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Clinical‐grade endometrial
cancer detection system
via whole‐slide images
using deep learning

Xiaobo Zhang1†, Wei Ba2†, Xiaoya Zhao1, Chen Wang1,
Qiting Li3, Yinli Zhang1, Shanshan Lu1, Lang Wang4,
Shuhao Wang4*, Zhigang Song2* and Danhua Shen1*

1Department of Pathology, Peking University People’s Hospital, Beijing, China, 2Department of
Pathology, Chinese PLA General Hospital, Beijing, China, 3R&D Department, China Academy of
Launch Vehicle Technology, Beijing, China, 4Thorough Lab, Thorough Future, Beijing, China
The accurate pathological diagnosis of endometrial cancer (EC) improves the

curative effect and reduces the mortality rate. Deep learning has demonstrated

expert-level performance in pathological diagnosis of a variety of organ

systems using whole-slide images (WSIs). It is urgent to build the deep

learning system for endometrial cancer detection using WSIs. The deep

learning model was trained and validated using a dataset of 601 WSIs from

PUPH. The model performance was tested on three independent datasets

containing a total of 1,190 WSIs. For the retrospective test, we evaluated the

model performance on 581 WSIs from PUPH. In the prospective study, 317

consecutive WSIs from PUPH were collected from April 2022 to May 2022. To

further evaluate the generalizability of themodel, 292WSIs were gathered from

PLAHG as part of the external test set. The predictions were thoroughly

analyzed by expert pathologists. The model achieved an area under the

receiver operating characteristic curve (AUC), sensitivity, and specificity of

0.928, 0.924, and 0.801, respectively, on 1,190 WSIs in classifying EC and

non-EC. On the retrospective dataset from PUPH/PLAGH, the model achieved

an AUC, sensitivity, and specificity of 0.948/0.971, 0.928/0.947, and 0.80/

0.938, respectively. On the prospective dataset, the AUC, sensitivity, and

specificity were, in order, 0.933, 0.934, and 0.837. Falsely predicted results

were analyzed to further improve the pathologists’ confidence in the model.

The deep learning model achieved a high degree of accuracy in identifying EC

using WSIs. By pre-screening the suspicious EC regions, it would serve as an

assisted diagnostic tool to improve working efficiency for pathologists.

KEYWORDS
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Introduction

Endometrial cancer (EC) is one of the most common

gynecological tumors in women, with increasing incidence and

mortality rates across the world (1, 2). In developed countries,

EC ranks first in malignancies of the female reproductive system

(2, 3). In the United States, it was estimated that 52,600 new

cases of EC were reported in 2014, which increased to 61,880 in

2019, and the incidence continues to increase (2, 4, 5). According

to the statistics of the National Cancer Center of China in 2019,

the incidence of EC was 10.28/100,000, while the death rate was

1.9/100,000 (6, 7). In recent years, due to high-fat, high-fever

diet, and low-exercise lifestyles, the incidence rate of EC in China

has been rising (3, 7).

In clinical work, pathological diagnosis is the gold standard

for endometrial specimens. Only when pathologists made

accurate diagnoses, gynecologists would give next-step

treatment suggestions, leading to an excessive demand for

pathologists. The shortage of anatomic pathologists happens

both in China and globally, resulting in an overloading of the

workforce, thus affecting the diagnostic accuracy (8). According

to the China Diagnostic Pathology Industry Analysis Report, the

country requires 84,000–168,000 pathologists based on the need

for 1-2 pathologists per 100 beds. However, as of 2018, there are

only 18,000 pathologists on record, leaving a gap of at least

66,000 pathologists.

The majority of ECs can be diagnosed with curettage or

biopsies, after which further surgical treatment is administered.

Despite the huge volume of daily diagnostic requirements,

specimens obtained during curettage or biopsies are frequently

fragmented and asymmetrical, containing blood and even

cervical mucus, which increases diagnostic complexity. These

circumstances exert considerable pressure on the pathological

diagnosis. The complexity of diagnosis and the lack of

pathologists constitute a significant contradiction. It is

worthwhile to investigate how to find new technologies that

enable pathologists to concentrate on regions of interest (ROIs).

In recent years, artificial intelligence has seen tremendous

growth, and the application of this cutting-edge technology to

the area of pathology has gradually become a new trend. The

latest studies have demonstrated that deep learning can be

applied in the pathological diagnosis of a variety of organs,

such as the prostate (9, 10), stomach (11–13), melanoma (14),

lymph node metastasis (15), etc. In these studies, deep

learning models can be used as a screening tool to flag the

suspected malignant area in advance, prompting pathologists

to thoroughly examine the ROIs, thus improving the

diagnostic accuracy and shortening diagnostic time. There is

also several research on the application of deep learning to EC

recognition using whole-slide images (WSIs) (16–18). Sun

et al. developed a convolutional neural network (CNN) to

interpret hematoxylin and eosin (H&E)-stained image patches
Frontiers in Oncology 02
from endometrial specimens (16). This study classified

pa tho log ica l images a t the pa tch leve l and used

retrospectively collected cases for model evaluation. Zhao

et al . developed a CNN to screen for endometrial

intraepithelial neoplasia (17). Hong et al. trained a CNN to

predict EC subtypes and molecular features (18).

