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Abstract
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Introduction

The molecular networks that define the phenotype of a cell can

be captured through global gene expression profiling, however

many cellular functions are shared between different cell types,

and identifying those features that best discriminate between

phenotypes remains a challenge. There are a number of reasons

for this, including a lack of methodologies that simultaneously

compare between multiple phenotypes and the general reliance on

ranked gene lists that are associated with phenotypes in a post-hoc

manner.

The basis for most expression-based analyses is the search for

genes that exhibit patterns of differential expression between

phenotypic or experimental groups, followed by meta-analysis to

identify potential functional interpretations of the resulting gene

lists. This is true for most approaches focused on identifying co-

expression networks from microarray data [1,2,3]. A general

workflow takes the initial significant gene list and reduces it based

on a post-hoc application of knowledge about the potential

functional roles that the selected genes play. While this is a useful

way to annotate large datasets, it often restricts subsequent

analyses to well-annotated genes.

Here we describe attract, an approach that leverages both

existing pathway databases and the differences in the expression of

the genes in those pathways between multiple cell types. attract

expands these inferences by identifying new co-ordinately-

regulated gene sets that are relevant to the mechanisms underlying

the phenotypic differences that define specific cell types.

We apply attract to the four most phenotypically diverse cell

types analyzed by Müller et al. (NCBI GEO accession number

GSE11508). Müller and colleagues generated a library of stem

and progenitor cells and used gene expression to define groups

based on their degree of pluripotency [1]. Using an unsuper-

vised machine learning method, they found that the human

undifferentiated pluripotent stem cell lines (PSCs) were highly

correlated in their expression profiles, whereas other lines, and

in particular brain-derived neural stem cell lines, were more

heterogeneous and apparently similar to other stem cell types.

Having defined pluripotency classes, they used MATISSE [2]

to construct a transcription factor network centered on the

pluripotency factors Oct3/4 and Nanog, and presented this

PSC-derived network, the ‘‘PluriNet,’’ as a resource for

characterizing stem cell lines.

PluriNet was an important step forward in applying gene

expression-based phenotypes to stem cell classification; however

the broader implications of this result have only received limited

attention. It is not clear how generalizable the PluriNet is to other

stem cell models, nor what biological pathways or interacting

networks are differentially activated to define such diverse cell types.

Our analysis focused on embryonic stem cells (ESCs H9, Miz4,

Miz5, Miz6), neural stem cells (Nlin9, Nlin10), neural progenitors

(NLin15) and testicular teratocarcinoma (NTera2); these types were

derived from a range of different tissue sources, were well replicated,

and spanned the spectrum of pluripotent abilities. We demonstrate

the power of attract to find meaningful, discriminatory gene

expression modules in this stem cell model system.
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Analysis

The ‘‘attract’’ method
attract is a modular process that consists of the first three steps

summarized in Figure 1, and is essentially the inverse of more

traditional gene expression analysis approaches. First we test the

’foundation knowledge sets’ to identify those well-annotated gene-

sets (for example, KEGG pathways) that best discriminate between

cell-phenotypes. Next we identify the ’discriminating profiles’ ’by

decomposing each gene-set into profiles which summarize the

differential expression across the sample groups. Finally, we build

’correlated gene sets’ which extend the analysis to the entire

expression dataset by identifying those genes which are highly

correlated with these discriminating patterns. In this way, we start

from a strong knowledge-base position which permits hypothesis

driven exploration of the data as a whole. The end point of this

pipeline is a gene-discovery set with function inferred by virtue of

co-regulation with known biological processes.

To test pathway-level data we developed GSEA-ANOVA, an

analysis of variance-based implementation of a gene set enrich-

ment algorithm (Figure 2). Unlike other GSEA implementations

which only allow for two-class comparisons, this ANOVA-based

approach tests for differences between multiple classes. Under

GSEA-ANOVA, we fit an ANOVA model to each gene where a

gene’s expression is modeled by a single factor representing the cell

types as distinct levels of this class. For instance, for gene i and its

corresponding expression value in each replicate sample j = 1, …,

rk for each cell type k = 1, …, K, we fit the following fixed effects

model:

y
(i)
jk ~mzmkzejk ð1Þ

where m reflects the overall mean, mk represents the effect of cell

type group k on the gene’s expression, and ejk is the random

normal residual error term.

