
Toward Standards in Clinical Microbiota Studies: Comparison
of Three DNA Extraction Methods and Two Bioinformatic
Pipelines

Q. R. Ducarmon,a,b B. V. H. Hornung,a,b A. R. Geelen,a,b E. J. Kuijper,a,b R. D. Zwittinka,b

aCenter for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
bExperimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands

ABSTRACT When studying the microbiome using next-generation sequencing, the
DNA extraction method, sequencing procedures, and bioinformatic processing are
crucial to obtain reliable data. Method choice has been demonstrated to strongly af-
fect the final biological interpretation. We assessed the performance of three DNA
extraction methods and two bioinformatic pipelines for bacterial microbiota pro-
filing through 16S rRNA gene amplicon sequencing, using positive and negative
controls for DNA extraction and sequencing and eight different types of high- or
low-biomass samples. Performance was evaluated based on quality control passing,
DNA yield, richness, diversity, and compositional profiles. All DNA extraction meth-
ods retrieved the theoretical relative bacterial abundance with a maximum 3-fold
change, although differences were seen between methods, and library preparation
and sequencing induced little variation. Bioinformatic pipelines showed different re-
sults for observed richness, but diversity and compositional profiles were compara-
ble. DNA extraction methods were successful for feces and oral swabs, and variation
induced by DNA extraction methods was lower than intersubject (biological) varia-
tion. For low-biomass samples, a mixture of genera present in negative controls and
sample-specific genera, possibly representing biological signal, were observed. We
conclude that the tested bioinformatic pipelines perform equally, with pipeline-specific
advantages and disadvantages. Two out of three extraction methods performed equally
well, while one method was less accurate regarding retrieval of compositional profiles.
Lastly, we again demonstrate the importance of including negative controls when ana-
lyzing low-bacterial-biomass samples.

IMPORTANCE Method choice throughout the workflow of a microbiome study, from
sample collection to DNA extraction and sequencing procedures, can greatly affect
results. This study evaluated three different DNA extraction methods and two bioin-
formatic pipelines by including positive and negative controls and various biological
specimens. By identifying an optimal combination of DNA extraction method and
bioinformatic pipeline use, we hope to contribute to increased methodological con-
sistency in microbiota studies. Our methods were applied not only to commonly
studied samples for microbiota analysis, e.g., feces, but also to more rarely studied,
low-biomass samples. Microbiota composition profiles of low-biomass samples (e.g.,
urine and tumor biopsy specimens) were not always distinguishable from negative
controls, or showed partial overlap, confirming the importance of including negative
controls in microbiota studies, especially when low bacterial biomass is expected.
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Humans constantly interact with microbes that are present in the environment and
reside on or within the human body. Recently, the attention for microbes has

shifted from an exclusive interest in the pathogenicity of specific microbes toward the
potential beneficial role of the microbiota in human health (1). The gastrointestinal tract
contains the highest number of microbes and has been the most extensively studied
body site of all human microbial communities (2). However, many other body sites are
inhabited by various microbes composing a specific microbiota, such as the oral region,
skin, and urogenital system. Microbial complexity varies between these niches; e.g., a
healthy vaginal microbiota is often mainly composed of a few Lactobacillus strains,
while gut and skin microbiota are usually more diverse (3).

A limiting factor in current microbiome research is that comparison of various study
results is often difficult due to the application of different methodologies and lack of
appropriate controls. These differences can affect data outcomes and lead to variation
as large as biological differences (4). Variation can be introduced throughout the
workflow, from sample collection, storage, and processing to data analysis (5–8).
Recently, more attention has been devoted to standardizing the workflow of micro-
biome research. For instance, it was observed that DNA extraction has a large impact
on obtained data (4, 9), and consensus has been achieved regarding the application of
bead-beating to increase efficiency of cell wall lysis and thereby improve the yield of
Gram-positive bacterial DNA (10). Nevertheless, various kits and in-house extraction
methods are used across different laboratories. Recently, Costea et al. evaluated 21 DNA
extraction methods across three continents and suggested one protocol, named
protocol Q, as a gold standard for human fecal samples (9). They stated that it was
unknown whether this method is optimal for samples other than fecal material, e.g., for
low-biomass samples. To evaluate the performance of DNA extraction for low-biomass
samples, it is crucial to include multiple negative controls to allow for identification of
bacterial DNA introduced during the entire workflow, from sample collection to se-
quencing (11).

As part of optimizing the procedures for 16S rRNA gene amplicon sequencing-based
microbiota studies in our facility, we evaluated three DNA extraction methods and two
bioinformatic pipelines using various positive controls and negative controls. In addi-
tion, we applied these DNA extraction methods to various biological specimens.