In this research, we established a high-accuracy deep

learning model for EC detection and conducted retrospective,

prospective, and multicenter studies to demonstrate its clinical

utility. The deep learning model achieved high sensitivity in

detecting EC using WSIs with an area under the receiver

operating characteristic (ROC) curve (AUC), sensitivity, and

specificity of 0.928, 0.924, and 0.801, respectively, on 1,190 WSIs

collected from the Peking University People’s Hospital (PUPH)

and the Chinese PLA General Hospital (PLAGH). By studying

the model predictions, we found the deep learning model was

able to detect ECs with different morphology types, especially for

illusory appearances.
Materials and methods

Dataset

To train and validate the CNN for EC detection, a total of

601 (551 for training and 50 for validation) slides of endometrial

specimens from 601 patients were collected from PUPH,

including all main pathological subtypes of the endometrium

(Table 1). The cases of secretory phase, proliferative phase,

endometrial hyperplasia without atypia, and endometrial

atypical hyperplasia/endometrioid intraepithelial neoplasia

were considered non-cancer. According to the World Health

Organization classification of the female genitals, low-grade and

high-grade ECs correspond to grades 1 & 2 and 3, respectively

(19, 20). All slides were reviewed by two senior gynecological

pathologists to reach an agreement on the final diagnostic report.

The test set could be divided into retrospective and

prospective parts. For the retrospective study, we collected 581

cases of endometrial biopsy specimens from PUPH and 292

cases from PLAGH. Meanwhile, 317 consecutive endometrial

biopsies from PUPH were collected from April 2022 to May

2022 as the prospective test set. The gold-standard diagnoses of

all cases in the test set were determined by two experts (X. Zhang

and Z. Song) under a multi-head microscope. For cases with

different diagnoses, consensus was reached after discussion.

All training and validation slides were digitized (eyepiece

magnification fixed at 10x) using the KF-PRO-005 scanner

(KFBio). The test slides from PUPH were digitalized using

both KF-PRO-005 and Motic EasyScan 102. The test slides

from PLAGH were scanned by Motic EasyScan 102. All the

WSIs had a maximum zoom ratio of 400x and a physical

resolution of 0.238mm/pixel.
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Data annotation

Expert pathologists labeled 346 training and 26 validation

slides containing EC using a self-developed annotation system

based on iPad, referring to the Fourth Edition of the WHO

Classification of Tumors of the Endometrial System. A three-

step approach including initial labeling, further verification, and

final expert review (by D. Shen) was developed. Once the

labeling was completed, the slides and annotations were sent

to the training process.
Model development

Using Otsu’s method, the background parts of the slide were

filtered away while producing training and validation sets. Otsu’s

method is one of the foreground detection approaches in

computer vision. On the thumbnail of the grayscale slide, a

grid search of the thresholding parameter was done to reduce the

intra-class variance. This led to the extraction of the effective

tissue area. The slides were then divided into patches of 320×320

pixels. These patches were extracted side-by-side from the

effective tissue area without overlapping. Explicitly, 891,330

malignant and 1,983,966 benign patches were used for training.

Following our previous work on gastric cancer detection

(13), based on DeepLab v3 and ResNet-50, we improved the

model with atrous spatial pyramid pooling (ASPP) with dilations

of 2, 4, 6, 8, 10, and 12, as illustrated in Figure 1, which improved

the multi-scale detection capability. Meanwhile, we removed the

image-level pooling information from the ASPP to force the

model to focus on tumor cells. Since histology slides have no

discernible orientation, we augmented the training data using

random rotation and mirroring. We used random scaling

between 1.0x and 1.5x to make the deep learning model more

tolerant of slight variations in the scanning ratio. We further
Frontiers in Oncology 03
randomized the magnitude of the patch brightness, contrast, hue

(average color), and saturation (with a maximum delta of 0.08).

All models were trained and evaluated on an Ubuntu server

with four Nvidia GTX1080Ti GPUs using TensorFlow. To train

the models, the ADAM optimizer with a fixed learning rate of

0.001 was utilized. The batch size was set at 80 (20 per GPU) and

training was terminated after 5 epochs. The learning curves are

given in Figure 2.

Since there are no fully connected layers, the advantage of

the fully convolutional neural network design is that training

and inference tile sizes do not need to be equal (Figure 3).