Under the null hypothesis H0: m1 = m2 = … = mK, the

assumption is that all K cell type means are equivalent, or in other

words, that there are no expression changes associated with cell

type groups. The mean expression for cell type k is given by:

y
(i)
.k~

1

rk

Xrk

j~1

y
(i)
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From the ANOVA model, we compute the F-statistic for gene i:

F (i)~
MSSi

RSSi

ð3Þ

where MSSi represents the mean treatment sum of squares, and

captures the amount of variation due to the cell type group-specific

effects:
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and RSSi represents the residual sum of squares:
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where N is the total number of samples, and the overall mean is

given by:
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The F-statistic captures the strength of association observed in a

gene’s expression over the different cell types. Large values of the

F-statistic indicate a strong association whereas a small F-statistic

suggests that the gene demonstrates minimal cell type-specific

expression changes.

The ANOVA model and the corresponding F-statistic it

produces, gives us a way to gauge which genes are informative

for a particular set of cell types. Our main interest however lies in

understanding which pathways collectively consist of genes that

together inform us of enrichment for a celltype through consistent

cell type-specific changes. In the current implementation, we map

genes on the array to KEGG pathways [3] although other

pathway databases could be substituted. Since large F-statistics

are indicative of strong cell type-specific changes, a pathway

whose distribution of F-statistics is skewed towards larger values

represents an enrichment in expression changes that inform us of

cell type. To test this relationship more formally, we appeal to a

two sample T-test to compare the distribution of log2-transformed

F-statistics from all pathway members to the global distribution

of log2-transformed F-statistics from all genes with a path-

way annotation. The log-transformation is necessary to satisfy

the normality assumption underlying the T-test and a Welch

modification is used to protect against instances where the

variances are unequal between the two groups under comparison.

For pathway P consisting of gp genes, the T-statistic takes the

following form:

TP~
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where G represents the total number of genes with a pathway

annotation and the sample variances s2
p and s2

G are defined as:
Figure 1. Schematic overview of attract.
doi:10.1371/journal.pone.0025445.g001
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and the degrees of freedom are specified by the Welch-

Satterwhaite equation:
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While other tests could be substituted instead to test for

differences between the pathway distribution and the global

distribution of F-statistics, it has been recently suggested that the

T-test, as opposed to other tests such as the Kolmogorov-Smirnov

test which is known for its lack of sensitivity, is simpler and more

practical solution [4]. Given the volume of pathways available in

resources like KEGG, we must address the multiple-testing issue

and this is accounted for by adjusting the resulting P-values using a

Benjamini-Hochberg FDR-based method [5]. Pathways with

distributions significantly different from the global distribution

are those best able to discriminate between the cell types of

interest.

The second step in attract summarizes each significant,

discriminative pathway into subsets of genes in which members

have very similar patterns of expression. We refer to these subsets

as ‘‘synexpression’’ groups, a term originally used by Niehrs and

Pollett [6] to describe coordinately expressed genes with inferred

co-regulation. Synexpression groups are obtained by by decom-

posing each significant pathway into correlated subsets using

hierarchical clustering based on a Pearson correlation coefficient

distance measure. The optimal number of synexpression groups

was determined using an informativeness metric, a method which

assesses the maximum number of clusters that provide consistent

expression profiles that provide the most amount of information

regarding cell type or sample-type specific changes [7].

The third step in attract is a discovery step in which we extend

each synexpression group to include all genes that exhibit highly

correlated expression patterns. For each synexpression group,

correlation coefficients are computed between genes annotated to

the synexpression group and the set of unannotated genes.

Functional relationships are inferred for those unannoted genes

that meet a user-specified cutoff for the correlation coefficient (by

default, 0.85). Most sources of annotation, including KEGG, still

represent a minority of genes and we have found great value in using

the data to extend putative functional annotation of gene sets. This

empirical knowledge-based approach allows functions and pathway

associations to be inferred for genes which have no annotation.

Our method has been implemented in an R package attract

and is available from Bioconductor. The data set and code used in

these analyses, including attract, can be downloaded from

http://compbio.dfci.harvard.edu/pubs/attractsupplement.zip.

Results

attract identifies the major biological themes in the
Müller dataset

The implementation of attract is demonstrated on the Müller

Plurinet dataset (NCBI GEO (accession number GSE11508 [1]),

to identify the pathways that best describe four exemplar cell types.