RESULTS AND DISCUSSION
Mock communities pass quality control. We evaluated three different DNA ex-

traction methods and two bioinformatic pipelines for microbiota profiling through 16S
rRNA gene amplicon sequencing (Fig. 1) using several positive and negative controls.
Included positive controls were two bacterial mock communities (ZymoBiomics micro-
bial community standard [here referred to as Zymo mock] and ATCC MSA2002 [here
referred to as ATCC mock]) and one DNA standard. Included negative controls were
DNA extraction controls and sequencing controls. Quality control (QC) passing (DNA
concentration and intact genomic fragment) were evaluated to determine extraction
method performance. It was expected that positive controls would pass QC, while
negative controls would not. Regarding mock communities, all extractions using Zymo
and Q passed QC, while for MagNA Pure 96 (here referred to as Magna) one extraction
did not pass QC for both the ATCC mock community and Zymo mock community (see
Table S3 in the supplemental material). This was not unexpected, as mock communities
were diluted for extraction using Magna, and therefore, DNA concentrations were
lower. Negative extraction controls did not pass QC for Q and Magna, but they did for
Zymo. This likely represents a higher contamination load during the extraction process
for Zymo, which was also reflected by higher DNA concentrations (Table S3). A full
overview of all samples included in this study, their QC passing, and DNA concentra-
tions can be found in Table S4.

Positive controls: classification, richness, diversity, and relative species abun-
dance. (i) Primer choice in combination with bioinformatic pipeline choice may
limit correct classification of all bacterial species in mock communities. Perfor-
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mance of the three extraction methods in combination with two bioinformatic pipe-
lines, NG-Tax and QIIME 2, was evaluated on correctly identifying richness, diversity,
and relative abundances from bacterial mock communities and a DNA standard.
Richness and diversity were computed at the operational taxonomic unit (OTU) level
and at the genus level. Analysis of compositional profiles was performed at the genus
level. Both pipelines failed to classify one organism from either mock community;
NG-Tax did not detect Cutibacterium from the ATCC mock, while QIIME 2 did not detect
Salmonella from the Zymo mock. The inability to detect Cutibacterium is most likely a
combination of different internal settings and filtering steps in the computational
pipelines and a primer choice issue, since the universal 515F and 806R primers are
known to poorly amplify Cutibacterium acnes (12). Poor amplification of C. acnes results
in limited read numbers, which may be filtered out during bioinformatic processing.
These issues could likely be solved by choosing primers targeting different 16S rRNA
gene regions or by using adapted V4 region primers, which do allow for accurate
amplification of Cutibacterium (12, 13). Regarding QIIME 2 and the inability to detect
Salmonella, there was an Enterobacteriaceae family with approximately expected rela-
tive abundance for Salmonella, and we were therefore confident this represented
Salmonella. This Enterobacteriaceae family was subsequently included as Salmonella,
and designated Enterobacteriaceae (Salmonella). This classification error likely resulted
from the fact that Enterobacteriaceae members cannot always be discriminated based
on the 16S rRNA V4 region (14).

(ii) DNA standard and Zymo mock community data can be recovered indepen-
dent of extraction protocol or pipeline. The Zymo mock and DNA standard consist
of, respectively, cell material and DNA of eight bacterial species and two fungal species.
As the 16S rRNA gene was targeted, fungi should not be detected. Therefore, theoret-
ical richness is 8 and theoretical Shannon diversity was calculated to be 2.01.

Regarding the DNA standard, NG-Tax overestimated OTU-based richness for both
duplicates DNA 1 and DNA 2 (Fig. 2A; Table S3). Richness was, however, accurately
retrieved at the genus level (Fig. 2C). The same was observed regarding diversity, which
was overestimated at the OTU level (Fig. 2B) but accurate at the genus level (Fig. 2D).
QIIME 2 approached theoretical richness and diversity values at the OTU level (Fig. 2A
and B; Table S3). Richness slightly improved at the genus level (Fig. 2C), while diversity

Zymo

DNA extraction

QMagna
DNA yield 

QC passing

NG-Tax QIIME 2

Bioinformatic processing

Human specimens Controls

Sample collection

Controls Sequencing
Illumina Nextseq 500, V4, PE150

Richness

Diversity

Microbiota composition

FIG 1 Study design workflow. DNA was extracted from human specimens and positive and negative
controls using three different DNA extraction methods. DNA extraction performance was assessed on
DNA yield and QC passing. Extracted DNA and positive and negative sequencing controls were
sequenced. Raw sequencing data were processed using two bioinformatic pipelines. Performance was
assessed on microbiota composition, richness, and diversity.
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did not differ from OTU-based diversity (Fig. 2D). Thus, QIIME 2 better estimated
richness and diversity at the OTU level, while NG-Tax performed better at the genus
level (Table S3). This likely stems from NG-Tax finding an inflated richness due to
assignment of multiple OTUs from a single organism (e.g., multiple Enterococcus OTUs).
When OTUs are collapsed at the genus level, this is no longer a problem, probably
explaining why NG-Tax can perform better at the genus level while performing worse
at the OTU level.

