 [96] (Figure 2), and ROS formation [97]. F. nucleatum increases
the secretion of pro-inflammatory cytokines (TNF-α, IL-1) in hypoxic gingival tissues and
induces NF-kB-dependent NOS synthesis [98]. Although HIF-1 activation via LPS has been
demonstrated experimentally, the relationship between NF-kB (pro-inflammatory cytokine
synthesis pathway)-LPS-HIF-1 interaction mechanism still needs to be determined.

Degranulation of neutrophils in inflammation causes the accumulation of reactive
oxygen radicals in the microenvironment. In addition, thrombin and blood coagulation fac-
tors, which coordinate changes in the vascular wall caused by inflammation, stimulate the
production of reactive oxygen radicals. It has been shown that ROS products trigger HIF-1
activation and VEGF production in human vascular smooth muscle cells [99]. Another
regulation pathway of HIF-1 is its induction through the PI3K/mTOR signaling pathway
during T cell stimulation. During inflammation, T cell receptor TCR-PI3K/mTOR signaling
in a hypoxic environment causes HIF-1 stabilization and activation of HIF-1 protein [100].
HIF-1 can also be induced indirectly, non-hypoxically, by activating angiotensin I and II,
which regulate vascular tone. Angiotensin I and angiotensin II are mediators produced
by tissue cells through intracellular RAS expression and by mitogen-activated protein
kinases (MAPK) and phosphoinositide-3 kinase (PI3K) pathways. The angiotensin-binding
receptors of AT1R and AT2R are found in both arteries and veins and are involved in
the regulation of vascular tone. The binding of angiotensin II to AT1R produces a pro-
inflammatory effect on endothelial cells and vascular smooth muscle cells. It induces
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the synthesis of adhesion molecules, cytokines, and chemokines of vascular cells. AT1R
activation also increases NO synthesis and vascular relaxation. AT2R induces the release of
vasoactive peptides. It also causes inflammation by increasing fibrosis, oxidative stress,
and ROS production. There are only a few studies on the effect of this pathway in peri-
odontal diseases. RAS components are detected in periodontal tissues in both humans
and mice. In periodontal diseases, endothelial cells and other gingival cell types such as
epithelial cells produce large amounts of renin [101]. ANRI and ANRII expressions and
angiotensin-converting enzyme (ACE) activity are increased in the tissues of periodontitis
patients [102]. These limited findings show the effect of RAS activation on the local vascular
network in periodontal diseases. Their relevance in the relationship with the systemic
vascular network and systemic diseases needs to be clarified.

It has been shown that angiopoietin-like 4, an important signaling factor in modulation
of angiogenesis, inflammation, lipid metabolism, and bone resorption, is induced by HIF-1
in human periodontal ligament fibroblasts and it can also be modulated by P. gingivalis LPS,
IL-1 and TNF-α [103]. Although the function of angiopoietin-like-4 in periodontal tissues is
not yet fully known, its mediation of angiogenesis and bone regeneration in inflammation,
especially under hypoxic conditions, indicates that it may stand out as a good therapeutic
agent candidate for periodontal diseases.

A synergistic effect of oxygen depletion and tissue inflammation on the vessel may
be the most critical factor in the chronicity of periodontitis and its spread to the system.
In both cases, the vascular network that manages and regulates inflammation is under
heavy impact, where the hypoxic environment may be both a cause and a consequence of
inflammation (Figure 2).

During periodontal inflammation, the dental pocket is exposed to a complex micro-
biome of aerobic and anaerobic bacteria. Biogeography of the microbiome is central for
forming and spreading predominant bacterial colonization in the oral cavity [104]. There is
a temporal component of bacterial expansion and site-specific colonization in the niches of
the oral cavity. In this model, different areas in the oral cavity, tooth shape, and location of
dentition, oral microenvironmental factors, host genetic characteristics act as determinants
where the colonization may be possible when a hierarchical group adapts to changing
conditions becomes dominant.