A subset of cell types representing embryonic stem cells (ESCs),

neural stem cells, neural progenitor cells, and teratocarcinoma-

Figure 2. The ANOVA-based step of attract—a novel gene set enrichment implementation. Each gene is assigned an F-statistic where
consistent cell-type specific changes are up-weighted. Pathways that have distributions of F-statistics distinct from the global distribution are flagged
as significantly enriched for cell-type specific expression changes.
doi:10.1371/journal.pone.0025445.g002
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differentiated cells (teratocarcinomas) were extracted analysis

restricted to the same platform: in this case, the Illumina WG-6

BeadChip array. The resulting data set had 68 samples: 12 ESCs,

31 neural stem cells, 8 neural progenitors, and 17 teratocarcino-

mas. We applied a quality filter to the gene expression data where

a probe was retained if it had a 0.99 detection score in 75% of

samples in at least one of the four cell types.

The GSEA-ANOVA is based entirely around an ANOVA

framework, and it is worth pointing out that the practical rules of

good experimental design associated with standard linear models,

are also relevant to the application of attract to gene expression data

sets. Namely, replicates go a long way in improving the fit,

accuracy and stability of the linear model, and there should be at

least three replicates (ideally, many more) for each cell type or

sample group. Cell type group sizes should also be reasonably

consistent, and within the same order of magnitude at least.

Using the Bioconductor annotation package illuminaHu-

manv1.db version 1.6.0 there are 47, 289 probes on the Illumina

WG-6 BeadChip, of which 5, 668 (12.0%) are assigned to one or more

KEGG pathways. When applied to the embryonic stem cell, neural

stem cell, neural progenitor, and teratocarcinoma cell types in the

Müller dataset, attract identified eleven significantly enriched pathways

(P-value,0.05, Table 1). These can be broadly classified into two

broad functional themes (see Supporting Information S1), cell-

environment interaction (focal adhesion, ECM-receptor interaction,

tight junction and cell adhesion molecules) and growth and

metabolism (oxidative phosphorylation, and the three disease

pathways Alzheimer’s, Parkinson’s and Huntington’s disease). The

first group of pathways involved in cell-environment interaction is

consistent with the hypothesis that the ability to recognize and respond

to extrinsic signals drives differentiation capacity and cell type

specificity. The second theme involves growth and metabolism and

again highlights the fact that cell phenotypes across the differentiation

spectrum are expected to have different metabolic capacities.

Because many genes are annotated to multiple KEGG

pathways, so we also examined the overlap between pathways

identified by attract to determine whether a small number of genes

drove the significance of multiple pathways. The top ranked

pathway, ribosome, was comprised of genes that did not overlap

with any of the other significant pathways. However, there was

substantial redundancy in the membership of other significant

pathways with the highest pair-wise overlap being 74%. For highly

overlapping pathways pairs, smaller pathways with lower repre-

sentation of common genes (such as ECM, with 45 members)

ranked higher than larger with which they overlapped (such as

focal adhesion, with 137 members).

Despite an overlap in membership, the synexpression groups

derived for each pathway were unique—reflecting pathway-

specific expression profiles rather than a global pattern driven by

a few genes (see Figure 3, Supporting Information S1). We also

examined the ‘‘flat genes’’—those which displayed no significant

difference across sample classes—but found a negligible number in

most of the pathways ranked as significant.

The synexpression groups that best distinguished ESCs from the

other cell types and were seeded from three pathways: ribosome, cell

adhesion molecules, and tight junction. The union of these three

groups was a large gene set including known pluripotency factors

such as Oct4, c-Myc and Nanog. In order to validate the attract

approach, we assessed the final correlated gene sets in the Ingenuity

Pathway Analysis (IPA) platform. The list of genes that make up the

PluriNet was downloaded from http://www.openstemcellwiki.org/

and loaded into IPA. The combined ESC-specific synexpression

groups were derived by combining the gene lists from the pathways

involving the tight junction, ECM-receptor interaction and cell

adhesion molecules (CAM) as defined in KEGG. The enrichment of

PluriNet genes with this combined ESC-specific group was evaluated

in IPA using a Fisher’s exact test, and resulted in a one-sided P-

value,1.36610239. The PluriNet originally described by Müller [1]

was significantly over represented in this gene set with a particular

emphasis on chromatin modifiers such as the DNA methyltransfer-

ases (see Supporting Information S1). However, the gene network

found using attract expanded the signaling context of these chromatin

regulators. We observed the convergence of several developmental

inputs such as beta-catenin, FGF and IGF receptors and ligands, as

well as calcium signaling and cell-cell adhesion proteins that were not

seen in PluriNet (Supporting Information S1). Many of the novel

components in our network are predicted to be extracellular proteins

or present on the ES cell membrane, and several of these include

proteoglycans and lectins that had not previously been described in

the context of stem cell signaling networks.