Compositional profiles of DNA 1 and DNA 2 are highly similar to theoretical
abundance (Fig. 3A and B). To quantify differences in compositional profiles, Bray-Curtis
dissimilarity and Kullback-Leibler divergence (Fig. 3C to F) (15) and fold errors for each
taxon (Fig. 4) were determined. For the dissimilarity and divergence values, a value of
zero represents an identical microbiota composition to the theoretical expectation.
NG-Tax obtained values closer to zero than QIIME 2 for both DNA 1 and DNA 2,
although the difference is minimal (Fig. 3; Table S2) and the performances of both
pipelines can therefore be regarded as equal. A similar conclusion can be drawn from
the fold errors (Fig. 4), since both pipelines accurately retrieved expected relative
abundance, with all genera having a fold error between �1.5 and 1.5 (Table S3).

Similar analyses were performed for the Zymo mock to evaluate performance of
DNA extraction methods in combination with the bioinformatic pipelines. All DNA
extraction methods, independent of pipeline, resulted in OTU-based richness above 20
for most samples, far higher than theoretical expectance (Fig. 2A). This is especially
noteworthy for QIIME 2, as it was highly accurate in retrieving correct richness for the
DNA standard, in contrast to NG-Tax. Zymo and Q protocols in combination with
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NG-Tax retrieved accurate genus level-based richness, while a slightly inflated richness
was observed for Magna (Fig. 2C). No extraction method was consistent in retrieving
correct genus level-based richness in combination with QIIME 2. Regarding diversity, all
DNA extractions, independent of pipeline, retrieved highly accurate values at the genus
level (Table S3). At the OTU level, however, the NG-Tax pipeline resulted in overesti-
mation of diversity independent of the DNA extraction method and therefore the
overestimation of diversity can be considered a result of bioinformatic processing.
Magna extraction resulted in Bray-Curtis and Kullback-Leibler values closer to zero than
Zymo and Q, independent of pipeline (Fig. 3C to F; Table S3). A similar conclusion can
be drawn from the fold errors, which are lowest for Magna and pipeline independent
(Fig. 4; Table S3).
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Taken together, results obtained from the DNA standard indicate that QIIME 2 and
NG-Tax perform equally well in general, except for overestimation of OTU level richness
and diversity when using NG-Tax. Results obtained from the Zymo mock, which is a
better representation of the full procedure for a microbiota study, indicate that richness
is most accurate at the genus level using Zymo or Q in combination with the NG-Tax
pipeline. In addition, bacterial microbiota composition profiles are best retrieved using
Magna, followed by Zymo, and are pipeline independent.

In concordance with current literature (9) and independent of extraction method, a
general underestimation of Gram-positive bacteria was observed, with Enterococcus
being the sole exception (Fig. 4). This is most likely due to incomplete cell wall lysis of
Gram-positive bacteria. Based on the DNA standard and the Zymo mock, we conclude
that Zymo and Magna in combination with either pipeline are the best-performing
combinations (Table S3). However, when high-throughput DNA extraction is required
(e.g., for large cohort studies), Magna may be preferred from a practical point of view,
although it overestimates richness independent of pipeline.

In general, overestimation of OTUs may stem from the 100% identity setting for
clustering, combined with the natural divergence of the 16S rRNA gene (16, 17). There
is no current consensus on OTU identity setting, and cutoffs between 97% and 100%
are most commonly used (18). An advantage of the 100% cutoff is that unique taxa
differing a single nucleotide are clustered into different OTUs. A disadvantage is that as
intragenomic diversity in the 16S rRNA gene is common within bacterial genomes, a
100% cutoff can lead to multiple OTUs stemming from a single bacterium and thereby
inflate richness (17). In addition, using a 100% cutoff can theoretically inflate richness
due to sequencing errors and requires computational denoising. Apart from biological
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explanations, the different algorithms and internal filtering steps used in QIIME 2 and
NG-Tax can affect the outcome for richness.

(iii) ATCC mock is recovered incorrectly, independent of extraction protocol or
pipeline. The ATCC mock consists of 20 unique bacterial species, with four of them
belonging to two genera (Staphylococcus and Streptococcus). Therefore, theoretical
richness at the OTU level would be 20, but it would be 18 at the genus level. In addition,
these 20 unique bacterial species come from different environments, including gut,
oral, and skin microbiota.