During the inference phase, we divide the WSI into tiles of 2,000

by 2,000 pixels. We implemented the overlap-patch method by

entering a 2,200×2,200-pixel tile into the model, but only utilized

the 2,000×2,000-pixel region in the middle for the final

prediction. The final prediction of the deep learning model

was the EC probability for the 2,000×2,000 pixels. The tile-

level predictions were then concatenated to the slide level. We

used the 1000th highest pixel-level probability as the slide-level

EC probability. The ROC curve was constructed from the

probability by using slide-level thresholding.
Evaluation metrics

We selected three assessment measures to characterize the

model’s performance: accuracy = (TP + TN)/(TP + FN + FP +

TN), sensitivity = TP/(TP + FN), and specificity = TN/(TN +

FP), where TP, FP, TN, and FN stand for true positive, false

positive, true negative, and false negative, respectively. Accuracy

reflected the proportion of successfully predicted slides relative

to the total number of slides. The sensitivity/specificity reflected

the percentage of properly recognized adenomatous/normal

slides. The statistics were computed using Python scripts

created in-house and plotted with matplotlib.
TABLE 1 Characteristics of the whole-slide images of endometrial specimens.

Dataset Histological subtype Training set Validation set Test set (PUPH,
retrospective)

Test set (PLAGH,
retrospective)

Test set (PUPH,
prospective)

Non-EC Secretory phase 88 12 86 19 67

Proliferative phase 54 3 69 34 114

Endometrial hyperplasia without atypia 40 5 17 8 23

Endometrial atypical hyperplasia/
Endometrioid intraepithelial neoplasia

23 4 20 4 17

EC EC (low-grade) 291 23 44 179 96

EC (high-grade) 55 3 345 48 0

Total 1,190 551 50 581 292 317
EC, Endometrial carcinoma; PUPH, Peking University People’s Hospital; PLAGH, Chinese PLA General Hospital; WSIs, Whole-slide images.
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Results

Model performance

On the retrospective test set collected from PUPH, the deep

learning model achieved an AUC, sensitivity, and specificity of

0.948, 0.928, and 0.800, respectively (Figure 4A). For the

prospective study, 317 consecutive endometrium specimens for

a continuous month in PUPH were collected, digitalized, and

tested. The deep learning model achieved an AUC, sensitivity,

and specificity of 0.933, 0.934, and 0.837, respectively

(Figure 4B). The performance of the model on the prospective

dataset was comparative to that on the retrospective one,

showing the model capability on daily diagnosis.

As shown in Figures 5A, B, common subtypes of EC,

including low and high-grade ECs, could be accurately

detected by the deep learning model. When we focused on the

predicted heatmap of the model, we found the border of the dark

red area accurately fitted the cancerous regions. An example of

lymph-vascular space invasion (LVSI) was given in Figure 5C.

The model correctly identified the small infiltration lesion. A

similar situation was shown in Figure 5D, the scattered and

fragmented EC components were detected by the model.
Frontiers in Oncology 04
Multicenter study

To test the robustness of the model, 292 WSIs from PLAGH

were tested. The model achieved an AUC, sensitivity, and

specificity of 0.971, 0.947, and 0.938, respectively (Figure 4C).

Despite data distribution bias, the model performance on the

retrospective dataset from PLAGH was even better than that

from PUPH. This finding proved the generalizability of the deep

learning model.

We gave four predicted examples in Figure 6. A case of low-

grade EC was shown in Figure 6A. The deep learning model

detected cancers contained in fragmented specimens. Figure 6B

shows a surgical specimen with high-grade EC. A more difficult

situation was revealed in Figure 6C, with small infiltrating

lesions shown in the deep muscularis away from the main

tumor area. Figure 6D shows an example of microcystic,

elongated, and fragmented (MELF) infiltration.
False analysis

We have listed three common false positive patterns of the

deep learning model in Figure 7. In Figure 7A, the mucous
BA

FIGURE 2

Learning curves of the deep learning model. (A) Training loss. (B) Validation loss.
FIGURE 1

Deep learning model architecture.
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B

C

A

FIGURE 4

ROC curves of the best-trained model showed promising predictive power on the test datasets. (A) Retrospective test dataset from PUPH.
(B) Prospective test dataset from PUPH. (C) Retrospective test dataset from PLAGH.
FIGURE 3

The training and inference pipeline of the deep learning model. EC, endometrial cancer; SP, Secretory phase; PP, Proliferative phase; EHw/oA,
Endometrial hyperplasia without atypia; EAH/EIN, Endometrial atypical hyperplasia/Endometrioid intraepithelial neoplasia; LGEC, EC (low-grade);
HGEC, EC (high-grade).
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metaplasia of endometrial glands with papillary hyperplasia was

morphologically overlapped with mucogenic EC. These lesions

were cancer mimickers. It’s extremely confusing when it comes

to diagnosis. In Figure 7B, stromal cells decidualize with

epithelioid morphology. This is a typical histological feature of

the secretory endometrium, similar to high grade EC in

morphology. Figure 7C was a case of hysterectomy for

multiple leiomyomas of the uterus, with endometrium in the
Frontiers in Oncology 06
proliferative stage. Due to the lack of submucosa in the

endometrium, the interface between the endometrium and the

uterine muscle wall was irregular. A few endometrial glands

often appear in the superficial muscle layer, resulting in the

illusion of cancer invading the uterine wall.