Comparison with pathway annotation of a ranked gene
list

The most commonly used approach for the analysis of gene

expression data is to use statistical methods to compare gene

Table 1. List of significant KEGG pathways identified by attract that discriminate between the four cell types (P-value,0.05).

KEGG Pathway ID KEGG Pathway Name Adjusted P-values Number of Detected Genes Number of Flat Genes (P-value.0.05)

3010 Ribosome 9.2187E-06 91 7

4512 ECM-receptor interaction 7.6171E-04 45 1

0190 Oxidative phosphorylation 1.1467E-03 92 6

4510 Focal adhesion 1.7173E-03 137 2

5016 Huntington’s disease 1.7173E-03 127 8

4530 Tight junction 2.7088E-03 86 0

5012 Parkinson’s disease 1.5503E-02 90 7

4060 Cytokine-cytokine receptor interaction 2.1785E-02 62 0

4514 Cell adhesion molecules (CAMs) 2.1785E-02 59 1

5010 Alzheimer’s disease 3.3719E-02 120 8

4080 Neuroactive ligand-receptor interaction 3.7780E-02 47 1

Flat genes are genes which do not show significant changes across the cell types (P-value.0.05 from a LIMMA model).
doi:10.1371/journal.pone.0025445.t001
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expression profiles between phenotypic groups to identify ‘‘signif-

icant’’ gene sets that are then used in a post hoc functional enrichment

analysis using a tool such as DAVID [8,9] to test for an over-

representation of particular Gene Ontology classes or KEGG

pathways. This approach relies on a ‘‘significant gene’’ list that often

represents one aspect of differential gene expression and assumes

that all genes in that functional group should behave in the same

way. The first step in attract is a feature selection using a pathway-

based significance test using GSEA-ANOVA, so we compared

attract to this more common selection/enrichment method.

The rationale behind a ranked-gene list annotation approach is

to reduce genome-wide data to a subset of informative genes,

where rankings are usually based on the degree of difference (p-

value or fold change) between the variables being examined. We

first used a implementation of LIMMA(version 3.2.3) [10], where

we specified a single covariate to represent the different cell types.

This used a pair-wise comparison where genes significantly

different between any of the 4 cell types were identified, and

included a Benjamini-Hochberg correction to produce P-values at

three levels: 1610225 (362 genes), 1610220 (1127 genes) and

Figure 3. Synexpression groups and their correlated sets for the Ribosome pathway. Log (2) Expression on the x-axis and sample
categories are listed across the Y-axis. Each black circle represents the average gene expression for each sample within a group, and corresponding
colored bar the average expression for that cell type; Similarly, each grey circle represents the average correlated gene expression for each sample
and grey bar the average expression for that cell type.
doi:10.1371/journal.pone.0025445.g003
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1610215 (2914 genes). These P-value thresholds were chosen

arbitrarily to restrict the size of the resulting gene lists to a size

typically used as input for standard enrichment tests.

Enrichment tests are somewhat constrained by the relatively

poor representation of annotated genes in mammalian genome.

DAVID’s EASE statistic uses a modified Fisher’s exact test to find

pathways whose membership is over-represented among the list of

statistically significant genes. GenBank accession numbers were

used as the primary identifiers and the whole WG6 version 1 chip

was used as the background list. In order to compare the results

generated by DAVID (version 6.7) to those of attract, gene sets

were restricted to KEGG-defined pathways only. Only the largest

ranked-gene list produced any significant pathway hits (P-

value,0.05, see Supporting Information S1), but the representa-

tion of LIMMA-significant genes in those pathways was rather

limited.

DAVID’s failure to find meaningful pathways appears to be due

to the failure of the initial analysis step to identify meaningful

differences between the groups, combined with the shortcomings

of the statistical method that underlies DAVID’s EASE analysis.