No values close to the theoretical profiles for the ATCC mock for any extraction
method/bioinformatic pipeline were observed, and one sample from Q consisted
almost entirely of nonclassifiable reads (Fig. 5), indicating sample-related issues. Bacillus
was highly overrepresented in all other samples, with a relative abundance of �30% in
Zymo- and Magna-extracted samples, while 6.13% is expected. Curiously, after the first
mechanical lysis step in Q, we could culture Bacillus cereus and Cutibacterium acnes
(identification scores of 1.90 and 2.00, respectively), as well as Bacillus cereus (identifi-
cation score 2.05) after mechanical lysis in Zymo. This is clinically important, as it means
that infectious materials cannot be considered safe or noninfectious after mechanical
lysis. As culturing of B. cereus indicates that cell wall lysis was incomplete, it would be
expected that its relative abundance was underestimated, contrary to what was
observed. Another research group recently reported a similar overrepresentation of
Bacillus in the ATCC community (19). The ATCC itself was also unable to retrieve
abundances close to theoretical expectation, either with 16S rRNA gene amplicon
sequencing or with shotgun sequencing (20). Several reasons could explain this dis-
crepancy between theoretical profiles and obtained profiles. For example, physical
cell-to-cell interactions or the presence of different metabolites may interfere with DNA
extraction (16, 21). Therefore, based on this synthetic community, no conclusions on
the optimal extraction-pipeline combination could be made. This proposed positive
control prompts the question of whether mock communities are always reliable for
assessing performance of DNA extraction methods. As can be observed from the Zymo
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mock, DNA extraction kits do not necessarily inflict observed deviations but may rather
be a result of mock community-specific properties. Outcomes may depend on extrac-
tion kit-community type combination, indicating the potential necessity to use a
positive control that strongly resembles the investigated microbiome.

Negative controls: inconsistently contaminated. Negative controls were taken
along for each extraction method to check for kit-specific contaminants, which are
especially relevant for deciding whether low-biomass samples contain real microbiota.
Regarding Zymo, clear kit contaminants were Pseudomonas and Delftia (Fig. S2A and C),
consistent across the different pipelines at the genus level and with previous findings
(11, 22). For Magna and Q, specific contaminants were less obvious, although Pseu-
domonas was present. Generally, negative controls mostly consisted of genera com-
monly found in gut and oral microbiota, most of them also previously described as
contaminants (11). In addition, negative sequencing controls were taken along, and in
this case no consistent contaminants could be observed (Fig. S2B and D). Potential
contamination sources are multifold, such as kit contamination, index hopping, or
well-to-well contamination (23, 24). Index hopping is, however, not a likely source of
contamination, as the negative control for Magna was sequenced in different lanes, and
profiles look highly similar (Fig. S2A and C). Additionally, we did not observe index
hopping in our positive controls.

One of the contaminants we identified has not been previously described as a
contaminant, namely, Clostridioides. This likely represents Clostridioides difficile, and
contamination by this bacterium can be explained by the fact that DNA extractions
were performed in our National Reference Laboratory for C. difficile, which probably
contains minor amounts of C. difficile spores at most time points. C. difficile contami-
nation on laboratory surfaces has also recently been described for another clinical
microbiology laboratory (25).

By incorporating this information with the Zymo positive controls, it can be con-
cluded that Zymo and Magna are most optimal. Magna most accurately captured the
expected community profile, while kit-specific contaminants are clear and easy to
discriminate from biological signal using Zymo (Table S2). When investigating different
biological sample types, it would be ideal to use a kit for which kit contaminants do not
overlap the biological signal, e.g., Pseudomonas contamination when studying sputum
samples from cystic fibrosis patients, who are frequently colonized with Pseudomonas
spp. However, this would require contaminants to be stable across batches, which has
been shown to not be the case (22).

Automatic Magna extraction yields the lowest DNA concentrations for biolog-
ical samples. Twenty-seven biological samples were available per extraction protocol
(Table S1), and Q was most successful in passing QC (22/27), followed by Zymo (20/27)
and Magna (17/27) (Table S3), although differences were not statistically significant
(Cochran’s Q test, P � 0.178). QC passing was based on DNA concentration and intact
genomic fragments. DNA concentrations were, on average, lowest for Magna, while
yields were comparable between Q and Zymo (Fig. S1). Processing of raw sequencing
data from biological samples was performed using the NG-Tax pipeline at the genus
level.

Fecal microbiota analysis is only slightly affected by the applied DNA extrac-
tion methods. DNA extracted from fecal samples using the three different protocols all
passed QC. Magna, Zymo, and Q achieved average concentrations of approximately
29 ng/�l, 111 ng/�l, and 212 ng/�l, respectively (Fig. S1). While DNA yields varied
between extraction methods, all were sufficient for sequencing. Microbiota profiles
were comparable between extraction methods for each sample (Fig. S3A). In addition,
differences in compositional profiles were quantified using Kullback-Leibler divergence
(Fig. 6A). The heat map in Fig. 6A shows that technical variation induced by DNA
extraction method is much lower than biological variation between feces samples.
Profiles of the feces donors contained many bacterial genera commonly present in fecal
microbiomes (26, 27). Healthy fecal microbiomes largely consist of the phyla Bacte-
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roidetes and Firmicutes (�90%), while Actinobacteria and Proteobacteria are present in
smaller proportions. At the genus level, Bacteroides, Prevotella, and Faecalibacterium are
among the most prevalent genera (3), all of which were found in high abundance in this
study.