We are also interested in false negatives. Two representative

examples of false negatives were given in Figure 8. In Figure 8A,

scattered and fragmented endometrial cancer components
FIGURE 5

Representative examples in the test dataset from PUPH. (A) Low-grade EC. (B) High-grade EC. (C) Intralymphatic carcinoma thrombus.
(D) Fragmented component of EC. WSI, whole-slide image.
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separating from the main body of the uterus were misdiagnosed

by the deep leaning algorithm. In Figure 8B, since the tissue was

squeezed, the color of cells was dark, the nuclei were elongated,

and the cell nucleoplasm ratio appeared to increase. These are

similar to the morphological characteristics of cancer.
Frontiers in Oncology 07
Discussion

In recent years, artificial intelligence has achieved

unprecedented development, and the application of this

frontier technology in the field of medicine has gradually
FIGURE 6

Representative examples in the test dataset from PLAGH. (A) Low-grade EC. (B) High-grade EC. (C) Small infiltrating lesions were showed in the
deep muscularis away from the main tumor area. (D) MELF infiltration. WSI: whole-slide image.
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become a new trend. Recent studies have demonstrated

promising results of deep learning algorithms in recognizing

various lesions using WSIs (12, 14, 15, 21, 22). As for EC, the

increasing diagnostic workload of endometrial biopsy specimens

calls for the development of new models with high sensitivity

and specificity.

We have developed a deep learning model to detect EC and

have demonstrated the performance and generalizability of the
Frontiers in Oncology 08
model. Considering that the clinically significant diagnostic

error rate in surgical pathology has been reported to vary from

0.26% to 1.2% (23, 24), the model performance in diagnosing EC

was almost equal to that of human pathologists, suggesting that

it may help pathologists under a real-world scenario as a second-

opinion (25, 26).

Better diagnosis leads to better treatment for EC. LVSI is a

high-risk factor for the prognosis of EC (27). The treatment
FIGURE 7

Representative examples of false positives: (A) Mucous metaplasia of endometrial glands with papillary hyperplasia. (B) Decidualization of
stromal cells with epithelioid morphology. (C) Endometrium in the proliferative stage.
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approach is different for patients with or without LVSI. For human

pathologists, the case shown in Figure 5C tends to be missed in

clinical practice, especially when a pathologist is under high

diagnostic pressure. The deep learning model successfully flagged

these subtle regions, alerting pathologists to re-examine the case.

MELF invasion was an independent prognostic factor closely

related to the risk of lymph node metastasis (28), indicating poor

prognosis. Omitting deep muscular infiltration leads to a lower

stage (from IA2 to IA1). As shown in Figure 6D, the assistance of

the model could help pathologists make better diagnoses.

To improve the pathologists’ confidence in the deep learning

model, we performed a thorough analysis of the falsely predicted

cases. In clinical practice, tissue might be significantly damaged

by cauterization or compression during a biopsy, resulting in

illusory appearances. These situations are also confusing for
Frontiers in Oncology 09
primary pathologists. A human pathologist could make a

diagnosis based on a patient’s menstruation, which was not

known to the model.

Most of the false positive and false negative cases in the test

dataset were caused by artificial tissue deformation. These issues

may be alleviated with more training data and better data

augmentation techniques.

Despite all this, the deep learning model revealed excellent

performance on the real-world test dataset and proved to

prevent pathologists from missed diagnosis. Different from

pathologists, the model is based solely on H&E-stained slides,

while pathologists could review additional IHC slides and

clinical data to make final diagnoses. Thus, an accurate deep

learning model will not replace the breadth and contextual

knowledge of pathologists. The model would function as a
B

A

FIGURE 8

Two representative examples of false negatives. (A) The small, scattered, and fragmented EC components were missed by the deep leaning
model. (B) Due to artificial factors, the compressive deformation of tissue was evident, leading to a missed diagnosis.
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supplemental diagnostic tool to assist pathologists in

discriminating EC from no-cancer. To boost the clinical utility

value of the model, in future work, we will add more subtype

identification capabilities to the model.
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