This highlights the limitations of the typical ranked gene list

approach which clearly missed the most discriminating profiles. A

list-based measure simply looks at representation of pathways

without considering the expression profiles of individual genes. In

contrast, the GSEA-ANOVA test in attract takes into the account

the ensemble distribution of expression levels represented by a set

of genes from the same pathway. Indeed, the pathways identified

by attract consisted largely of genes that had informative cell-type

specific expression and contained few genes that were unchanged

across the four cell types (see Table 1 and Figure 3). Therefore,

enrichment is assessed by both gene membership and the non-

identical contributions from each of these genes as represented by

their expression levels in the pathway.

The concept behind attract may appear at first glance to be a

simple implementation of the ranked gene-list/pathway enrich-

ment approach, but the rationale of identifying discriminating

pathways first provides a substantial improvement on the

sensitivity and informativeness of the resulting gene sets.

Comparison with GSEA
GSEA is an alternative pathway-based approach which avoids

the ranked-gene list trap, and whose underlying rationale is

sympathetic to the first step of attract. The original implementation

of GSEA [11] allowed for only two-state phenotypic comparisons,

but GSEAlm [12,13] uses a linear model to contrast multiple

phenotypic groups. We tested GSEAlm (version 1.6.0) where gene

sets were defined by KEGG, with cell type as a single covariate,

where we had the choice of using either a model that estimates the

absolute effects for each of the four cell types on a gene’s

expression, or one that estimates the effects of the three cell types

relative to a reference type. The former found all 187 KEGG

pathways significant at the lowest possible P-value (P-value,1/

5000 for 5000 permutations). The latter found 115 pathways that

were significant at the 0.05 level (see Supporting Information S1)

of which 107 pathways all had the most extreme P-value possible

(P,1/5000), making it difficult to identify a subset that captures

the cell type-specific differences.

To provide a basis for comparison, we ranked significant

pathways from GSEAlm based first on P-value and then on the

number of genes they contain. GSEA is known to be influenced by

the size of the pathways, and despite corrections for pathway size,

this effect that can be clearly seen (Supporting Information S1).

The top-ranked GSEAlm pathway was Pathways in Cancer

which is also the largest KEGG pathway, whereas the top-ranked

GSEA-ANOVA pathway was Ribosome. These do not share any

genes in common, so we tested whether these two pathways

provided equivalent discrimination between the four stem cell

states. The representation of differentially expressed genes on the

two pathways was starkly contrasted: All of the detected genes

mapping to the ribosome pathway were differentially expressed

between one or more cell type(84/84), with synexpression profiles

informative across all 4 cell types; whereas ,35% (206/569) of the

genes on the Pathways in Cancer pathway were differentially

expressed, and the syn-expression groups were dominated by

differences between the neural progenitors and other cell types.

The biggest difference between GSEAlm and GSEA_ANOVA

was the identification and ranking of pathways with significantly

different gene members. GSEAlm over-estimated the number of

significantly different pathways, and over-represented large

pathways. GSEA_ANOVA returned a modest number of

differentially expressed pathways, but the differentially expressed

genes were highly represented in each of these.

Discussion

The basis for most expression-based analyses is the search for

genes that exhibit patterns of differential expression between

phenotypic or experimental groups, followed by meta-analysis to

identify potential functional interpretations of the resulting gene

lists. This is even true in most approaches focused on identifying

co-expression networks from microarray data [14,15,16]. This

process generally takes the initial significant gene list and reduces it

based on a post-hoc application of knowledge about the potential

functional roles that the selected genes play. While this is a useful

way to annotate large datasets, it often restricts subsequent

analyses to well-annotated genes.

On the surface, attract represents a subtle shift away from

established methods focused on generation of gene lists. These

generally pose the question ‘‘What genes differentiate the

phenotypes?’’ after which one attempts to place the genes into

some biological context through meta-analysis of the identified

gene list. Instead, attract begins with a systems biology-inspired

approach in which we start by asking ‘‘What biologically relevant

pathways differentiate the phenotype?’’ This small shift in

rationale had a large impact on the number and relevance of

the pathways identified. Furthermore, it explicitly grounded the

first steps of the pipeline in well-annotated biological processes,

which supports hypothesis testing from the earliest stages of the

analysis. Having identified candidate pathways, we then decom-

pose pathway-defined gene lists into highly correlated subgroups

and extend those by going back to the entire body of data to find

additional genes that are highly correlated with each individual

subgroup.