Microbiota profiles of oral swabs are consistent, despite low DNA yields. Out of
18 DNA extractions, 15 passed QC for oral swabs. Only for Zymo did all extractions pass
QC. DNA yields were highly variable for all extraction methods, ranging from 0.12 to
6.34 ng/�l. Half of the extractions (9/18) yielded a concentration below 1 ng/�l. All
compositional profiles were dominated by Streptococcus, Prevotella, Haemophilus, and
Veillonella, which was individual independent. In addition, technical variation induced
by DNA extraction and subsequent steps was lower than biological variation (Fig. 6B).
The oral microbiota, like the gut microbiota, is highly diverse. Nevertheless, a certain
core of genera (e.g., Streptococcus and Prevotella) is present in most people, all of which
were found in our study (3, 28, 29). Together, the good QC passing rate, DNA
concentrations, and consistency of compositional profiles between extraction methods
lead us to conclude that all three methods work well for oral swabs.

Applied methodology yields inconsistent results for the urine microbiota.
During the last decade, microbiota studies showed that urine contains a bacterial
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microbiota (30, 31). Despite using 30 to 40 ml of urine and centrifugation prior to
extraction (32), we were not able to convincingly capture a urinary microbiota for all
samples (Fig. S3C). DNA concentrations were high for an infected sample (between 13
and 42 ng/�l), but concentrations for the other samples were between 0.11 and
0.99 ng/�l. Six out of nine samples passed QC. For the infected sample with a high
bacterial load, we were able to classify the cause of infection to Enterobacteriaceae,
which is in agreement with the fact that most urinary tract infections (UTIs) are caused
by members of the Enterobacteriaceae. One urine sample showed high similarity to
negative controls for respective kits, with nonclassifiable reads for Q and Magna, and
high relative abundance of Pseudomonas for Zymo (Fig. S3C). Another urine sample
contained a high Lactobacillus relative abundance, which has previously been shown to
be prevalent in urine samples (31). Lactobacillus could be cultured in 15% of urine
samples collected by a transurethral catheter and was thereby the most prevalent
genus cultured (31). Another small-scale study found that for five out of six patients,
Lactobacillus was detected in midstream urine samples and its relative abundance was
between 22 and 80% (30). In addition, the presence of Atopobium, Gardnerella, Pre-
votella, and Anaerococcus points toward an existing urinary microbiota (33). However,
Pseudomonas, a common Zymo kit contaminant, was still found in this urine sample,
and for Magna more than 25% of reads could not be classified (Fig. S3C). This could
indicate that the biological signal is not much stronger than contamination, and
therefore, a mixed profile is observed. Further efforts and method optimization should
be undertaken, although this can be difficult to implement in routine work (34). In
addition, culturing could be used as a follow-up method to confirm that contaminants
are not viable bacteria but rather bacterial DNA.

Saliva samples with long storage time and multiple freezing-thawing cycles
seem unsuitable for microbiota research. DNA yield from included saliva samples
was lower than described in the literature (35, 36) (Fig. S1). Only a single DNA extraction
had a concentration of slightly above 1 ng/�l (1.18 [Table S4]), while all other extrac-
tions had concentrations between 0.04 and 0.68 ng/�l. This is most likely associated
with storage duration (�15 years) and the fact that samples were thawed and refrozen
several times. This also explains why only three out of nine DNA extractions passed QC.
The included saliva samples were chosen because investigators within our facility were
interested to see if microbiota studies could be performed using these samples.
Compositional profiles consisted of a mixture of genera present in the normal oral
microbiota (Oribacterium, Prevotella_7, Prevotella_9, and Streptococcus) (3), genera pres-
ent in our negative controls (Pseudomonas and Delftia), and nonclassifiable reads
(Fig. S3D). In combination with low DNA yields, it is likely that a mixture between
biological signal and contamination signal is present. Therefore, we consider the
applied extraction methods unsuitable for saliva samples with a long duration of
storage and multiple freezing-thawing cycles.

The colorectal cancer microbiota present in biopsy specimens was indistin-
guishable from negative controls or fecal microbiota. As colorectal cancer devel-
opment has been associated with specific gut bacteria, we were interested to see if
colorectal cancer tissue itself also contained bacteria (37, 38). DNA concentrations were
sufficient for all samples to pass QC, but extracted DNA was likely mostly human
derived. Two of three extraction methods were not successful, as samples extracted
using Zymo and Magna showed high similarity to their respective negative controls
(Fig. S3E). Using Q, Bacteroides, Fusobacterium, and Gemella were identified, all previ-
ously associated with colorectal cancer development (37, 39). Several gut commensals,
including Faecalibacterium and Escherichia-Shigella, were present in both the negative
controls and these colorectal cancer samples. It is therefore difficult to discriminate
whether these are contaminant bacteria or whether they represent biological signal.