The oxygen tension gradient in the dental pocket suggests a dynamic bacterial col-
onization and a variable composition according to hypoxia change. As a result of the
reduction of tissue oxygen tension, the colonies forming the biofilm evolve from aerobic
bacterial groups to anaerobic bacterial groups. Periodontal bacteria such as F. nucleatum
and P. gingivalis may directly manage hypoxic responses and colonization in the dental
pocket. F. nucleatum causes endothelial cell dysfunction by inducing hypoxia and thus
may contribute to periodontitis pathology [105,106]. IL-1-mediated caspase 1 activity of
P. gingivalis, which is defined as the key pathogen of bacterial colonization, was investi-
gated under normoxia and hypoxia conditions. The NLRP3 inflammasome increased the
secretion of IL-1β, IL-6, and TNF-α in human periodontal ligament fibroblasts, and Gram-
negative bacteria LPS have been shown to activate the mechanism. However, in intense
and uncontrollable inflammation, IL-1-mediated caspase 1 activation may be responsible
for cell death. In experimental periodontitis studies, the effects of hypoxia and LPS on
NLP3 inflammasome activation were investigated. The synergistic effect of hypoxia and
P. gingivalis-LPS induced IL-1 release stimulated an inflammatory response that would
cause pyroptosis in human periodontal ligament fibroblasts [107]. P. gingivalis and E. coli
LPS activated the inflammatory response and the caspase 1 cascade in gingival fibroblasts.
Interestingly, at an early stage, unlike P. gingivalis, E. coli LPS transformed the normoxic
phase into the hypoxia phase [108]. This is still an understudied area where spatiotemporal
bacterial colonization associated with unstable oxygen tension in the dental pocket needs
to be elucidated.

Tissue oxygen tension is regulated by angiogenesis, which increases tubular
formation—the hypoxic microenvironment impacts angiogenesis, one of the critical mecha-
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nisms of homeostasis, in turn. The proangiogenic factor VEGF is central to this bidirectional
link. Under hypoxic conditions, VEGF regulates neovascularization, expands the vascular
network, and induces angiogenesis in destroyed periodontal tissues, which may not be an
organized and homeostatic event and leads to granulation tissue formation. Endothelial
cells increase VEGFR expression in a hypoxic environment induced by the F. nucleatum
and induce TNF-α and NOS. Hypoxia is suppressed by CD31 and CD34, which are en-
dothelial cell surface markers [105]. Both markers are known to be associated with cell-cell
binding. Thus, hypoxia is critical for increased vascular permeability causing endothelial
dysfunction by suppressing adhesion molecules [109] (Figure 2).

5. Conclusions

The homeostatic dynamics of the oral cavity are constantly changing with microen-
vironmental conditions, histological differentiation, and contact of host and oral microor-
ganisms. Oral pathogen dissemination is countered with host immune cell function with a
delicate balance between the host and microbes under homeostatic conditions. Therefore,
periodontal health is not a sterile environment where the microbes and other microorgan-
isms are entirely missing. An ongoing balanced activity determines the cooperation and
escape strategies of pathogens and the response of immune system cells. The immune
system is also responsible for repairing damaged tissue along with microbial elimination.
Although local inflammation does not have a devastating effect initially, it can become
chronic within exacerbated microbial invasion and trauma and cause secondary tissue
damage in the periodontium. Tissue damage and vascular changes come to the fore as
determining factors at the center of the host-pathogen relationship.

On the one hand, constant bacterial invasion, and on the other hand, the destructive
effect of inflammation causes unstable oxygen tension and reactive oxygen radical accumu-
lation in the periodontium, especially in the dental pocket. The prolonged hypoxia can lead
to vascular dysfunction, especially in endothelial cells. Hypoxia can affect the expression
profile of surface markers (CD31, CD34) responsible for vascular tubule formation, cell-cell
interaction, and differentiation [105]. In addition, dysfunctional endothelial cells can ex-
acerbate local inflammation. Decreased expression of CD31 and increased expression of
CD34 may impair vascular integrity and may allow pro-inflammatory cytokines and oral
antigens to enter the circulation.

Another effect of prolonged hypoxia in tissues is the promotion of critical regulators of
neovascularization VEGF, VEGFR1, and VEGFR2. Therefore, pathological vascularization
may be the initiating step of the inevitable inflammatory cascade in the pathological process
of periodontal disease.

The relationship between periodontal diseases and systemic inflammatory diseases
includes uncontrolled inflammation. The interaction of distant tissues and organs via the
vascular network and common inflammatory mediators, which may trigger the systemic
inflammation in the circulation, make this link even more probable. Studies have shown a
link between cardiovascular diseases, diabetes, rheumatoid arthritis, Alzheimer’s disease,
and periodontal disease pathologies. Although organ and tissue-specific cellular and
molecular mechanisms need to be clarified, similar vascular changes may occur in the
pathologies of systemic inflammation-related diseases. Hence, we need to better under-
stand the vascular effects of periodontal diseases at the local and systemic levels to establish
novel hypotheses, find strategic methods to control periodontal disease-associated systemic
diseases, and develop therapeutic approaches.
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