The assumption is that these synexpression subgroups are co-

regulated is supported, in part, by a post hoc functional enrichment

analysis which validated that these larger correlated groups are

indeed comprised of functionally related genes. The stem cell

expression data collected by Müller and colleagues was used to

define fifteen stem cell subgroups based on their overall expression

phenotype, where individual cell types were able to belong to

multiple clusters. For our analysis, we chose four distinct subtypes

along the pluripotency spectrum. All of the cell lines were grown in

similar growth factor conditions including FGF, EGF, PDGF, and

serum. Given the differences between these cell types, one would

expect that there should be pathways whose expression patterns

distinguish between them.

When using LIMMA and DAVID, we were able to identify

individual genes that were differentially expressed across the

Defining Cellular Phenotypes with attract
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spectrum of differentiated cells, but only at very low statistical

stringency were we able to identify candidate pathways. Applying

GSEAlm to the same dataset produced a very unfocused result

that lacked discriminating power at the pathway or phenotype

level.;the largest and most significant pathway, Pathways of

Cancer, had similar expression profiles for human ESCs and the

teratocarcinomas, the two most phenotypically diverse cell lines.

This became more obvious when we separated this pathway into

synexpression groups where three of the four groups clustered the

ESCs and teratocarcinomas together (Supporting Information S1).

In contrast, attract clearly identified two overarching biological

themes—cell growth/metabolism and cell-environment interac-

tions—as the most informative discriminators between the four cell

types. This is much more consistent with our understanding of the

phenotypes, reflecting not just their array of responses to the extrinsic

growth factors, but also their inherent capacity to respond to those

signals. The pathways and synexpression groups identified by attract

provide a model that bridges many aspects of the phenotypes that are

unique to ESCs with the chromatin landscape that is associated with

pluripotency. Many of the genes implicated in ESC function sit at the

interface between cell and extracellular environment and the

pathways that they correlate with highlight physical aspects of

ESC growth—the characteristic colonies with close interactions

between the cells, increased protein synthesis capacity, cell polarity,

and the role of physical structures such as the cell cilium.

attract also identified the ribosomal pathway as significant, and it

is driven by elevated expression across the pathway in ESC. This is

consistent with previous reports that ribosomal proteins are

elevated in tissues such as ovary, uterus and embryonic stem cells.

Ribosome biogenesis is tightly regulated, and has been previously

linked to the translational demands of the cell, such that cells that

are highly proliferative have higher expression of ribosome genes.

For example, increases in ribosomal biogenesis have been associated

with proliferative disorders such as cancer. We do not see strong

evidence of altered rates of proliferation in human ESC compared

to the other cell types included in this comparison. Rather, it is

tempting to speculate that ESCs have a higher translational capacity

to cope with the demands of differentiation, which requires

fundamental shifts in cellular morphology and phenotype.

Understanding the mechanisms that drive cell-fate transitions is

one of the greatest challenges in modern biological science.

Although there may be many factors influencing these transitions,

including both genetic and epigenetic effects, the manifestations of

those factors is the expression state of that cell’s genes. Stuart Kauffman

suggested that cellular states represent particular attractors in the

complex adaptive landscape represented by gene expression state

space, and our modern interpretation of these attractors is that they

represent the activation and coordinated regulation of particular key

pathways. The attract method builds on that assumption by using a

knowledge-driven approach to test the hypothesis that key pathways

are important, and then to find other potential components of those

pathways or associated regulatory networks.

In our analysis of ESCs, neural stem cells, neural progenitors

and teratocarcinomas, we discovered that there are a small

number of pathways that are essential to explain the phenotypic

differences we observe. Signal transduction pathways that interact

with the ECM are functionally important for maintenance of the

self-renewal state of ESCs. Pathways relating to key cellular

structures, like focal adhesions and the cell adhesion molecules are

critical to both ensuring proper attachment of stem cells to their

stem cell niches, but also in the upkeep of the stem cell niche so

that it is able to retain its stem cells and recruit others when

needed. The use of attract allowed us to identify those well

annotated pathways which best contrasted the cell types of interest,

without assuming that all elements of the pathway should behave

in an identical manner. Furthermore, it integrates novel elements

by virtue of their correlated expression patterns to well annotated

functional processes.

Although we used stem cell expression data as a way of

demonstrating the power of attract, there is no reason to believe that

its applicability is limited to this or any other system. Because of the

assumptions underlying attract, it should be useful in discovering the

core networks, pathways, and systems that define cell states.
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