We hypothesized that if the material was spun down, the supernatant would contain
more bacteria than the cancer tissue. DNA concentrations of supernatant were between
0.16 and 2.32 ng/�l, and seven out of nine DNA extractions passed QC (Table S4). For
one sample, it was clear that across all methods, many genera were observed which
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were present in negative controls (e.g., Pseudomonas), or reads could not be classified
at all (Fig. S3F). A second sample seemed to contain a real microbiota. Profiles were
consistent across extraction methods, did not contain many contaminants, and had
specific bacteria previously linked to colorectal cancer (e.g., Fusobacterium) (37). The
third sample showed a profile reflecting a mix between biological signal and technical
contamination. Profiles were consistent across methods and contained genera repre-
sentative of a gut microbiota, but they also contained nonclassifiable reads and
contamination. Therefore, profiles are likely a mixture of biological signal and technical
contamination, and further optimization is necessary prior to using this sample type for
experimental studies. We have the same recommendation for colorectal cancer sample
types as for urine, as discussed above.

It remains unclear whether HPV-negative vulvar squamous cell carcinoma
biopsy specimens contain a bacterial microbiota. Vulvar squamous cell carcinoma
(VSCC) has different etiological pathways, of which one is associated with human
papillomavirus (HPV). The counterpart is nonvirally related and is frequently associated
with lichen sclerosis, a benign chronic inflammatory lesion, and TP53 mutations (40, 41).
We extracted DNA from HPV-negative VSCC tissue as a pilot study to determine if
investigating the relationship between bacterial microbiota and HPV-negative VSCC
would be potentially feasible. DNA concentrations were high (Fig. S1), only for three
extractions below 1 ng/�l, and eight out of nine extractions passed QC. However, DNA
was probably again largely human derived. This was reflected in the obtained micro-
biota profiles, as most reads were not classified or the profiles showed high similarity
to negative controls (e.g., high abundance of Pseudomonas) (Fig. S3G). Therefore, it is
unlikely that this cancer tissue contains bacteria, or bacteria are so lowly abundant that
they are overshadowed by contamination load. In general, the vulvar microbiota has
not been extensively studied. A recent study on vulvar microbiota observed that
Lactobacillus, Corynebacterium, Finegoldia, Staphylococcus, and Anaerococcus are most
abundant on this body site, but the use of negative controls was not reported (42).
These genera are also part of the vaginal microbiota and might be sampling contam-
ination or reflect high similarity between vulvar and vaginal microbiota.

A large amount of formalin-fixed VSCC materials are stored in a biobank at our
facility. To investigate whether this sample collection could be used for microbiota
profiling, DNA was extracted from three formalin-fixed VSCC samples. DNA concentra-
tions were all below 0.3 ng/�l, and only two out of nine extractions passed QC
(Table S4). One sample extracted with Q was excluded from further analysis, as no reads
were present after sequencing. Extraction and sequencing of formalin-fixed material
pose additional problems, as DNA molecules could be highly fragmented and too short
for amplicon sequencing of the V4 region (43). For Zymo, samples resembled negative
controls, with Delftia and Pseudomonas being highly abundant (Fig. S3H). The same
samples showed completely different microbiota profiles when using protocol Q or
Magna. Both extraction methods showed genera commonly found in the lower uro-
genital tract, including Streptococcus, Prevotella, and Gordonia (3, 27). However, many of
these genera were also detected in negative controls. On the basis of these findings in
combination with low DNA yield and inconsistent profiles across extraction methods,
we conclude that no reliable bacterial microbiota profile could be identified in these
samples. For both VSCC types, we suggest the same way forward as for urine samples.

Sample groups with and without biological signal cluster apart. Lastly, we
performed t-distributed stochastic neighbor embedding (t-SNE) clustering using Bray-
Curtis measures on all samples used in the present study (Fig. 7) (44). Based on
microbiota composition as measured by Bray-Curtis, t-SNE projects points in a two-
dimensional space while maintaining local structures present in high-dimensional
space. Clear clusters could be identified for Zymo positive controls, feces, oral swabs,
and ATCC mock (all but one sample) (Fig. 7). Other biological samples and negative
controls were more dispersed throughout the plot, indicating that either more biolog-
ical or technical variation was present. This is in agreement with our detailed analysis,
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showing that their microbiota cannot necessarily be distinguished from the negative
controls. This highlights the importance of including negative controls in microbiota
studies, which has previously been shown in two studies aiming to unravel the
placental microbiota (45, 46) and is increasingly recognized in the field. It is currently
unclear whether a placental microbiota exists, but when comparing placental samples
of healthy deliveries to included negative controls, microbiota compositions could not
be distinguished (45, 46).

Strengths and limitations. The current study had several strengths and limitations.
By using a positive control of cell material with a corresponding DNA standard, we
differentiated variation induced from sequencing procedures and DNA extraction. We
demonstrate the importance of using positive and negative controls in microbiota
studies, and show that negative controls are crucial for interpretation of low-biomass
samples. Another strength of the study was that for several higher-biomass biological
samples (feces and oral swabs), we showed that technical variation was much smaller
than biological variation. A shortcoming of the study is that we did not perform any
other quantification next to 16S rRNA gene sequencing (e.g., quantitative PCR [qPCR]),
which may be particularly useful for quality control of the ATCC mock. Furthermore, the
current study used only three unique samples of most biological sample types. Espe-
cially for samples for which DNA extraction was challenging (urine samples and
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colorectal cancer supernatant), a higher number of unique samples would have al-
lowed for a more thorough evaluation.

Conclusion. The current study evaluated three DNA extraction methods and two
bioinformatic pipelines for bacterial microbiota profiling using several positive and
negative controls and a range of biological specimens. All three extraction methods
quite accurately retrieved theoretical abundance of the Zymo mock but not of the
ATCC mock. For DNA extraction, we recommend using the Zymo and Magna protocols,
since they showed good overall performance for all samples. The sequencing proce-
dure induced only minor variation, as shown using a DNA standard. We furthermore
showed that the NG-Tax and QIIME 2 pipelines perform equally well overall, each
having their specific flaws.

By including negative controls and comparing these with low-biomass samples, we
evaluated whether low-biomass samples consisted of technical noise, biological signal,
or a mixture. In most cases, identification of a unique microbiota was not achieved,
highlighting the importance of negative controls and sufficiently sensitive methods.
The results from this study can help other microbiome study groups to select an
appropriate DNA extraction method and bioinformatic pipeline. Lastly, we hope this
study contributes to further awareness of the usage of controls, especially when
studying low-biomass samples.

MATERIALS AND METHODS
Sample collection and preprocessing. Eight different biological specimens were included in this

study, namely, feces, urine, saliva, oral swabs, colorectal cancer tissue, colorectal cancer supernatant,
vulvar squamous cell carcinoma tissue, and formalin-fixed vulvar squamous cell carcinoma. For each
biological specimen, three unique samples were included. Only for oral swabs, six unique samples were
included (Table S1). These samples were anonymized and treated according to the medical ethical
guidelines described in the Code of Conduct for Proper Secondary Use of Human Tissue of the Dutch
Federation of Biomedical Scientific Societies (https://www.federa.org/). A detailed overview of sample
types, sample processing and storage conditions can be found in Table S1.

Mock communities and DNA standard. Two mock communities (ZymoBiomics microbial commu-
nity standard [Zymo Research, Irvine, CA] and 20-strain even-mix whole-cell material [ATCC MSA2002;
ATCC, Wesel, Germany]) were included as positive controls for DNA extraction. The exact composition
and relative abundances of 16S rRNA gene copies were provided on the product sheet for the
ZymoBiomics microbial community standard (here referred to as Zymo mock), while for ATCC MSA2002
(here referred to as ATCC mock), we calculated expected 16S rRNA gene profiles based on genomic
information (Table S2). The ZymoBiomics microbial community DNA standard (here referred to as DNA
standard) was taken along as a positive sequencing control.

DNA extraction procedures. Cancer samples were preprocessed for DNA extraction comparably to
a recent study on pancreatic cancer microbiota (48), urine samples according to a recent publication on
how to study urinary microbiota (32), and other samples according to in-house methods for sample
processing (Table S1). For solid cancer samples, the beating steps during preprocessing were performed
using a Qiagen TissueLyser LT (Qiagen Benelux, Venlo, The Netherlands) at 50 Hz for 1 min (Table S1). As
single saliva samples did not contain sufficient volume for multiple extractions, several samples from the
same individual were pooled to obtain the appropriate volume. DNA was extracted in duplicate from
three unique samples for each biological material, only for oral swabs from six unique samples, and from
the two mock communities. DNA was extracted using three different extraction protocols (see “DNA
extraction protocols” below), and for each protocol a negative extraction (no sample) was included in
duplicate. The DNA standard was taken along in duplicate. DNA was quantified using a Qubit 3.0
fluorometer (Invitrogen, Breda, The Netherlands) and the Qubit double-stranded DNA (dsDNA) HS assay
kit (Thermo Fisher, Landsmeer, The Netherlands). A schematic overview of the study setup is shown in
Fig. 1.

DNA extraction protocols. Detailed protocols, including all minor adaptations, are present in Text
S1 in the supplemental material. DNA extraction was performed using three methods: (i) the Quick-DNA
fecal/soil microbe kit (here referred to as Zymo) (Zymo Research) according to the manufacturer’s
instructions with minor adaptations, (ii) protocol Q (here referred to as Q) (9), and (iii) automated DNA
extraction with MagNA Pure 96 (here referred to as Magna) (Roche Diagnostics, Almere, The Netherlands)
using the MagNA Pure 96 DNA and viral nucleic acid (NA) small-volume kit (Roche Diagnostics),
according to standard operating procedures with minor adaptations. Mock communities were diluted to
104 to 105 cells per sample for extraction using Magna. For Q, several buffers and other materials were
not provided in the kit and therefore were purchased elsewhere, namely, BeadBug prefilled tubes with
2.0-ml capacity and 0.1-mm zirconium beads (Sigma-Aldrich, Zwijndrecht, The Netherlands), RNase A,
DNase and protease-free water (10 mg/ml) (Thermo Fisher, The Netherlands), and Tris-EDTA (TE) buffer
(Thermo Fisher).

MALDI-TOF mass spectrometry (Biotyper). To verify whether all bacteria of the ATCC mock were
lysed after the first mechanical lysis step of both Zymo and Q, the lysate was plated on a tryptic soy agar
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plate containing 5% sheep blood (VWR International, Amsterdam, The Netherlands), and aerobically and
anaerobically incubated at 37°C for 5 days. The matrix-assisted laser desorption ionization–time of flight
mass spectrometry (MALDI-TOF MS) Biotyper system was used (Bruker Daltonics, Germany) to identify
the bacterial species. Samples were prepared in the following way. A bacterial colony was taken from the
culturing plate and spread in duplicate on single spots on a Bruker polished steel target plate.
Subsequently, 1 �l of 70% formic acid was added on each single spot, and when dried, 1 �l of prepared
Bruker matrix �-cyano-4-hydroxycinnamic acid (HCCA) according to clinical laboratory protocols was
added per spot. The Bruker polished steel target plate was then used for MALDI-TOF MS Biotyper
analysis.

Library preparation and 16S rRNA gene amplicon sequencing. Of each duplicate DNA extraction
from biological specimens, the duplicate with the highest genomic DNA concentration was used for
sequencing. Duplicate samples from controls were both sequenced. Quality control, library preparation,
and sequencing were performed by GenomeScan B.V. (Leiden, The Netherlands) using the NEXTflex 16S
V4 Amplicon-Seq kit (BiooScientific, TX) and Illumina NextSeq 500 (paired end, 150 bp) according to their
standard operating procedures. QC passing was based on intact genomic DNA and DNA concentrations
measured by GenomeScan B.V. Therefore, those DNA concentrations were used for downstream analysis.
Several samples were sequenced on multiple lanes, as indicated in all relevant figures and tables.

Sequencing data analysis. Read filtering, operational taxonomic unit (OTU) picking, and taxonomic
assignment were performed using two different bioinformatic pipelines, QIIME 2 and NG-Tax 0.4 (49, 50),
both using the Silva_132_SSU Ref database for taxonomic classification (51). For both pipelines, a read
length of 120 bp was chosen based on quality of reads. The following settings were applied for QIIME 2:
forward and reverse read length of 120 bp, quality control using Deblur, and identity level of 100%
(default). The following settings were applied for NG-Tax: forward and reverse read length of 120 bp, ratio
OTU abundance of 2.0 (default), classification ratio of 0.9 (default), minimum threshold of 0.1% (default),
identity level of 100% (default), and error correction of 98.5 (default). Prior to the NG-Tax run, potential
leftover primers were removed with cutadapt v.1.9.1 (52), in paired-end mode, with additional setting -e
0.2 (increased error tolerance, 20%). This setting was required since NG-Tax first creates a smaller custom
database, based on the used primers. During further processing, data have to be primer sequence free,
as the primer sequence is removed from the smaller database. Furthermore, all sequences with any
deviating barcode in the fastq header were changed to the original barcode to allow inclusion into the
NG-Tax pipeline.

The obtained OTU tables were filtered for OTUs with a number of sequences less than 0.005% of the
total number of sequences (53). Downstream analysis was performed in R (v.3.6.1), mainly using the
phyloseq (v.1.28.0), microbiome (v.1.6.0), and ggplot2 (v.3.2.0) packages (54–56). Alpha diversity was
computed at both the OTU and genus levels, while analysis of compositional profiles was performed at
the genus level. Kullback-Leibler divergence and Bray-Curtis dissimilarity measure heat maps were
computed by first deleting genera that had a relative abundance of zero in all investigated samples
(positive controls, feces, and oral swabs) and subsequent calculation of the respective measure. All R
code is available upon request from the corresponding author.

Data availability. All raw sequencing data used in the current study are deposited in the European
Nucleotide Archive under accession number PRJEB34118.
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